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Use of form factors in electromagnetic interactions
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We comment on the description of electromagnetic reactions involving hadrons, when the inter-
nal structure of the hadrons is taken into account. General off-shell vertex operators, only con-
strained by Lorentz and gauge invariance, are used. The electromagnetic production of pions on a
nucleon is discussed as an example. Commonly used ad hoc recipes involving phenomenological
form factors are discussed in the framework of an exact formulation.

I. INTRODUCTION

When describing the electromagnetic interaction with
extended objects, one has to take into account the inter-
nal structure of the target. This is often done in a com-
pact way by the use of (phenomenological) form factors
for the particles (nucleons, pions, b, 's, etc.). It is clear
that in such reactions —like electroproduction of pions
from a nucleon —electromagnetic and strong form factors
enter into the description. However, this has to be done
in such a way that gauge invariance, as expressed by the
generalized Ward- Takahashi identity, is maintained.
The fact that the particles involved can be off their mass
shells must also be taken into account. It is the purpose
of this article to discuss this in detail, provide the general
framework, and then to put commonly used or proposed
recipes into perspective. In this paper we will mainly
focus on the electromagnetic production of pions from a
nucleon as an instructive example.

The most commonly used approach to describe pion
photoproduction and electroproduction is to calculate
the Born diagrams to first order in the electromagnetic
and strong couplings. By using the Ward identities,
Kroll and Ruderman showed that at threshold the (y, m. )

amplitude to lowest order in the photon energy is indeed
equivalent to the result obtained in lowest order Born ap-
proximation using the renormalized masses, and coupling
constants. This "Kroll-Ruderman theorem" is often seen
as a justification for extending the Born diagram ap-
proach to higher energies. The only indication of the
nucleon's internal structure in these Born terms is the
anomalous magnetic moment, which yields sizable contri-
butions. As we will see in the following, other terms due
to the internal structure of the particles have to be in-
cluded in a consistent description as well.

In applying the Born term approach to pion elec-
troproduction and by using electromagnetic form factors
for the hadrons, it is well known that one does not get a
gauge invariant amplitude (see, e.g., Ref. 3). A similar
problem is encountered when calculating the meson ex-

change currents in electron scattering. One way to
remedy this situation is tc assume that pion and nucleon
electromagnetic form factors are the same. If one also in-
cludes a strong pion-nucleon form factor, it also has to be
taken the same to maintain gauge invariance. This is in
contrast with the experimental information. It has also
been argued that one could simply use difFerent (phenom-
enological) on-shell form factors, but then add ad hoc
gauge terms which, while not contributing to the physical
amplitude, would ensure gauge invariance. These ap-
proaches are summarized in the paper by Dressier. Re-
cently, Gross and Riska developed another description
in the context of meson exchange current operators,
where it is allowable to use different form factors. We ex-
amine this method below.

The problem assumes a new dimension by the fact that,
even in photoproduction and electroproduction on a free
nucleon, the vertex operators and (on-shell) form factors
for the free particles are not sufficient for a general
description. One has to extend the on-shell form factors
off the mass shell and include additional off-shell opera-
tors with off-shell form factors. This was already real-
ized, for instance, by Berends and West. By choosing
the additional electromagnetic off-shell form factors in a
certain way, they obtain a conserved amplitude.

Since the above recipes were introduced in an ad hoc
fashion, we will in this paper provide a general theoreti-
cal framework to deal with the problem of internal struc-
ture and gauge invariance. As we will see, a consistent
gauge invariant description of electromagnetic processes
with hadrons requires a microscopic model for the origin
of their structure. Our discussion is mainly based on the
work of Kazes, who takes the full off-shell structure of
all vertices into account. We will put the above recipes
into perspective and outline how the problem must be at-
tacked in general. While we will focus on pion
production —in particular the (y, sr+) reaction —and use
the language of pions and nucleons only, our comments
are quite general and can easily be extended to other
cases.
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k "M„(p',q;p, k) =e [b, ' '(q)&'(q —k)Ag(p', p)

—A~(p', p+k)S'(p+k)S' '(p)] .

(2.2)

FIG. 1. Electromagnetic production of a pion from a nu-

cleon.

Here A5 is the full irreducible ~-N vertex operator, and
S' and 6' are the dressed nucleon and pion propagators,
respectively. Similar relations hold for ~ production
and m production. In general, one can divide all dia-
grams contributing to this process into two classes as fol-
lows (see Fig. 2).

The first we will ca11 class A, which can be put togeth-
er from, or reduced to, the building blocks of dressed
meson and nucleon vertices and propagators. This part
of the operator can be written as

II. GAUGE INVARIANCE IN PION PRODUCTION

y(k)+X(p)~N'(p')+sr(q) . (2.1)

The photon is virtual in the case of electroproduction.
We denote the operator for this process by M„(p', q;p, k).
By imposing gauge invariance one can derive, for exam-
ple, for sr+ production (for details see Ref. 7)

We consider photoproduction and electroproduction of
a pion from a nucleon (see Fig. l)

M& (p', q;p, k) =A~(p', p +k)S'(p +k)1 ~(p + k,p)

+ I'„(q,q
—k)h'(q —k)A, (p', p)

+1 "(p',p' —k)S'(p' —k)A (p' —k,p) .

(2.3)

I ~ and I „" are the irreducible general proton and neutron
electromagnetic vertices.

The second class of diagrams, class 8, cannot be re-
duced. It contains internal insertions of the photon into
the dressed vertices.

(b)

FIG. 2. (a) Class 3 diagrams contributing to the pion production process. The open circles indicate dressed vertices, the hatched
circles self-energy insertions. (b) Class 8 diagrams.
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By using the Ward-Takahashi identities for the nu-
cleons and pion,

(a)

(p' —p)"I „"(p',p) =e "[S'(p') ' —S'(p) '], (2.4)

(q' —q)~I „(q',q) =e [5'(q') ' —b, '(q) '], (2.5)

where e' are the charges in units of e, one easily gets from
Eqs. (2.2) and (2.3) 4~ ~ ~ ~

k "M„(p',q;p, k) =e [A5(p', p) A5(p—',p +k)] . (2.6)

This holds in general for the (renormalizable) pseudosca-
lar case. However, for pseudovector pion-nucleon cou-
pling, the above results only hold in lowest order. In this
case, the point coupling contact term, which is not reduc-
ible, also belongs to class B. Without a strong form fac-
tor it satisfies Eq. (2.6); if one uses a form factor in the
pseudovector vertex more M„ terms are necessary.

As an illustration, we consider a model where the
pion-nucleon interaction is pseudoscalar, coupling con-
stant g», and the nucleon is dressed by a neutral
(pseudoscalar-) scalar meson M, which couples with
strength 6 according to

~ ~ ~

E /

I =1 (or iy5) .

(2.7) (c)

All diagrams which one obtains to order 6 and to first
order in g» are shown in Fig. 3. [Note that the last di-

agram in Fig. 3(a) does not contribute. ] It is easily
verified that condition (2.6), which is a consequence of
the requirement of gauge invariance, is satisfied by the
dressed mNN vertex, which in this model is

g~&N 1 5+gnNNG

/

0
~ ~ ~

FIG. 3. Feynman diagrams for pion production contributing
to order G and g zz in the model described in the text. (a) Nu-
cleon pole contributions, class A; (b) pion pole contributions,
class A; {c)class 8 diagram.

X Jd„t 6 (t)S(p' t)iy S(p —t)I—(2.8)

where h~, and S are the bare propagators. Also, one can
prove that the diagrams together satisfy Eq. (2.2). For
this to be true, it is essential to include the self-energy in-
tegral for the nucleon. [As can be seen by power count-
ing, these diagrams contain divergences, and a renormal-
ization procedure is necessary. The above relations then
hold for the renormalized quantities. If one chooses the
dimensional regularization procedure, which preserves
the local gauge symmetry, the above equations apply
directly to the (4-e)-dimensional expressions. ] Note that
in this simple model the neutron electromagnetic vertex
does not get dressed and we have I „"=0.

The class 8 diagrams subject to condition (2.6) are
necessary to ensure gauge invariance if the particles have
structure. Standard models for pion production based on
the Born diagram concept do not include this type of dia-

grams (except for the contact term for pseudovector cou-
pling), but nevertheless include, e.g. , an anomalous mag-
netic moment coupling which is due to internal structure.
In the language of class 3 and B diagrams, Born
terms —except the just mentioned contact term —are class
A diagrams with on-shell vertices and free propagators.
In nonrelativistic potential scattering, Heller' showed
that in the case of nonlocal potentials current conserva-
tion requires the existence of "interaction currents. "
These currents, which are due to internal insertion into
potentials, are similar to the class B diagrams. They play
a crucial role in the quantitative description" of mN
bremsstrahlung and the extraction of a magnetic moment
of the 4.

It is also important to realize that in general the ver-
tices appearing in the amplitude M„are half oA shell.
When the outgoing nucleon is on shell, p' =M, the re-
ducible half-off shell electromagnetic vertex, I „",has the
general form (see, e.g. , Ref. 12 or 13)
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l 0' l'a&„u(p')I" =eu(p') y ~'+'+ " k f' '+k f'+' A + y
i"' '+ " k f' '+k f' ' AP 1 2~ 2 p 3 + ~ 1 2~ 2 p, 3 (2.9)

where f +—'=f —'(k,p, M ). Spin and isospin labels are omitted. We define W =p, where we take 8' )0. The pro-
jection operators A+ are defined as

A+=(+p y+8')/2W . (2.10)

A similar form holds in the case where the initial nucleon is on shell. The relation between the reducible and the irre-
ducible vertex is

u(p')I „" (p', p) = u (p')I "(p',p)S'(p)S '(p), (2.11)

where S(p) is the bare nucleon propagator. Applying the Ward-Takahashi identity yields' ' a relation between f',—'

and fP'. Therefore the (gauge invariant) vertex involves four independent form factors, which depend on three scalar
variables. On shell, it reduces to the usual form

l O.„kI„(k )=y„F,(k )+F2(k ) (2.12)

At the photon point, k =0, f ',
+' and f ', ' in Eq. (2.9) are subject to the condition

f ',+'(O,p, M —
) =

The most general electromagnetic vertex for the pion is

(2.12a)

I„(q',q)=e[(q+q')„h+(k, q', q )+(q' —q)„h (k, q', q )], (2.13)

where k„=(q' —q)„. On shell, h +(k, m, m „)is F (k ), the electromagnetic form factor of a free pion. Similarly, the
general o6'-shell @XXvertex has the structure

As(p p)='ysgi(p p' (p p') )+iys(p y™)g2(pp' (p p') )/M

+(p' y™)iysg&(p,p', (p —p') )/M+(p' y™)iys(py™)g(p p' (p —p') )/M (2.14)

For on-shell nucleons, what remains is the free mNX form factor

F xw«p p')')=gi(M—' M', (p —p')') . (2.15)

To gain further insight into the problem of gauge invariance in pion production, we consider for simplicity the pho-
toproduction of pions near threshold. We expand the full (y, n+) production amplitude to order m /M at threshold,
q=O. In this case, the pion pole diagram does not contribute. From Eq. (2.6), we can obtain a Taylor expansion of the
operator Mz up to terms linear in k,

M (p', q;p, k)= —e
aA, (p', p) a'A, (p,p)

+-,'k, , +S„,
apP ' Bp~apP

(2.16)

where S„ is an undetermined term of the order k, which is separately gauge invariant. Using Eq. (2.14) and defining
P =(M, O), we obtain for the matrix element in this order

e"u (p')M„u (p) = —(e /M)e"u (P)[iysy~2+Mkoi ysy~2 —i ysy&k yg2/(2M)]u (P)

+e"u(P)S„u (P)+O((k/M) ), (2.17)

where the g; and g are evaluated at their on-shell values. Expanding the matrix element of the class 3 operator Eq.
(2.3) consistently up to terms linear in the photon momentum or, equivalently, in powers of m /M, one gets in the
two-body c.m. frame

e u (p')M„"u (p) =ee"u (P)[(—g, /2M+g2/M)i ysyp+( g i +2g2 )ko'ysy~ kogi'ysyoy~/(4M )

+(g, —2gz)iysX„~„' '/M+(g, —2g2)iysyP y/(4M )+X„~„iys(g,—2gs)/M]u(P),

(2.18)



39 USE OF FORM FACTORS IN ELECTROMAGNETIC INTERACTIONS 1911

where III. RECIPES TO RESTORE GAUGE INVARIANCK

and

X„=i(r„k'/(2M)

=ee"u (P)[(—g, /2M +g2/M)iy 5y„]u (P),
e"u (p')M„u (p)

(2.19a)

=ee"u (P)[( g2/M— )i y 5y„]u (P), (2.19b)

which together result in the total threshold matrix ele-
ment

u(p')e"M„u (p) =u(P)e"(M "+M )„u (P)

= —eu(P)g, /(2M)e"i y5y„u (P) . (2.20)

The sum of the two contributions only depends on on-
shell (renormalized) quantities. The terms involving the
model-dependent g2 have disappeared. This is the result
of Kroll and Ruderman, who show that this threshold
result is also obtained by evaluating the lowest order
Born terms with renormalized coupling constants and
masses in this limit. This "Kroll-Ruderman theorem"
does not justify using the Born terms for the higher order
terms or away from threshold into the resonance region
as is commonly done. It is important to stress that the
result, Eq. (2.20), is obtained by a cancellation of the g2
terms from class A and 8 diagrams. In the higher terms
in k/M, the (model-dependent} internal structure aspects
enter, requiring knowledge of the half-off-shell form fac-
tors, e.g., f(2 ', for the description. Then also the up-to-
now unspecified term S„ in Eq. (2.16} can contribute.
This will be discussed in a forthcoming paper, which also
discusses m. photoproduction and the restrictions im-

posed on these terms by partial conservation of axial vec-
tor current (PCAC).

The above considerations point out the necessity of
consistently including the internal structure of hadrons in
electromagnetic reactions such as pion photoproduction.
Including only an on-shell anomalous magnetic moment
coupling in the Born terms is not sufhcient. A full treat-
ment necessarily requires a microscopic model for the
origin of the form factors and a prediction of their off-
shell form. It is also clear that such a model is needed to
calculate the "type-8" diagrams, which are crucial to ob-
tain a gauge invariant description. Without further as-
sumptions, only the term of order k of the photopion
amplitude is determined model independently. For low-

energy Compton scattering, also the two lowest terms in
k are determined in a general way, ' ' since the term
analogous to S„in Eq. (2.16) is of order k, and terms de-

pending on off-shell form factors cancel in this case.

Both Eqs. (2.17) and (2.18) depend on the off-shell dy-
namics through form factors such as gz or f2

', which
are not directly observable and model dependent. If we
only keep terms of order (k/M) in the threshold ampli-
tude, Eqs. (2.17) and (2.18) yield

e"u (p')M„"u (p)

rather than the Ward-Takahashi identity. He uses an
operator of the most general form and then performs a
subtraction procedure analogous to (3.1) to achieve this.

Clearly, such procedures are not satisfactory, and
several authors have studied this problem. Berends and
West discuss the electroproduction of a pion by consid-
ering the standard pole graphs. They use the general
electromagnetic vertices for the pion and the half-off-
shell nucleon. Since a point coupling at the n.XX vertex
is assumed, Berends and West do not have to consider the
internal insertions in the strong vertex (class 8 diagrams).
By imposing the Ward-Takahashi identity, they derive
relations among the electromagnetic form factors analo-
gous to the procedure in Ref. 12. They take all form fac-
tors at their on-shell value, i.e., with p =p' =M and

q =q' =m, and include no nucleon and pion self-
energies. This still leaves two model-dependent nucleon
form factors in the production amplitude for which no
on-shell information is available. The authors suggest
choosing these "undetermined" nucleon form factors-
f', '(k, M, M ) and f2 '(k, M, M ) in the notation
of Eq. (2.9)—as follows:

f(+)(k2 M2 M2) f(—)(k2 M2 M2)

f'+'(k M M )=f' '(k M M )

(3.3a)

(3.3b)

This keeps the amplitude gauge invariant. In fact, this
choice generates precisely the gauge terms one would ob-
tain by the ad hoc subtraction procedure of Eq. (3.1).

Without a microscopic model, the assumptions (3.3a)
and (3.3b) about the form factors cannot be justified.
However, at the photon point, k =0, Eq. (3.3a) is exact,
since gauge invariance requires that'

It was realized early on that the renormalized Born
terms describing pion electroproduction lead t;o a non-
conserved current when on-shell (phenomenological) elec-
tromagnetic form factors for the pion and nucleon were
used. One way to resolve this problem is to simply take
F (k )=Fi(k ), which, however, is not in agreement
with experiment. If also strong form factors, e.g., at the
+AN vertex, are used, this recipe also requires this form
factor to be the same as the electromagnetic ones.
Another recipe is to construct the total current, J„,from
the standard Born terms with on-shell form factors at the
vertices. One then subtracts an ad hoe term proportional
to k„,

J„~J„—k„k.J /k (3.1)

which is chosen to restore gauge invariance. This extra
term does not contribute to the physical amplitude when
contracted with the electron current j', since kj'=0.
These approaches are reviewed in the recent paper by
Dressier. In the context of electron scattering,
Tokarev' has used a similar subtraction method. He
demands that the general one-body electromagnetic nu-
cleon vertex operator, I, satisfies

(3.2)
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f(+'(0 M' M') =f ' '(0 M' M') =e~'" (3.4)

f' '(0 M M )= f'+'(0 M M )
f71 ~

(3.5)

Also the one-pion loop model' yields an f(2 ' which is
much larger than f '2+'. It is important to realize that

f'+'(0 M M )=f' '(0 M M ) (3.6)

is assumed implicitly in the standard Born approximation
for, e.g. , the photoproduction of pions on nucleons. Also
in the previously mentioned recent work of Tokarev'
such an assumption is made. It allows one to eliminate,
in Eq. (2.9), the model-dependent f2 '(O, M, M ) and to
use the experimental anomalous magnetic moment,
y(+'(O, M', M') =~.

Therefore, assumption (3.3a) may be a good approxima-
tion for small k . An example for the behavior of the
form factors f',+' and f', ' at larger k in a one-pion loop
model can be found in Ref. 13. In contrast, assumption
(3.3b) about the form factors fP' is more arbitrary.
There is no constraint from the Ward-Takahashi identity
on these Inagnetic form factors. In fact, the estimates
based on dispersion relations by Nyman' suggest

Gross and Riska also realize the importance of the
Ward-Takahashi identity when dealing with extended
particles, such as mesons and nucleons. Their main goal
is to construct a very general meson-exchange current
operator with arbitrary phenomenological electromagnet-
ic form factors for nucleons and mesons and with strong
form factors at the meson-nucleon vertex. Their discus-
sion is, of course, closely connected to the electroproduc-
tion of pions. The starting point is Eq. (2.5), which re-
lates the pion electromagnetic vertex, Eq. (2. 13), to the
full pion propagator. This propagator can be written as

6'(q )= q
—m + +(q ) (3.7)

with g (q ) the self-energy. This allows one to express
the general vertex, Eq. (2.13), as

r„(q',q)=a+(k, q', q ) g„— &k„

+e [6' '(q' ) b' '(q—))k„!k, (3.8)

where Q„=(q+q')„. To make contact with the formal-
ism of Gross and Riska, one has to rewrite h+ in Eq.
(3.8) as

h+(k, q', q )=F (q ) C(k, q'2,—q )
e [5' '(q' ) —b, ' '(q )]

(3.9)

which yields Eq. (6.13) of Ref. 5. However, C(k, q', q )

is then replaced by an undetermined function FD which
only depends on k . Whether or not this is a meaningful
approximation is a priori impossible to assess.

An important further ingredient in their recipe for
meson-exchange currents is the treatment of the strong
m.NN vertex and the pion self-energy, which is needed in
Eq. (3.8). They assume that the rrNN vertex is character-
ized by a form factor f (q ) and suggest shifting this q
dependence into the self-energy of the pion, resulting in

2( 2)
&'( ')=

g Vl

This cannot be possible in general, since the strong vertex
involved is off' shell and will have a more complicated
structure as in Eq. (2.14). The dependence on the nu-
cleon o6'-shell momenta will preclude a shift of the form
factors into a pion self-energy, which can only depend on
q . For similar reasons, one cannot expect in general a
recipe- of this type to apply to photoproduction or elec-
troproduction of pions on a nucleon.

For the yNN vertex, Gross and Riska suggest the form

I „(p',p) =
—,
' [F', (k ) —1+[F;(k ) —1]r3I

k„(k.y) 1+r3x y + yk 2

(3.11)

This form ensures that all form factors drop out from the
Ward-Takahashi identity and that the resulting current is
conserved. However, for the initial and final nucleon off
shell, the Ward-Takahashi identity is only satisfied by
this vertex if the nucleon self-energy is assumed to be
zero, which is only true for a free nucleon. Also for the
half-off-shell electromagnetic nucleon vertex discussed in
Sec. EI, the above recipe cannot be true in general. The
prescription in Eq. (3.11) corresponds to choosing

y(+) -y( —
1 (3.12)

IV. CONCLUDING REMARKS

We have discussed the description of electromagnetic
reactions on particles with internal structure, using the
production of pions on nucleons as an example. Two
classes of amplitudes can be distinguished. One class can
be described in terms of diagrams which are separated
from the rest by one propagator of the participating par-
ticles. The other class cannot be reduced in this fashion
and corresponds to internal insertions of the photon into
the dressed vertices. In pion electroproduction and pho-
toproduction, this insertion is done in the strong pion-
nucleon vertex. In Compton scattering, for example, the

in Eq. (2.9), just as in the recipe of Berends and West,
Eqs. (3.3a) and (3.3b). The same remarks of caution,
therefore, also apply in this case to this part of the recipe
proposed in Ref. 5.
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insertion occurs in the dressed photon-nucleon vertex.
Both classes are crucial to obtain a gauge invariant am-
plitude. Since production processes (or other two-step re-
actions such as Compton scattering) involve intermediate
off-shell propagation, also the off-shell form of the ver-
tices is needed. To obtain the class B diagrams and the
off-shell vertices, one clearly needs a microscopic model
for the hadron structure. This excludes in general a
description of these reactions in terms of (phenomenolog-
ical) on-shell properties 1ike the anomalous magnetic mo-
ment or the form factors of the free nucleon and pion.
The validity of the existing recipes which we discussed
here can a priori not be judged or justified without erst
examining the problem on a microscopic level —which
has not been done yet. Estimates for, e.g., the elec-
tromagnetic form factors of half-o8'-shell nucleons cer-
tainly raise some doubts about the commonly made as-
sumptions.

The most widely used description of the electromagnet-
ic production of pions on a nucleon is based on the lowest
order Born diagrams with on-shell vertices and free prop-
agators and without the class B internal insertion dia-
grams. This approach is only at threshold supported by
the "Kroll-Ruderman theorem, " which states that then
the photoproduction amplitude to zeroth order in

(m /M) can be obtained from the first-order Born dia-
grams with the renormalized masses and coupling con-
stant. In deriving the Kroll-Ruderman theorem, howev-
er, one needs both classes of diagrams. The theorem is
therefore not a justification that this Born approach is ap-
propriate for the higher orders in (m /M) at threshold
or for the amplitude at higher energies. Without further
assumptions —such as PCAC—model-dependent terms
will appear in the higher order correction terms at.
threshold. This will be discussed in a separate publica-
tion.

As electromagnetic reaction mechanisms at intermedi-
ate energies will be investigated in detail with the new
generation of electron accelerators, a consistent treat-
ment of the internal structure of the hadrons —pions, nu-
cleons, 6's, etc.—in the framework outlined in this paper
is clearly necessary.
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