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Dirac equation analysis of intermediate-energy He-nucleus scattering
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A one-body Dirac equation is used to model He+ Ca elastic scattering at 197 and 217 MeV. A

relativistic analogue of the Watanabe model is employed to constrain the real parts of the He-

nucleus potentials. This procedure results in an accurate description of the experimental differential

cross-section data, as well as a prediction of the elastic spin observables. Calculations for triton-

nucleus scattering are also performed. Implications for relativistic models of nuclear scattering are

discussed.

The relativistic approach has proven to be very suc-
cessful in describing intermediate-energy proton-nucleus
scattering. ' This has stimulated interest in using rela-
tivistic wave equations to model other nuclear probes.
Light ions are particularly intriguing projectiles in this
regard. One can investigate, for example, the validity of
using a one-body relativistic wave equation to represent
the scattering of a composite particle (as is done for
proton-nucleus scattering). Furthermore, if the models
are based on the Dirac description of nucleon-nucleus
scattering, the consistency of the relativistic approach to
nuclear physics can be tested. Finally, if the above pro-
gram is successful, it may be possible to gain information
concerning the neutrori-nucleus interaction.

Already investigations in this direction have been done
for deuteron-nucleus scattering. The small binding
energy of the deuteron makes it likely that its constitu-
ents interact independently with the target nucleus, and
therefore the process can mainly be described in terms of
free nucleon-nucleus scattering. Indeed, a good
parameter-free fit has been obtained in this manner to
intermediate-energy deuteron-nucleus data, especially the
spin observables, using the relativistic Kemmer-Duf5n-
Petiau formalism. Although such success is encourag-
ing, there are some difBculties associated with the deute-
ron, due to its spin-one nature. One is the fact that
several different relativistic spin-one formulations exist,
resulting in an ambiguity as to which one to choose.
Another is the occurrence of tensor potentials in relativ-
istic formalisms which may be important, but are
difFicult to include in a practical calculation.

With the above in mind, it is natural to consider the
next simplest composite nuclei, H and He. Although
these nuclei are more tightly bound than the deuteron,
meaning a physical description of mass-3 scattering
should be more complicated than for deuteron-nucleus
scattering, the fact that they are spin- —,

' does yield some

advantages. First of all, there exists the possibility of cal-
culating and measuring elastic spin observables unlike
for, say, alpha-particle scattering. There is also a clear
choice regarding the one-body relativistic wave equation
to be used, in contrast to the situation for deuteron-
nucleus scattering. Furthermore, the spin dependence of

where S&~ and V& ~ are spherically symmetric He-
nucleus Dirac scalar and vector potentials, respectively,
and V, represents the Coulomb potential. By using a rel-
ativistic analogue of the Watanabe model, ' one can con-
struct, for example, the scalar He-nucleus potential for
an incident kinetic energy K by taking the appropriate
nucleon-nucleus scalar potentials at one-third the kinetic
energy and folding them with the He density. If isospin
dependence is suppressed, the above statement can be ex-
pressed in equation form as

Sq„(r;K)= Jdr'p&(r')S, „~r—r'~;—K (2)

the potentials is relatively simple and can be handled in
existing computer codes. Also, a comparison of the
scattering of the two mirror nuclei, H and He, can lead
to insight into the nature of the neutron-nucleus poten-
tial, as discussed above. Although one may question the
use of the Dirac equation for such extended objects, a
study by Bleszynski, Bleszynski, and Jaroszewicz has
suggested the validity of such a procedure.

In the present study, a one-body Dirac equation will be
used to model He-nucleus scattering at intermediate en-
ergies. Specifically, differential cross-section data for
He+ Ca scattering at both 197 MeV (Ref. 10) and 217

MeV (Ref. 11) will be fit using Dirac scalar and vector
potentials. A relativistic version of the Watanabe mod-
el' will be used as a basis for constructing these poten-
tials. Since nucleon-nucleus optical potentials are re-
quired as input to the Watanabe model, this will allow for
a check on the consistency of the Dirac approach to nu-
clear scattering, as alluded to earlier. An important by-
product of this procedure is that, because the Dirac equa-
tion correlates the effective central and spin-orbit poten-
tials in a specific way, a fit to the differential cross section
will yield a prediction of the elastic spin observables. The
He-nucleus potentials will also be employed to obtain

predictions for triton-nucleus scattering.
The basic equation to be used is the one-body Dirac

equation

[a p+/3(m +Sh„)]f=(E—
Vq~

—V, )1/,
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where 5„„is the Dirac scalar nucleon-nucleus potential
and pz is the He density. A similar procedure holds for
constructing the vector potential. Of course, the
Watanabe model is not expected to give a perfect descrip-
tion of light-ion scattering. On the other hand, it can
provide a parameter-free first approximation to experi-
mental data. It can furthermore be used as a foundation
upon which to build a phenomenological optical poten-
tial. In the present study, calculations will be performed
both for the parameter-free Watanabe model and an opti-
cal model potential obtained by fitting differential cross-
section data. In each case comparisons will be made with
experiment and predictions of the vector polarization will
be presented. The Watanabe model will be important to
the phenomenology because it will be used to constrain
some of the potential parameters, particularly the real
geometries.

In order to determine the He-nucleus Watanabe mod-
el potentials, nucleon-nucleus potentials at the appropri-
ate energies are required. Due to the lack of relevant
data, the neutron-nucleus optical potential is assumed to
be equal to the proton-nucleus optical potential; however,
the Coulomb potential is included, as indicated in Eq. (1),
by taking the projectile to be a point charge interacting
with the static charge distribution of the target nucleus.
Although Dirac global optical potentials are available for
p+ Ca scattering, ' they were not used since they con-
tain surface absorption, and it was desired to fit the He-
nucleus data using only volume absorption, as was the
case with nonrelativistic analyses. ' ' " The Dirac
nucleon-nucleus potentials used in this study were instead
obtained by fitting p+ Ca data at 65 MeV (Ref. 14) and
80 MeV. ' The four iridependent potentials, scalar and
vector, real and imaginary, were parametrized, in stan-
dard Woods-Saxon form, as

U(r) = W/( I+e'" ' ),
where 8'is in MeV, C and Z are in fermis, and 3 is the
atomic mass number of the target. The 80 MeV poten-
tials were previously available. ' The 65 MeV potentials
were determined using E. D. Cooper's RUNT program.
In light of the reservations expressed in Ref. 13 concern-
ing the absolute normalization of this data, the normali-
zation was at first searched on as a free parameter. How-
ever, since this resulted in a normalization parameter
very close to one, this parameter was ultimately held
fixed at unity. The parameters for the 65 and 80 MeV op-
tical potentials are listed in Table I.

Having obtained the necessary nucleon-nucleus poten-
tials, the Watanabe model He-nucleus potentials can
now be determined. In order to retain the convenience of
using analytic Woods-Saxon form factors, the folding, as
exhibited in Eq. (2), was done in an approximate manner.
Both the real and imaginary strengths were multiplied by
three, the radius parameters were left unchanged, and the
diffusenesses were adjusted such that, to second order in
the quantity y =(Z/A '~ C), the approximate potential
would have the same mean-square radius as the exact
folded potential. The volume integral obtained in this
procedure is exact to first order in y. This approximation

TABLE I. The input nucleon-nucleus potentials. The sym-
bols in the left-hand column have the following meaning: The
first letter indicates the type of parameter, as shown in Eq. (3);
the second letter indicates scalar or vector; the third letter indi-
cates real or imaginary.

65 MeV 80 MeV

WVR
CVR
ZVR
WVI
CVI
ZVI
WSR
CSR
ZSR
WSI
CSI
ZSI

384.88
1.0453
0.7197

—33.27
0.8095
0.8329

—444.31
1.0615
0.7223

24.76
0.7993
0.4690

325.00
1.0513
0.5634

—30.88
1.2064
0.5577

—422.04
1.0378
0.6002

24.32
1.1570
0.4410

is in accord with empirical observations made in the
study of light-ion scattering, which suggest that the pri-
mary effect of folding is to multiply the strength and in-
crease the diffuseness of the potential. ' For the
He+ Ca potentials at 197 MeV, the proton-nucleus po-

tentials at 65 MeV, which corresponds to the correct
value for the Watanabe model, were used as input. The
80 MeV p+ Ca potentials were used to construct the
He potentials at 217 MeV. Although, for this case, the

nucleon-nucleus potentials should be taken at a slightly
lower energy, no data exists at the appropriate energy,
and the error made in representing the Watanabe model
potentials in this manner should be small. However, as
will be seen below, this discrepancy will affect the way in
which the 217 MeV data set is fit.

As the parameter-free Watanabe model does not de-
scribe the data well, it is riecessary to utilize phenomenol-
ogy in order to obtain agreement with experiment. How-
ever, the Watanabe model will still be used to fix some of
the parameters of the phenomenological potentials. This
serves to reduce the number of free parameters in the
model and has the additional advantage in that a connec-
tion is retained between the Dirac descriptions of proton
scattering and He scattering. Since the Watanabe Inodel
neglects effects arising from the breakup of the projectile,
which are expected mainly to increase absorption, it is
natural to expect that the imaginary potentials would
have to be changed to account for this. Therefore, in
fitting the 197 MeV data, the real potentials were taken
from the Watanabe model and the imaginary potentials
were searched on, resulting in a good six-parameter
description of the experimental data. For the 217 MeV
case, this procedure failed to produce satisfactory results,
most likely due to the fact that the Watanabe potentials
were built up from nucleon-nucleus potentials at the
wrong energy. Thus, an alternate method of obtaining a
six-parameter fit to the data was adopted. While the
imaginary geometries were searched on, the imaginary
strengths were held fixed at the Watanabe model values,
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and instead, -the real strengths were allowed to vary. This
can be justified by observing that the real strengths have
a greater energy dependence than the imaginary
strengths and thus would be more afFected by using input
potentials at a different energy, and noting that in the
previous fit, the imaginary strengths were found to be
very close to the Watanabe model values. The number of
free parameters in both of these fits is the same as the
number used in nonrelativistic analyses. ' '" These pa-
rameter searches were also done with the RUNT code'
and the best-fit potentials are exhibited in Table II.

An inspection of Figs. 1 and 2 shows that the phenom-
enological potentials yield a good description of the
difFerential cross sections. On the other hand, the
parameter-free Watanabe model is only reliable at for-
ward angles (less than about 12 deg), as the predicted
cross sections Batten out and are well above the data for
larger angles. As mentioned above, an advantage of
working with a Dirac formalism is that a definite predic-
tion is obtained for the spin observables. The calculated
polarizations are also displayed in Figs. 1 and 2. It is
seen that the predictions of the %'atanabe model poten-
tials and the phenomenological potentials are qualitative-
ly similar. However, the phenomenology produces polar-
izations which are more oscillatory at larger angles, in
line with the oscillat~ons of the cross sections. In Table
III, the predicted reaction cross sections from the relativ-
istic Watanabe and phenomenological models are com-
pared with each other, and with predictions obtained us-
ing the nonrelativistic optical model parametrization of
Refs. 10 and 11. The relativistic and nonrelativistic opti-
cal models produce values that agree with each other to
within five percent, indicating their probable accuracy.
The relativistic Watanabe model gives predictions that
are within ten percent of the above numbers, suggesting
that it can be used to obtain dependable estimates for the
reaction cross section, despite its failure to describe the
difFerential cross section. It should be noted that a
geometric black-disk model yields a reaction cross section
of 127 fm, which is in good agreement with results ob-
tained from the above models, providing a radius of 6.35
fm is used. As this radius is consistent with the sum of
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FIG. 1. Differential cross section and polarization for
'He+ Ca scattering at 197 MeV. The experimental data are
from Ref. 10. The solid lines have been calculated using the
best-fit potentials of Table II, while the dashed lines are ob-
tained from the relativistic Watanabe model.

TABLE II. The best-At He-nucleus potentials. The symbols
have the same meaning as in Table I.

WVR
CVR
ZVR
WVI
CVI
ZVI
WSR
CSR
ZSR
WSI
CSI
ZSI

197 MeV

1154.6
1.0453
0.8527

—64.47
1.3591
0.6227

—1332.9
1.0615
0.8549

71.03
1.1851
0.4788

217 MeV

1002.6
1.0513
0.7257

—92.64
1.3226
0.6828

—1228.9
1.0378
0.7546

72.96
1.3237
0.5839
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FIG. 2. Differential cross section and polarization for
He+ Ca scattering at 217 MeV. The experimental data are

from Ref. 11, and the solid and dashed lines have the same
meaning as in the previous figure.
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197 MeV 217 MeV

NROM
ROM
REL WAT

129
124
117

130
124
121

TABLE III. Predicted reaction cross sections in fm for
He-nucleus scattering. The first line is obtained using the non-

relativistic optical potentials of Refs. 10 and 11; the second line
is calculated using the best-fit relativistic potentials given in
Table II; the third line is obtained with the relativistic
Watanabe model potentials.
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two black-disk radii that might be appropriate for He
and Ca, this suggests that the reaction cross section can
be largely understood in terms of the geometrical proper-
ties of the two colliding nuclei.

It is also of interest to discuss the Dirac He-nucleus
potentials, as presented in Table II. As is the case with
the Dirac description of proton-nucleus scattering, large
scalar and vector potentials "cancel" each other, produc-
ing effective potentials of reasonable magnitude. The
strengths of the best-fit potentials are very similar to the
Watanabe model values. In addition, it was found ade-
quate to let the parameters describing the real geometries
remain at their Watanabe model values. However, the
imaginary potential geometries were substantially
different from the Watanabe model. In both cases, the
phenomenological potentials were of much longer range.
This characteristic is also found in nonrelativistic analy-
ses of light-ion scattering and is to be expected on physi-
cal grounds. '

The He-nucleus potentials that have been obtained
here can be used with some confidence to predict triton-
nucleus scattering observables as the target that has been
considered is a self-conjugate nucleus. Naturally, the tri-
ton will experience a different Coulomb potential. How-
ever, an additional benefit of the Dirac approach is that it
automatically includes a Coulomb correction term, '

which is also affected by the charge of the projectile. The
results of a calculation for H+ Ca scattering at 197
MeV are shown in Fig. 3. The differential cross section
and polarization are very similar to the corresponding
He case, except that the minima near eight degrees are

shallower and the oscillatory structure is slightly less pro-
nounced at larger angles. A reaction cross section of 127
fm is predicted for the 197 MeV tritons.

Of course, the Dirac potentials for He-nucleus scatter-
ing can be used as input for reaction calculations. A par-
ticular instance would be for the ( He, t) process. One can
use a relativistic generalization of the Lane equations, as
has been done for (p, n) reactions. However, the utility
of the potentials is not only restricted to relativistic mod-
els. The potentials here can be employed in a nonrela-
tivistic calculation simply by converting them to effective
Schrodinger-equivalent form. ' An advantage of using the
Dirac potentials, as opposed to the nonrelativistic-based
potentials of Refs. 10 and 11 is that they have a realistic
spin structure.

The results of this study are sufficiently promising to
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FIG. 3. Differential cross section and polarization for
'H+ Ca scattering at 197 MeV. The solid line was obtained
using the 'He-nucleus potentials of Table II together with an
appropriate Coulomb potential.

encourage studies of the scattering of other composite
particles. Research concerning the deuteron has already
been cited, and some work on alpha-nucleus scattering
has also been done. ' Perhaps a more microscopic ap-
proach, such as double-folding, might be fruitful. Ulti-
mately, the foundations for such models lie in a study of
the complexities of the relativistic few-body problem.
This approach has been pursued for relativistic
deuteron-nucleus scattering. However, it should be
noted that theoretical justifications of light-ion scattering
models are nontrivial even in the nonrelativistic case, and
a more pragmatic approach might be to continue the use
of one-body wave equations. It is reasonable to expect
that such models should provide at least a "first-order"
description of the underlying physics. A particular ad-
vantage in working with relativistic wave equations is
that a specific spin dependence is imposed on the scatter-
ing potentials, which appears to result in an improved
description of the spin observables. As far as the present
model is concerned, further constraints would be provid-
ed by polarization measurements and/or triton-nucleus
data. An investigation is underway concerning the
scattering of mass-3 nuclei at low energies, where spin
measurements have been made. It would also be interest-
ing to learn if a description of He-nucleus scattering
would require "wine-bottle" shaped potentials at incident
energies of about 200 MeV per nucleon, as seems to be
the case for both proton-nucleus and deuteron-nucleus
scattering.

In summary, it has been shown that a one-body Dirac
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equation, based on the Watanabe model, can be used to
fit intermediate-energy He-nucleus data. This success
has provided evidence in support of the consistency of
the relativistic approach to nuclear scattering and the va-
lidity of using the Dirac equation for a composite system.
From a practical standpoint, the model has yielded pre-
dictions for the elastic spin observables as well as produc-
ing both effective central and spin-orbit He-nucleus po-

tentials. It thus appears worthwhile to continue the
study of relativistic models of light-ion scattering.
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