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Quasifree scattering in the preequilibrium region
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A model for inclusive proton-nucleus scattering which covers the preequilibrium region is
developed based on (1) single-step quasifree scattering and (2) the exciton model, which describes
emission from 3p2h and higher configurations. Results are compared to data for various nuclei at
incident energies from 60 to 200 MeV. The systematics of angle-dependent energy spectra are well
reproduced by the model, except in the large-energy-loss region at very forward angles. We find the
single-step quasifree scattering constitutes 60% to 80% of the reaction cross section in medium-
heavy nuclei, and about 50% in heavy nuclei. The preequilibrium region is therefore dominated by
direct single-step reactions.

I. INTRODUCTION

A variety of theoretical models for precompound or
preequilibrium reactions have been developed over the
last twenty years, such as the intranuclear cascade model
(INC), the "quantum mechanical" model of multistep
direct reactions (MSDR), and models based on statistical
emission such as the exciton and hybrid models (for a re-
view see Ref. I). All of these models are based on the
idea that the dominant reaction mechanism responsible
for preequilibrium spectra in a sequence of nucleon-
nucleon collisions leading to particle emission before the
energy is dissipated and a compound nucleus is formed.
However, they all require phenomenological input in or-
der to give reasonable descriptions of the data. The sta-
tistical models are designed primarily to calculate angle-
integrated cross sections do /de, and these must be gen-
eralized using phenomenological angle- and energy-
dependent factors in order to describe double differential
cross sections d o. /dQde. The MSDR model can de-
scribe angular dependence, but it is also phenomenologi-
cal, since the strength of the effective interaction in the
transition matrix elements is adjusted to fit data.

The aim of this paper is to develop a simple model
which can describe the angle and energy dependence of
preequilibrium spectra without resorting to phenomenol-
ogy. Our approach is motivated by the fact that in all
theoretical models, the largest component of the pre-
equilibrium cross section is due to emission from the first
stage of the reaction (i.e., the 2plh configuration), which
we describe in terms of single-step quasifree nucleon-
nucleon scattering. In this sense our model is very simi-
lar to the work of Chiang and Hufner, who showed that
single-step quasifree scattering dominates the inclusive
nucleon-nucleus cross section at energies between 15 and
100 MeV. In their model the preequilibrium cross sec-
tion was composed of single and double quasifree
nucleon-nucleon scattering, and higher-order processes
were assumed to lead to compound nucleus formation.
We agree with this procedure, but in our model we im-
prove the calculation of the single scattering term with a
more accurate treatment of the distortion and the

nucleon-nucleon (NN) amplitudes. We will not directly
evaluate the double scattering term as they did, because
we feel that the approximations they were forced to
make, particularly in the evaluation of the distortion, are
not adequate at the large scattering angles and relatively
low incident energies we are interested in. While a more
sophisticated treatment of the double scattering term is
possible within the framework of our model, it is numen-
cally very complicated. Instead, we will use the exciton
model to describe multistep processes. The great advan-
tage of the exciton model is that it involves relatively sim-
ple numerical calculations. As will be discussed below,
the exciton (or hybrid) model cannot be consistently ap-
plied to the first stage of the reaction, since it assumes all
2plh states are occupied with equal probability. Never-
theless, it should provide a reasonable description of the
multistep processes, where the total energy is shared
among many particles and holes, resulting in cross sec-
tions which vary slowly with angle and energy transfer.
Finally, since we are primarily interested in the preequili-
brium contribution to particle emission spectra, we will
not include the evaporation spectrum from compound
nucleus decay, although it can easily be added to our re-
sults.

Section II of this paper brieIIy describes the exciton
model. We use a stripped-down version of the model
which removes as much phenomenology as possible. Sec-
tion III discusses details of the single-step quasifree
scattering calculation, which is based on the distorted-
wave continuum response model of Ref. 3. This model
allows for absorption and momentum transfer in the dis-
tortion and uses the NN amplitudes evaluated in the "op-
timal" frame of Gurvitz. " The angle and energy depen-
dence of the final-state absorption is also included in the
calculation of the distortion factor X,&. In Sec. IV we de-
scribe how to combine the single-step quasifree scattering
with the exciton model, and in Sec. V we discuss the re-
sults of calculations for a variety of nuclei in the
60—200-MeV energy range.

II. TQE KXCITON MODEL
The preequilibrium spectrum spans the region between

very high emission energies, which is dominated by direct
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reactions, and very low emission energies, which is dom-
inated by isotropic compound-nucleus decay. As such, it
shares features of both types of reactions, and is charac-
terized by smooth, forward-peaked angular distributions
and high energy emission tails. This, combined with the
fact that the nuclear level densities are very high, sug-
gests that a statistical treatment may be adequate.

The exciton model is a semiclassical, statistical descrip-
tion of preequilibrium reactions in which all possible
ways of sharing energy between difFerent particle-hole
configurations of the same exciton number n (the total
number of particles plus holes) are considered equally
likely. The mean lifetime of a given exciton state is deter-
mined from a time-dependent master equation in which
single-particle emission rates compete with the rates for
internal transitions which can change the exciton number
by +2 or 0. In its simplest form, the model describes a
cascade beginning with 2plh states which may either de-
cay by emitting one particle or proceed through binary
collisions to the next stage or "generation" which has an
extra p-h pair. At each successive generation, the com-
peting rates for cascade versus emission are again calcu-
lated. Following the notation of Ref. 5, the double-
diAerential cross section for an incident nucleon of kinet-
ic energy E is given by

D„Q(n,O)
=a~ V p„(E,c, )A,, (E),~(g) +~(pg) Pl & C

where c, is the kinetic energy of the emitted nucleon, and
the summation is over successive generations: n =2plh,
3p2h, etc. o.z is the formation cross section which we
identify with the total reaction cross section, because at
the energy transfers under consideration we neglect the
contribution from all reaction mechanisms other than nu-
cleon emission from particle-hole configurations. A,,(E) is
the single-particle emission rate, and p„(E,E) is the prob-
ability of finding a particle with energy c in an n-exciton
configuration of total energy E, which will be evaluated
using a modified version of the Williams level-density for-
mula which takes into account the finite depth of the nu-
clear potential well. Thus the product p„(E,E)A,, (E)
[which in standard exciton notation is called 8' (n, s)j is
the total emission rate per unit energy. D„is the "de-
pletion factor" which is the probability of making it to
the nth generation before emitting a particle (see
Sec. IV). The combination D„Q(n,Q)/(A'+'+A, '"'), usu-
ally called r(n, A), is the mean lifetime of the state n

which decays by emitting a particle into the direction Q.
r(n, Q) is obtained directly from an angle-dependent

master equation which incorporates a free scattering ker-
nel proportional to the NN cross section in the laborato-
ry frame. In the case of isotropic NN scattering, Q(n, O)
can be expressed exactly as a sum over the Legendre po-
lynomials J'&(cos8) times the corresponding eigenvalues
of the free scattering kernel in the P& basis. The
coeScients of the Legendre polynomials can be adjusted
to fit the data, but we will use the exact expression for the
isotropic case in order to avoid fitting parameters. The
validity of this procedure for calculating angular distribu-
tions will be discussed in the last section.

U
A, +(E)=

A.m Apl p

2s~+ 1
A,,(E)= me I+

[~NN( 8 )Pol

tr (E)Q (n) .

In the first equation U is the velocity, A, is the mean free
path determined from the in-medium NN cross section
discussed in the next section, po=0. 16 fm is the nu-
clear matter density, and mk is the nucleon eftective mass
which accounts for the nonlocality of the optical poten-
tial (we take mklm =0.7). In the second equation, s„
and o. are the spin and inverse cross section for an emit-
ted particle of type v, and the quantity in parentheses is a
correction for the relativistic energy. Q (n) is the frac-
tion of particles of type v in the n-exciton state. It is ap-
proximately determined, as in Ref. 9, from the ratio of p-
n to p-p cross sections and the number of target neutrons
(N) and protons (Z). For incident protons

r

1 3%+2Z ' n' —1

n' 6N+2Z 2
(4)

Qneutron Qproton

where n ' is the generation number, related to the exciton
number by n =2n'+1.

III. QUASIFRKK SCATTERING (QFS)

The assumption of statistical emission should only be
valid in the later stages of the intranuclear cascade, and it
is certainly not valid after only one collision. Therefore,
the exciton model should not be applied to the first stage,
especially since it assumes complete configuration mix-
ing among all possible 2plh states of a given energy, so
that each state is populated with equal probability,
weighted by the level density. Immediately after the first
collision there is only one 2plh state excited. And while
the residual p-h interaction can mix this with other 2plh
states of the same energy, this has a relatively weak e6ect
on the single-step scattering, and it clearly does not lead
to equal population of all energetically available states.
Instead, the probability of exciting a given 2plh state is
determined by the energy and angle dependence of
nucleon-nucleon scattering in the medium. We will
therefore describe the first stage in terms of direct, quasi-
free NN scattering.

The models of quasifree scattering which we will use
are described in detail in Ref. 3. A simple version of the
single-step X-nucleus cross section, which includes most

The denominator in Eq. (I) is the sum of integrated
emission and intranuclear transition rates given, respec-
tively, by

A,'"'= J de p„(E,E)A,,(e),
(2)

EA'+'= de p„(E,e)A, +(e),
0

where A, + is the single-particle intranuclear transition
rate. The single-particle rates are given by
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of the essential physics, is given by 60

=&,p(~, ~ )C lf.„(q,~) lt2R (q ~),dQdg
50— ---- free

in-rnediurn

where q and co are the momentum and energy transfer,
and 8 is the laboratory scattering angle. f,z, is the NN
amplitude evaluated in the "optimal" frame, and C is a
kinematic factor which approaches 4k'/k in the nonre-
lativistic limit. R(q, co) is the nuclear response function
which will be calculated in a Fermi-gas model, and jef is
an angle- and energy-dependent normalization which ac-
counts for attenuation in the initial and final states due to
the strong absorption of the probe. In the next three sub-
sections we will discuss specifically how these quantities
are evaluated.

40—

E 30—
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A. Initial- and Anal-state absorption

In Glauber theory, X,z is calculated by assuming the
projectile traverses an essentially straight-line pat
through the nucleus. Since we will be dealing wit arge-
angle scattering, this is not an adequate approximation.
Instead, we calculate X,z assuming straight-line propoga-
tion only in the initial and Anal states and allow the pro-
jecie oct'1 to change direction on the hard collision as dictat-
ed by the scattering angle. Furthermore, the tota
cross section is evaluated in the final state at the lower
energy E—co. Thus N,z is given by

N (O, co)= d r exp[ —o f dr'p(r')]p(r)ea'
00

cc '(8)
Xexp[ —o'(co) f dr'p(r')], (6)

where o =oNN(E), o'(co)=crNN(E co), and—oNN is the
in-medium total NN cross section. Figure 1 illustrates a
typical path through the nucleus taken by the projectile,
which has a hard collision at the point r. Integrals over
r' of the nuclear density in Eq. (6) are along these paths.
The in-medium NN cross section is determined, as in
Refs. 3 and 10, from the volume integral of the phenome-
nological imaginary optical potential:

2' 2717
NNo (E)= d r[W(r, E)/A]= Jir/A, (7)

Ak

which is exact in the limit of a zero-range NN interac-
tion. Values of Jir/A have been obtained in the energy

FIG. 2. The in-medium NN total cross section {solid hne)
based on Eqs. (7) and (8), plotted versus the laboratory kinetic
energy TL. Dashed lines show the free (isospin-averaged) NN
cross section.

=0.6E MeVfm (E) 164 MeV) . (8)

The low-energy behavior is the same as the parametriza-
tion of the single-particle imaginary self-energy used in
Ref. 12. Figure 2 shows o NN(E) calculated from Eqs. (7

NNand (8). For comparison, the free (isospin-averaged
cross section determined from the Amdt phase shift solu-
tions' is shown by the dashed line. Due to Pauli block-
ing, the in-medium cross section must vanish at the Fer-
mi energy (E =0), but it has a pronounced peak near 40
MeV, rejecting the rise in the free NN cross section at
low energy.

Equation (6) agrees with the standard Glauber theory
formula only at 0=0 and co=0. At back angles jef is
typically -40% larger than at forward angles. It can
also vary substantially with co due to the energy depen-
dence of o.NN.

B. NN amplitudes

region 40 & E (1000 MeV from optical-model analysis of
elastic scattering data. " We adopt the following parame-
trization of these results:

J /A =100 MeV fm (E (164 MeV)
E +18

k
(- ~) ———~ lab

FIG. 1. Typical path through the nucleus taken by the pro-
jectile, which has a hard collision at the point r. Integrals of the
density times the NN cross section in Eq. (6) are along this path.

%'e now turn to the question of how to evaluate the
two-body amplitudes which describe a quasielastic col-
lision. In the impulse approximation they are associated
with the free NN amplitudes derived from experimenta
phase shifts. These depend not only on the incident ener-
gy and momentum transfer, but also on the momentum
of the struck nucleon, which varies due to its Fermi
motion. In order to calculate quasielastic cross sections
it is in principle necessary to integrate over the struck
nucleon's momentum. This problem is greatly simplified
if the two-body amplitudes are factored out of the in-
te ral by evaluating them in a frame where the struck
nucleon's momentum has a constant optimal" value.
Such an approximation is clearly required in order to
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q 2fpz co

q
( nonrelatiuistic),

1/2
q co 4m

p, ,= ——1 ——1+OPt 2 ~ q
2 ~2

(relatiuistic) .

The second line gives the result using relativistic kine-
matics. Note that p, , reduces to zero at the quasielastic
peak and to the Breit-frame momentum at co =0.

Since the experimentally determined amplitudes are
usually given in the center-of-mass (c.m. ) frame, it is in
general necessary to perform a Lorentz boost to the op-
timal frame. The method for performing this boost is de-
scribed in Ref. 3. It involves extracting the invariant
Dirac amplitudes from the c.m. amplitudes and then
sandwiching them between Dirac spinors in the optimal
frame. This boost is necessary for evaluating spin observ-
ables, but not for cross sections, since

(1O)

where the trace is over both projectile and target-nucleon
spins. The c.m. cross section must, of course, be evalu-
ated at the two-body energy determined from the
optimal-frame kinematics.

Combinations of the p —p and p —n amplitudes ap-
propriate for inclusive (p,p') and (p, n) reactions are
given by

derive a formula with the factorized structure of Eq. (5).
The question of how best to choose this frame has been
answered in the nonrelativistic theory by Gurvitz and col-
laborators. The result depends on both momentum
transfer and excitation energy. In the case of elastic
scattering (cu=O) the best choice is the Breit frame, in
which the struck nucleon has momentum p= —q/2. At
the quasielastic peak (co=q /2m), the struck nucleon is
on average at rest, and the optimal frame is the two-body
laboratory frame where p=O. In the general case (arbi-
trary cu), the struck nucleon's momentum is determined
by requiring that it satisfies energy conservation:

co=(p+q) /2m =p /2m,

and that it lies along the only preferred direction: that of
the momentum transfer q. Then the optimal momentum
is given by

TL:(s——4m )/2m

EkE —k p, —m
(12)

"Ni{p,p'} 164 MeV
10 -I I

I
I I

I
I l I I I I I I

full integration
t l

10'

10'

CO

q~-2» I i i I i i I i ( II~

full integration
2bd Ib

1Q
CJ

where TI denotes the kinetic energy, and
Ez =(k +m )' is the full relativistic energy. TL can
vary by several hundred MeV over the allowed region

kp &pppt & +kp where k~ is the Fermi momentum
Such variation will clearly have a large effect on the arn-
plitudes in regions where they are strongly energy depen-
dent.

To illustrate this point, and to show how well the op-
timal factorization works, we show in Fig. 3 calculations
of the 164-MeV Ni(p, p') cross sections as a function of
the outgoing kinetic energy TL at various scattering an-
gles using a relativistic Fermi-gas model of the nucleus
[see Eq. (13) below]. Solid curves show the "full" results
with no factorization, in which the NN amplitudes are
included inside the integral over the struck nucleon's
momentum, and the dashed curves in the upper figure
show the corresponding results based on the optimal fac-
torization (Eq. 5). In the lower figure the amplitudes
have been evaluated in the two-body lab frame where the
struck nucleon is assumed to be at rest —an approxima-
tion often used in inelastic scattering calculations. We
see that the optimal factorization provides an excellent
approximation to the full integration, whereas the two-
body lab factorization does poorly, especially at the
larger angles. At very large angles (in this case above 80')
the two-body lab frame is not even well defined, because
the quasielastic point co=(q +m )'~ —m, which deter-
mines the lab frame, moves below m=0. The problem is
that a nucleon at rest cannot contribute to the cross sec-

10'

f and f „willbe evaluated with their full angle and en-

ergy dependence using the Amdt phase-shift solutions. '

The most important aspect of the optimal frame is that
the invariant two-body energy s varies rapidly with co due
to its dependence on p, „and it can be quite different
from the energy in the two-body laboratory frame. The
effective laboratory kinetic energy at which the two-body
amplitudes are evaluated in the optimal frame is given by

102 s ~ I » I i i I « I i i I I I

0 30 60 90 120 150 180

T, {MeV}

FIG. 3. {p,p') cross sections based on Eq. (5} with optimal
and two-body lab factorization of the NN amplitudes. In the
solid curves the amplitudes are inside the integration over the
struck nucleon's Fermi momentum.
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tion at arbitrary angles and energy transfers without
violating energy conservation at the two-body level. The
optimal factorization, on the other hand, was constructed
to satisfy energy conservation, and provides a simple yet
accurate means of including the effects of Fermi motion.

C. Distorted-wave Fermi-gas model

At the large energy losses with which we are con-
cerned, the cross sections are not sensitive to finite-
nucleus effects such as discrete states and giant reso-
nances. Therefore, a Fermi-gas model of the nucleus
should be adequate. The nuclear response function
which enters into Eq. (5) is given in the relativistic
Fermi-gas model by

R(q, co)= f d p B(kF —p)B(lp+ql —k~)
3

F

X5(co Ez+—q+E~)

(k2 k2 )+ (~3/2 ~3/2)
2q 3q

(13)

is slightly more complicated if spin-dependent distortion
is included, in which case b, becomes a matrix and f,~,

.a
vector in the space of projectile spin matrices. However,
the most important term contributing to the eikonal
phase is the imaginary central optical potential, which
confines the scattering to the nuclear surface, and for our
purposes it is sufFicient to retain only this term. Then, in
the limit of a short-range NN interaction, the eikonal
phase reduces to the simpler form iS(b) +o—T(b)/2,
where o. is again the in-medium NN cross section given
by Eq. (7), and the distortion function satisfies

2

f ', lS(q', )l'=N„(0,0) . (15)
(2~)

Thus, except for the angle and energy dependence of N, ff,
Eq. (5) can be recovered from Eq. (14) by factoring f,~,
and R(q, co) out of the integral and evaluating them at
the external momentum transfer q. As we will see, the
dominant effect of the distortion integral is at forward an-
gles, so the angle and energy dependence of the final-state
absorption can be approximately included in Eq. (14) by
simply renormalizing the cross section as follows:

d 0 =N,s(o, co)S(q, co)/N, s(0,0) . (16)

R(q, co) should be set to zero if the above expression is
negative. In the last line kL is the greater of the two
quantities in large square brackets, and the relativistic
version of p,~, in Eq. (9) should be used. Following Ref.
14, the effect of the nuclear potential well is taken into
account approximately by measuring both projectile and
target-nucleon energies from the bottom of the Fermi sea
in the evaluation of the response function and the NN
amplitudes (but not in the evaluation of oNN and N, tr,
since the empirical optical potential was given as a func-
tion of the laboratory kinetic energy).

Equation (13) gives the response of the Fermi-gas to a
plane-wave probing field. The effects of distortion can be
included in a relatively simple model based on the
distorted-wave impulse approximation and the eikonal
approximation. In Ref. 3 such a model was presented in
which the probing field included the full spin-dependent
eikonal distorted waves as well as the optimal-frame am-
plitudes. The full response in this model is expressed in
terms of a convolution integral of the plane-wave
response with a distortion function and the NN ampli-
tudes:

s(q, co)= f R(q —qi, a))lb(qi)f, , (q —qi)12,
27r 2

(14)
b (qi) = f d b exp(iqib)exp[iS(b)]T'/2(b ),

10'

"Al(p, n} 113 MeV

0
100

E
UJ

10 '

Figure 4 shows a sample calculation of the Al(p, n ) re-
action at 113 MeV. Dashed curves are based on Eq. (5)
using the plane-wave response function in Eq. (13), and
the solid curves are the results of the distorted-wave
model based on Eqs. (16), (14), and (13). We see that the
effect of the distortion is to smooth out the cross sections
as a function of co= TL —TL. The largest effect is at for-
ward angles where the convolution integral produces a
long tail at low emission energy which is not present in
the plane-wave calculation. At large angles it also pro-
duces a tail at the high-energy end of the spectrum. In
these calculations we have chosen to evaluate the plane-
wave response R(q, co) at one-half nuclear matter density
(pa=0. 08 fm, kF=1.06 fm '). A value of one-third

where q~ is the momentum transferred in the distortion.
A factor C'/ (c.f. Eq. 5) has been absorbed into the
definition of f, to simplify the formula. T(b) is the
"thickness function, " which is the integral of the density
along the projectile's trajectory at impact parameter b,
and S(b) is the eikonal phase, which is the integral of the
optical potential along the same trajectory. Equation (14)

10
0 20 40 60 80 100 120

T,
'

(MeV}

FIG. 4. Effect of momentum transfer in the distortion on
quasielastic cross sections. Dashed lines are based on Eq. (5)
and solid lines on Eqs. (14) and (16).



1756 R. D. SMITH AND M. BOZOIAN 39

nuclear matter density was suggested in Ref. 15 from
comparisons of slab-model and Fermi-gas surface
response functions. We find that the value one-half yields
slightly better agreement with the measured angle-
dependent spectra in the 60—200 MeV region we are in-
vestigating, although the calculated results are not ex-
tremely sensitive to this choice.

The distorted-wave Fermi-gas model can also be ex-
tended to include random-phase approximation (RPA)
correlations using an interacting Fermi-gas, as discussed
in Ref. 3. We will return to this point later in the discus-
sion of (p, n ) reactions, where a repulsive interaction in
the isovector channels can dramatically alter the
response.

Target

54F
' Ni

Al
Al

'Al
58Ni

"Zr
209B'

E (MeV)

62
164
200
113

90
90
90
90

~, (mb)

836
774
400
431

464
812

1214
1947

o. , (mb)

516
539
330
333

328
512
633
881

%QFS

62
70
82
77

71
63
52
45

o,(p,p')
(19)

TABLE I. Total reaction and quasielastic cross sections

IV. COMBINING QFS WITH THE EXCITON MODEL

O

dAdc.
d aq,
dAdc

n =3p2h, .

D„Q(n,Q)
, , p„(E,s)A,, (s) .

w{")+w,")

(17)

We have argued that the exciton model cannot accu-
rately describe single-step processes, but it should never-
theless provide a reasonable description of multistep pro-
cesses, since the total energy is shared among many parti-
cles and holes and the cross sections vary slowly with an-
gle and energy transfer. While it is possible to evaluate
multistep quasifree scattering using the same physical
models as the single-step processes, such methods are nu-
merically very complicated. Instead, we use the exciton
model to describe these processes, with the aim of devel-
oping a relatively simple model. Eventually -this assump-
tion will have to be tested with more sophisticated calcu-
lations, but it should be emphasized that the most crucial
ingredient in any model is an accurate description of the
single-step processes, which, as we will see, constitute
most of the reaction cross section.

To combine the quasifree scattering model presented in
the last section with the exciton model, we insert it in
place of the 2p1h term in Eq. (1):

o,(p,p') is the integrated quasielastic (p,p') cross sec-
tion, which should be used to evaluate P, for both (p,p')
and (p, n ) reactions. The reason for this is that oq, (p,p')
is the total quasielastic cross section, because it counts all
collisions of the projectile with both target neutrons and
protons. If one were to add oq, (p, n ) to o,(p,p') in Eq.
(19), this would double the projectile-neutron collisions.

Table I shows the total reaction and quasielastic cross
sections for all the nuclei and incident energies studied in
this paper. The total quasielastic cross sections
oq, =o. ,(p,p') were calculated by integrating Eq. (5)
over scattering angles and emission energies [this is much
simpler than integrating Eq. (16), and yields essentially
the same results]. The reaction cross sections o~ were
obtained from optical-model analyses. ' We see that in
all cases the single-step quasifree scattering dominates the
reaction cross section. In the 90-MeV cases, the percen-
tage of quasifree scattering ranges from 70% in ~7AI to
45% in Bi. This behavior is what we would expect
from simple geometric considerations: Quasifree scatter-
ing takes place in the nuclear surface region, which in
lighter nuclei constitutes a larger percentage of the total
cross-sectional area seen by the projectile. In heavier nu-
clei it is more likely that the projectile will penetrate into
the interior, leading to multistep reactions. Roughly
speaking, o.z increases as the cross sectional area (pro-
portional to 3, and o. , increases as the nuclear cir-
cumference (proportional to A '~ ).

The first term is the quasielastic cross section given by
Eq. (5) or (16). In order that the integrated cross section
adds up to the reaction cross section, the depletion fac-
tors D„must be modified. D, is the probability of mak-
ing it to the nth stage of the reaction without emitting a
particle, and is given by

n —1

D. = IIP-
m=1

g{m)
P = (m&1),g(m)+ g{m)+ C

where P is the probability of not emitting a particle in
the mth stage. Therefore, P„the probability of not es-
caping after the first collision, is given by

V. RESULTS AND DISCUSSION

In Fig. 5 calculated spectra are shown for the
Fe(p, p') reaction at 62 MeV. The solid lines are the

full calculation based on Eq. (17), the long-dashed lines
are the quasielastic contributions based on the distorted-
wave model of Eqs. (14) and (16), and the remaining
curves show the exciton contributions from 3p2h to
6p5h. Contributions from successive terms converge
quickly. In this case, terms beyond 5p4h contribute only
-2% of the total cross section. At the forward angles
the quasifree contribution dominates the cross section,
but the exciton contribution becomes comparable around
100 and dominates at backward angles. Solid dots in
Fig. 5 show data from Ref. 17, and we see that in this
case the calculations agree rather well with experiment,
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especially at the intermediate angles which constitute
most of the total cross section. At very low emission en-
ergies ( ( 10 MeV) the calculations underpredict the data
because we have not included the contribution from com-
pound nucleus decay.

Figure 6 shows calculations of (p,p') reactions for
three nuclei at incident energies ranging from 62 —200
MeV. Data for the Fe, Ni, and Al cases are from
Refs. 17, 18, and 19, respectively. The plots on the left
side show the results of pure exciton calculations based
on Eq. (1), which has no phenomenological input. The
pure exciton model gives a poor description of both angu-
lar and energy distributions. The shapes of the energy
spectra are particularly bad in the 164 and 200 MeV
cases, which reAects the inability of the exciton model to
properly describe the first stage of the reaction at high in-
cident energies. The plots on the right show the results
of the QFS+exciton calculation based on Eqs. (17), (16),
and (14). We see that the quasifree model does a much
better job of describing the energy and angular distribu-
tions. At the intermediate angles (-40 to 90'), which
constitute the bulk of the total preequilibrium cross sec-
tion, the agreement with the data is particularly good,
and as a consequence we also find good agreement with
angle-integrated cross sections (see Fig. 8). At the largest
angles the exciton contribution dominates, and, as in the
pure exciton case, the energy distributions are not as well
described. We think this is primarily due to a failure of
the angular dependence predicted by the free scattering
kernel, which is proportional to the laboratory NN cross
section derived from an isotropic c.m. cross section. The
angular dependence of the two-body collisions is deter-
mined not only by the NN cross section, but also by the
nuclear response function [see Eq. (5)], which unavoid-
ably depends on both angle and energy loss. Further-
more, at high incident energies the NN cross sections are
not isotropic, and even at low incident energies the
eff'ective two-body energy [Eq. (12)], which accounts for
nuclear Fermi motion, can be very high. So it seems that
the free scattering kernel should take into account not
only the angular dependence of the two-body collisions,

but also their dependence on incident energy and energy
loss. Some work along these lines has already been done.
In Refs. 20 the nuclear response function was included in
the evaluation of the free scattering kernel, and this yield-
ed larger contributions at backward angles. However, all
these calculations follow Ref. 14 and employ a two-body
lab NN cross section derived from an isotropic, and usu-
ally energy-independent, c.m. cross section. As we have
discussed, at backward angles there is no contribution
from collisions with nucleons at rest, and using two-body
lab kinematics violates energy conservation. We suggest
that it should be possible to improve the description of
the angular dependence by employing the optimal-frame
NN cross sections in the evaluation of the free scattering
kernel.

At the most forward angles in Fig. 6, the QFS-
+exciton model does reasonably well at predicting the
magnitude of the cross sections in the region of the quasi-
elastic peak. However, at low and intermediate emission
energies the forward-angle calculations underpredict the
cross sections. This appears to be a general feature of our
results which we do not yet completely understand. It is
evidently not an effect of distortion, since this has been
included in the calculations. The distortion does give a
low emission tail to the quasielastic peak at forward an-
gles (see Fig. 4), but it is not enough to explain the data.
One possible explanation is that the two-step processes
are much more forward-peaked than the 3p2h exciton
term predicts. This speculation can only be answered by
a full calculation of two-step quasifree scattering process.
However, the two-step cross sections are expected to be
much more isotropic than the single-step, and it seems
unlikely that a full calculation will show a large enough
angular variation to account for this feature. A more in-
teresting possibility is that it is due to nuclear structure
effects such as RPA p-h correlations or collisional damp-
ing of the nuclear response, ' both of which can redistri-
bute strength to lower emission energies. In continuum
scattering, these effects are most important in channels
involving spin and isospin transfer, so they should be
more pronounced in (p, n ) than in (p,p') reactions.
However, there is growing evidence that the (p,p') con-
tinuum is predominantly spin response, ' so the effects
could show up there as well. We have performed some
preliminary calculations which include these effects based
on the methods described in Refs. 3 and 12, but they do
not appear to be able to account for all of the excess
strength. The collisional damping conserves the integrat-
ed strength, and can only increase the forward-angle
cross section at intermediate emission energies by about a
factor of 2, but in some cases (e.g. , the 200-MeV, 7A1, 14'
data) an increase of an order of magnitude or more is
needed.

RPA correlations due to a strong repulsive residual p-h
interaction in the isovector channels can have a dramatic
effect on charge-exchange reactions. This can be seen in
Fig. 7, which shows calculations of the 113-MeV

Al(p, n ) cross sections at 7.5', 30', and 60', along with
data from Ref, 22. The upper two plots show the pure
exciton and QFS+exciton calculations performed in the
same way as those in Fig. 6. Again we see that the pure
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exciton calculations fail badly to describe the data. The
QFS+exciton results give considerable improvement, but
at the two smaller angles the peaks of the calculated spec-
tra occur at too high an energy. In the lower plot, the
e6'ect of RPA correlations is estimated by calculating the

nuclear response function using the interacting Fermi-gag
model described in Ref. 3. A repulsive residual interac-
tion of 220 MeV fm was used in both the spin and non-
spin isovector response functions. This improves the
shape of the calculated spectra, although the overall nor-

10'

pure exciton

I I I I

~ ~ ~~ ~ ~ ~ ~ ~ ~

0
V 0

QFS+exciton

~ ~ ~

"Fe(p,p')—

62 MeV:

1Q'=
v

V g A

A

10 '

1Q'

I I I I ':. I I

0 10 20 30 40 50 60

A
V 15'

47'
10Q'
135'—
15'
47'
100'—
3 0

A

y A

V

1 5

I I, I
'I } I I I

0 10 20 30 40 50 60 70 80 90

10'

1Q
' =—

10 '
=—

0
O

~ ~ g
~ ~ ~

0
~ 0 0 0 0 0 0

A

A
A

v

'V. A

A
4

V, A

0
~ ~

0

10 ' I I

0 40 80 120

~ ~

160 0

0
n

A

V

V

V

I

40

5eNi{p,p')

164 MeV

A

~ V
. V

25'
40'
90'
120'

0

A

\

I
. ~ I I

0

— 90'
1

80 120 160 200 240

1Q'

0 ~ ~ ~ ~
~ g b 8 0 p

== gaea&2''' 0 g
A

rT V
r

' ~ . , VT ''
~ .g

V ~ . .
V

T
V

' ~V
T

10 ' =—

10

1Q
4

0 40 80 12Q 160

"Al(p, p') ==

200 MeV:
~ 14' =

25'—
50' =-

90':
121
14'
25':

90' =

I

——121'

T . V

T
T

'
~ .

T

I

800 40

T, (MeV)

120 160 200 240 280

FIG. 6. Calculated (p,p') spectra in the pure exciton and QFS+exciton models. Data for ' Fe, "Ni, and "Al are from Refs. 17,
18, and 19, respectively.



~759
EQUILIBRIUM

RFGIONTHE PREASIFREE SCATT N39

lsive interac-rel repu s
strength, since thet on will always

ft d to lower
RPA conserve

p

with the posi
'

phasize t a

b important a
include e e

h 1 ss it does
sensitive to

gylarge angles

q '1'brium spec
ide new ex-. Ult t l tht ese co

al interac io
calculations

d (p n ) spect
in Fig. w

ra for a varie
t Ref. 23. oV 'thd t fro

e FS terms were
'

puting time, the Q

10 —
I I

0

I == I
I

II
I

I
I

== I

DAI

~ 10'

0 to-

110
0

I

I I

NI

I
I == I

O

I

I

2O9BJ

10

10

10 '

20
Io,

60 80 0 20
T

'
(MeV}

I I II

40 60
I

80 100

at 90 MeV') an p,d ( n) spectra an le-integrated (p,p'F.IG. 8. A g
along wi th data from Re .

E
LLI

C3

10'
"Al(p, n} 113 MeV

I I I

d

10

pure exciton

~ qg
~y%

OOo ooo

~0
~ g ~

~ ~
~ e
G o

0

U
10 ' =

10 ' =

10 '

e response)QFS+exciton (fre

~ ~
d

10

asifrees with the total qua
'

'f the effectss s ltma esk little differen
the ang e-'

crosss sections,
calculating

reement wi'th the data
distortion are in

good age results are in
ifference 1n-d-. h

ctions is r
for a

) cross se
h ize

'
at there are no r

Furthermore, uationsin these ca
of the exci od d

d
an ular e

suits. e - r
lmost entirely QF

1 the exciton con
th f t.

is most y

g'

ns Eq. 3) vants es y
b' h Tn

hear gt igsequently appe

10 '—

h

I

I

VI. C. CONCLUSION

PA response)QFS+exciton (RPA

d

10

10'=

10 '
0

I I

20 40 60
T,

'
(MeV}

I i I

80 100 120

ut RPA correla-ns wi'th and without, n) cross sectioFIG. 7. (p,
. Data are from Re.tions.

ree uilibrium reactioonsWe have preesente a
d thgrin an1 -st p q

o tib to
aramet r-f e esc

mo e
nd rovides a par

g d endent energy
0 ...d..o y1 t very for

medied wit

'or discrepanc'
an . latter can pro a

f the angular depenri tiono t e
hancement ses. The forwar-d-angle en

b associatedand may e
es which are u

the model, a
r with mu tis e

Ua-

effects, or '
is e

d the total qu-re ion we have c
ed.

onsidere,
e-

gy gon
section cons isielastic cross sec

'



R. D. SMITH AND M. BOZOIAN 39

action cross section. Therefore, the preequilibrium re-
gion consists primarily of direct single-step reactions.
This is true even at quite large angles ( (100 ) where
there is no pronounced quasifree peak. As a result, the
preequilibrium region can be sensitive to nuclear struc-
ture e6'ects usually only associated with low-lying discrete
states and resonances, such as RPA correlations. This
could provide a fertile ground for new research. In par-
ticular, measurements of spin observables in this region

may make it possible to decompose the spin-isospin struc-
ture of the nuclear response at large excitation energy.
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