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We consider radiative capture of a m from an atomic orbital around deuterium into a bound

NN~ system with two units of isospin. It is found that it is a feasible method to search for such hy-

pothetical states.

I. INTRODUCTION

The pion-nucleon p-wave interaction in the isospin —,

state is known to be strongly attractive. This fact has led
to suggestions that the pion-nucleus system might have
bound states. To maximize the number of isospin —, in-

teractions, neutron-rich m systems are preferred. Thus,
one has been led to consider the system nn~ (or its
charge conjugate).

If this hadronic collection is indeed bound it is a di-
baryon with I =2 and hence cannot be formed as an s-

chy, nnel resonance in the nucleon-nucleon system. There
is a long history of the study of this system. Recently an
investigation using relativistic three-body equations has
shown that the existence of such a bound NNm state is
strongly linked to the interaction range of the pion-
nucleon system and hence to the basic hadronic size. The
importance of these results is that, while the observance
of such a state would be spectacular in itself, the failure
of such a state to exist gives bounds on the range of the
pion-nucleon interaction. These investigations focused
on a pair of neutrons with zero relative angular momen-
tum, with a pion of unit angular momentum, to give a 1+
state.

The latest results of these three-body calculations,
based on the two nucleons being in a relative p state, do
not have such a simple interpretation since they involve
two interaction ranges. They indicate, however, that the
best representation of the p-wave scattering volume coin-
cides with those situations in which the bound state ex-
ists. This latest study finds that the most promising case
is for the nucleon pair to have relative angular momen-
tum unity and for the pion also to have unit angular
momentum with respect to the center of mass of the two
nucleons, to give a total 2 state. The resolution of this
question is far from complete, and it is important to
know if such bound systems are to be found in nature.

There exist (to our knowledge) no predictions of I =2
dibaryons in this energy region based on quark dynamics
(although there do exist predictions of particles in this
range based on phenomenological extrapolations from
observed structures. ) Hence we will assume, as suggest-
ed, that the particle has an internal composition of three
hadrons (two nucleons and one pion) and that the size of
the system is of the order of 1 fm.

One possible way to search for this bound system is
with the reaction

+H —+Xy (2)

from an atomic orbital. The advantage of this transfor-
mation is that it can proceed by a purely electromagnetic
transition with the only uncertainties in the rate arising
from the lack of knowledge of the detailed structure of
the X itself. 'While the Stark mixing assures that the

(or its charge conjugate). This reaction has the advantage
that the product (X ) must be an I =2 object, hence the
background from the formation of other states is low. It
also has the merit that, if the object exists, beams can be
produced, lifetimes measured, etc. It has the disadvan-
tage that a pion must be produced, and the calculation of
pion production by pions in ordinary nuclear systems is
dificult enough.

A recent measurement of this process has placed an
upper limit on the cross section for producing this state
with this reaction of 9—15 nb/sr for the region 0—30 MeV
binding energy. This same paper also reports the prelimi-
nary results of a second experiment which gives yet lower
bounds by at least an order of magnitude. These experi-
ments provide a significant constraint on the existence of
such a state. While the results of this experiment are 2
orders of magnitude smaller than a recent prediction, we
note that the related cross sections for (m, 2n. ) reactions
on nuclei are diScult to calculate and that the radio-
chemically measured cross sections in this energy region
are very small (around 10 pb at 350 MeV). Hence, it is
desirable to have a method for searching for this bound
state which does not depend on pion production.

To this end we first note that if the I =2 state exists, it
will be found in all of the possible charge states. While
the T, =+2 state can only decay weakly (because of
charge conservation) the T, =O, +1 states can decay by
the emission of a photon. The width of the state is still
small enough to provide a well-defined particle. (See Sec.
m).

In this paper we consider the X as formed in the reac-
tion'
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capture takes place from an atomic s state, it is not neces-
sarily from the 1s state. We make estimates here of the
rate based on capture from the 1s state, which is con-
sistent with the usual practice of quoting absolute rates
assuming capture from the lowest s state. %'e do not con-
sider the possibility of capture from the 2p state, which
might be an experiment to be performed in a low-density
gaseous target.

Indeed, if the X particle is well described as being a
bound state of two nucleons and a pion, then (2) might
have some advantages over (1) since all the particles
needed to produce the X are already present in the ini-
tial state, and it is only necessary to rearrange the wave
function. Reaction (2) can produce particles with I =0,
1, or 2, but we shall focus only on the lattermost possibili-
ty.

The questions we wish to address are (i) what is the
transition rate for (2), and (ii) what is the decay width of
the X . If the branching ratio (B.R.)

I (rr + H~y+X )

I (m + H~anything)

is too small, or if the width of the X is too large, then it
will be difficult to detect using (2).

To calculate either one of these quantities requires a
knowledge of the three-body wave function of X . In this
paper we shall use simple wave functions and make crude
estimates of the matrix elements that are needed.

II. CAPTURE RATE

To describe the possible quantum numbers of X, we
shall use the set of Jacobi coordinates shown in Fig. 1.
The internal orbital angular momentum is decomposed
into

where I is associated with the relative motion of the two
nucleons and I& involve the motion of the pion with
respect to the center of mass of the two nucleons. Since
the isospin of the two nucleons must be unity in order
that the total I =2, the allowed states of the two nucleons
are 'So with I =0, PJ with I =1 (7=0, 1,2), etc. Con-
sidering only l&=0 or 1, the possible quantum numbers
of the X are shown in Table I.

In the initial state the m. is in a Bohr orbit (I& =0) and
the neutron-proton pair is in a S,- D& state, i.e., l =0
with a small admixture of I =2. The initial quantum
members, therefore, are 1 . To obtain an estimate of the
transition rate, we assume that only one-body electro-
magnetic current operators need be considered. Since the
isospin of the two nucleons must change from 0 to 1, only
radiation from the nucleons makes a contribution to the
matrix element.

The simple wave functions that we use factorize into
three parts: nucleon spin X nucleon space X pion space.
Consequently, there are only four independent matrix ele-
ment that need be calculated corresponding to the four
cases in Table I: l&=0 or 1 and l =0 or 1. Insofar as

P
isospin is concerned, the X is a 50-50 mixture of ~ np
and n. NN (with the two nucleons having I =1). We
note, finally, that since the I =1 nucleon-nucleon system
does not have a bound state, the factorized spatial wave
function cannot be correct asymptotically. Our hope is
that it is the sizes of the spatial wave functions rather
than any detail of their shapes that governs the calcula-
tion of the transition rate.

Since each one of the four possible transitions is a di-
pole, the general expression for the transition probability
per unit time is

I=I +I~, (4)

We now examine T for the four difFerent cases.

A. lg =0, lp =0 (J =0 )

Neglecting the D state of the deuteron (which we shall
do henceforth), it is only the spin (and isospin) of the two
nucleons that changes. The transition is a magnetic di-
pole and T, =M&, where

TABLE I. Quantum numbers J of an I =2 dibaryon for the
lowest angular momentum states of the two nucleons and the
pion. The 0 and 2 states having i&=1 are the most likely
ones to exist as a bound NN~ state according to Ref. 4.

FIG. 1. Definition of the Jacobi coordinates used in the text.

Pion angular momentum Nucleon-nucleon state
's, 3p

0+ 1+ 2+

0, 1, 2
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' 1/2
1 e 3M', = — 2p, , (S'=O, m,'=0~( —1} o ~s = l, m, )

X(I'=1,ml'=O~r, ~I =0,ml =0)f d pd'Ag*o(p, A)g (p, A) .

The significance of the various quantities is as follows.
The factor 1/&2 is present because only the m np com-
ponent of the X wave function takes part in the transi-
tion. e /2m+ is the nucleon magneton. p„=

—,'(p~ —p„)=2.3& is the isovector magnetic moment in
units of the nucleon magneton, and the factor 2 arises
since the spin and isospin matrix elements for nucleon 2
are each the negative of those for nucleon 1; it is the
latter that are displayed in Eq. (6) where o is the spheri-
cal component of the spin and m, is the initial z corn-
ponent of the deuteron's spin. The isospin matrix ele-
ment in Eq. (6) has the value unity, and the sum over m
that is called for in Eq. (5) together with the average over
m, yields

—,
' y y )(S'=O, m,'=0~a ~S = l, m, ) ('=1.

m, m

(7)

D(p, &)=PD-(p)gs(&),

where

g (A, )=X e F (8,$ )

is the wave function of the lowest s-state Bohr orbital,
with

as =2m+m a/(2m&+ m ) = m„a

being the inverse of the Bohr radius and N~ =4K&.
VD(p) is the wave function of the deuteron.

We also assume a factorized form for the X wave
function

We take the spatial wave functions to factorize as fol-
lows:

and

(I& = f d Af (A)g (A)

=N N f dAAe
0

3/2
Kg-v'8 (13)

mN K

where we have used the fact that K~ &&K .
Since none of the two-body subsystems of the X are

bound, existence of a three-body bound state would re-
quire that there be an appreciable probability for finding
all three particles simultaneously within the range of the
forces. This leads us to expect that the size of the wave
function in the NN separation variable is comparable
with K, the size in the pion separation variable. This
also means that the pion carries most of the kinetic ener-
gy, and leads to an estimate of ~ = (2m 8)', where 8 is
the binding energy of the X .

With 8 in the range of IO—40 MeV, K ' varies from
-4 to -2 fm. Even if the size in the NN separation vari-
able were only 1 fm, which would be surprising given the
preceding discussion, the overlap with the deuteron wave
function would be appreciable, ~0.5, based on simple
model calculations. This is the basis for the "standard"
values of x, (I )z&, (p)z&, and (p ) that are used in
the following numerical estimates; but the formulas are
all written in a convenient manner for changing these
values if it is desired to do so.

Putting all these results into Eq. (5) gives

0» (p ~)=fx~(PW (~»
k

35 MeV
O. s fm

0.7

and take f (A, ) to be a Yukawa with range v X 8.7 X 10' /sec, (14)

(10)

with X =2~„. The spatial matrix element in Eq. (6) now
factorizes into a nucleon part and a pion part,

f d pd &1t*o(p,A. )1( (p, A, )=(I) (I)

where the final form of Eq. (14) has been referred to the
"standard" values k =35 MeV, K =0.5 fm ', and

B. lg=O, lp=1(J =0, 1+,2+)

with

(I)xx—= f d pf~~(p) 4(p), (12)

Since the orbital angular momentum of the two nu-
cleons changes from 0 to 1, but their spin state remains a
triplet, an electric dipole transition occurs with T&

=Q, , where
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Q, = —'(S'=1,m,'~I ~S =1,m, &

X (I'= l, m,'=O~r, ~r =O, m, =O&

X f d'pd'A, g'0(P, A, )PYf (&p, Pp)g —D(p, &)

(15)

9 2 4 4 3 ~ P NN

where I is given in Eq. (13) and

(p &~~ = f dp p'Rg~(p)PRD(p)

(16)

(17)

is the radial part of the nucleon-nucleon matrix element.
J is the spin of the X . The result is

k
35 MeV

3
0.5 fm ' (P&vm

K~ 1 fm

'2

The other difference from Eq. (6) arises from the fact that
the electric dipole operator for the two nucleons is
—,'ex.„(r&-r2). Neglecting any spin-orbit interaction and

carrying out the angular integration over the nucleon
coordinates and the spin sums gives

the pion and the spin state of the nucleons change. Such
a transition can be produced by the electric dipole opera-
tor QI, since r& X cr &+ r2 Xo 2 involves the coordinate A, ,
but weighted by the small factor m„/mN. Compared
with Q& (case B above), Q', is down by a factor of the
order p, (k/mz)(m /mz), so that even a small admix-
ture of the 1+ wave function of type B would dominate
the transition rate.

X(L, L2) —g (p, iL), (19)

and the isospin matrix element is unity as before. Ex-
pressing the individual orbital angular momenta in terms
of relative coordinates gives

D. Ig=l, /p=1 {J=0,1,2 )

A magnetic dipole transition produced by the orbital
angular momentum of the nucleons can change the orbit-
al state of the pion as well. T& =M, , where

1/2
1 1 1 e 3

v'2 l+1 2 m~ 4m

X fd pd A,/*0(P, A, )( —1)

X(2J+1)X2.0X10 /sec .
m~

&,—L2= —2 A, Xp +—,'p Xpq +L',
2mN+m

(20)

C. I =1, I =0{J =1+)

For this case, both the orbital angular momentum of

where the terms in L' do not involve both A, and p, and
hence are not able to produce the transition. The spheri-
cal components of this operator are

1 1 1

(L) L2) =2v 2i-
p

The wave function of the X is written

1

2mN p 4~p, ——
pp~ Y. (6), 0,». (~~ 4~)+L'-. (21)

1 1 I.'

g 0 (P, A, )=R~~(p)R (A, )
L.m, m. m L, ', mLP A S

I.'
1 J

Y, , (8,$ ) Y, , (Oq, gq)X, ',
S

(22)

and the radial function for the pion is taken to be The expected magnitude of the radial part of the pion
matrix element is

K A,

R (A, )=N' 1+ F(A, ,RO),
1

K
(23) (A, & -N~N'

3 =PNq+Ro/Ir
K~

(24)

where Ro is the range of the interaction and F is a func-
tion chosen to give the wave function the correct behav-
ior at the origin and approaches unity for A, )R o. We ex-
pect that N' =a+0, with the extra factor of a+0 aris-
ing from the p-wave nature of the wave function.

Of the two terms in the bracket in Eq. (21), we expect
the first to dominate in spite of the presence of the small
factor m /mN because the derivative with respect to k in
the second term brings down the very small factor Kz.

We considered two forms for F:
—(A, /Ro )

F(A, ,RO)=l —e (25a)

F(A, ,Ro)=(1—e ') (25b)

both having the property that they tend to unity for
A ))Ro and they are proportional to A, for small A.. For
a series of a and Ro in the relevant range, the values of p
varied from 3.2 to 9.0. We use the smallest value from
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this set. The radial part of the nucleon-nucleon matrix
element, (p &, is expected to be of order 1 fm

Inserting Eqs. (21)—(23) into Eq. (19) and carrying out
the spin and angular part of the matrix elements gives

m„P+Ro
2 2i Ns

2m~
1 1 e 3

M) v'2 2 2m 4lr

1 1 Jx(
3 —m m, M (26)

p~ m ~tx
I = k

648 m~
(27)

Squaring, summing over m and M, and averaging over
m~ yields

10

O 10
O~
CQ

EC

10

CQ

A(J =0)

r
r

/
/i'

I r
I
I

(JtC O+)

~««««

~ ««««'

r «P

r
r

k
35 MeV

3 405fm ' +o
K 2 fm io'—

«

(p, &X, (2J + 1)X6.6 X 10 /sec
1fm ' (28)

for J=O, 1, or 2, which are the only states that can be
reached by this dipole transition. The suppression of this
rate compared with that produced by the M

&
operator

(see Sec. II A) arises primarily from the lever arm factor
(m /2m~) . For the J =0 case any small admixture
of the 0 wave function of type A would dominate the
transition rate.

Comparison of the preceding four cases shows that the
first two cases with l& =0, and l =0 or 1, would produce
the largest transition rates, but still rather small because
of the small energy release. If the binding energy of X is
less than 20 MeV, then it would appear to be unlikely
that the rate for ~ D —+@X could be significantly larger
than 10' /sec. For the fourth case where l&=1 and
l = 1, which might be a preferred candidate for a bound
X, the rate is down from this value by more than 3 or-
ders of magnitude. For such a case consideration of ex-
change currents might increase the rate by a significant
amount.

The rate for ~ D~ynn is not known experimentally,
but there is a theoretical calculation" that assigns the
value

I (lr D~ynn)=(4. 3+0.5)X10' /sec,

using the value of the capture rate on the proton, which
is in turn inferred from pion charge exchange and the
Panofsky ratio. ' We note that these are all "1s" rates.
Using the measured ratio for other processes' one ob-
tains a total rate of 2 X 10' /sec.

In Fig. 2 we show some of the branching ratios as a
function of photon energy. For this plot we have as-
sumed "standard" values for all variables except k and
K„. As previously described, the quantity K was calculat-
ed by ~ =+2m E~ in an attempt to correct for the
change in size of the system due to the change in binding.

&0' I I

10 20
I I

30 40
E (Mev)

I I

50 60 70

FIG. 2. The branching ratio from Eq. (3) for three of the
cases discussed in the text. They are case 3 ( I&

=0, l
p 0) dot-

ted curve; case B (lz =0, lp= I), dotted-dashed curve; and case
D (lz =1, l =1), solid curve. These values should only be con-
sidered as indicative since we have assumed the relationship
Ir =+2m Er in their calculation. Only the least favorable
case for B (J =0) and the most favorable for D (J =2) are
shown. The other values scale as 2J + l.

III. DECAY RATE

Another quantity of interest for a hypothetical X is its
decay rate. An electromagnetic interaction could take an
I =2 particle to a ynn final state; and isospin mixing in
the X could lead to an XX final state. Since X ~ynn
goes via the same basic process, ~ p~yn, that also
governs the rate for lr D lynn (with the extra neutron
in both cases acting as a spectator), we expect that the ra-
tio of the two rates is primarily determined by the rela-
tive probabilities of finding the pion at the proton. For
vr D capture, this is essentially the probability of finding
the pion at the origin (A, =O). In the X wave function, if
the ranges in the p and A, variable are comparable, i.e.,

', then we expect that

I(X ~ynn)
I (m. D ~ynn)

9.0X 10
0.5 fm

(29)

and together with the rate for m D ~y nn given above,
the width of the X would be expected to be less than 0.2
MeV.



39 n CAPTURE ON THE DEUTERON AS A DIBARYON SEARCH 1901

lMl( ' &D),
&v, &

(31)

where the matrix elements (D) and ( V, ) are to a
discrete I = 1 state. Since ( V, ) (1 MeV and assuming
the binding energy lEol ) 10 MeV, the eff'ective amount
of admixture of I = 1 probability into the X wave func-
tion is quite small, Pl, ~0.01. Furthermore, one ex-
pects (D ) to be such that

I (I = 1 nn) I (rr D~nn )
3I (I =2 nny) I (~ D~nny)

(32)

We now want to show that Coulomb mixing of an I = 1

component into the X wave function followed by a non-
radiative decay of this component to two neutrons is ex-
pected to contribute less to the width of the X than the
radiative decay of the dominant I =2 component. The
matrix element for nn decay is given by

&nnlDlr = I,I & &r = l, rl v, lx, )M=g, (30)
J 0 j

where V, is the Coulomb potential and D is the strong in-
teraction operator responsible for the decay. Even
though the NNm states with I = 1 are all assumed to be in
the continuum, a simple model leads to the expectation
that

since the same basic mechanism is operating in X decay
as in m D capture. Therefore,

I (X +n—n)
I (X ~nny)

Pt, I (I = 1 ~nn) ((1,
I (I =2~nny) (33)
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and the nn y decay dominates the width of the X .
We note that a recent experiment' has been performed

to search for the dibaryon based on the suggestion of Ref.
10. They' give an upper limit on the branching ratio
from Eq. (3) that varies between (1—6) X 10 over the y-
ray energy interval 10—30 MeV. A comparison with Fig.
2 would appear to rule out the J =0 configuration in
which all orbital angular momenta are zero (case A of
Fig. 2), if the photon energy (which is approximately
equal to the binding energy) is between 15 and 30 MeV.

We also note a recent variational calculation of the
I =2 vrNN system that does not find a bound state. '

iT. E.Q. Ericson and F. Myhrer, Phys. Lett. 748, 163 (1978).
W. A. Gale and I. M. Duck, Nucl. Phys. BS, 109 (1968); T.

Ueda, Phys. Lett. 748, 123 (1978); G. Kalbermann and J. M.
Eisenberg, J. Phys. G 5, 35 (1977).

H. Garcilazo, Phys. Rev. C 26, 2685 (1982); Phys. Rev. Lett.
50, 1567 (1983);Nucl. Phys. A408, 559 (1983).

4H. Garcilazo and L. Mathelitsch, Phys. Rev. C 34, 1425 (1986).
5F. Nichitiu, Rev. Roum. Phys. 31, 441 (1986).
B.TatischeF, Phys. Lett. 154B„107(1985).

7D. Ashery et al. , Los Alamos Report No. LA-UR-88-1023.
8M. Dillig, K. Helmreich, and H. G. Hopf, Hadronic Probes and

Nuclear Interactions (Physical Science Center at Arizona State
Uniuersity, Tempe, Arizona), in Proceedings of the Inter-
national Conference on Hadronic Prober and Nuclear In-

teractions, AIP Conf. Proc. No. 133, edited by J. R. Comfort,
W. R. Gibbs, and B. G. Ritchie (AIP, New York, 1985), p.
388.

B. Dropesky, private communication.
~ L. Heller, Bull. Am. Phys. Soc. 33, 902 (1988).

W. R. Gibbs, B. F. Gibson, and G. J. Stephenson, Jr., Phys.
Rev. C 16, 327 (1977).
J. Spuller et a/. , Phys. Lett. 67B, 479 (1977).
V. L. Highland et al. , Nucl. Phys. A365, 333 (1981);R. Mac-
Donald et al. , Phys. Rev. Lett. 38, 746 (1977).
S. Stanislaus et al. , private communication, TRIUMF Report
No. PP88.70.
G. Kalbermann and J. M. Eisenberg, Phys. Lett. B 211, 389
(1988).


