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Discretization methods of the breakup continuum in deuteron-nucleus collisions
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Two methods of discretization of the s-wave n-p breakup continuum are compared, and their
effect on the elastic deuteron-nucleus scattering matrix elements is numerically investigated. In one
of the methods, the continuum eigenstates of the n-p Hamiltonian are averaged over discretized
momentum bins of size Ak. In the other, which is a form of the L, diagonalization method, the
continuum is expanded in a set of normalizable basis functions, which physically correspond to
placing the n-p potential into a box. It is found, in the case of ' Ni(d, d) at incident deuteron ener-
gies Ed =2.16 and 45 MeV, that those two discretization techniques consistently display the same
physics and yield the same results. However, the lower the incident deuteron energy, the less well
do the momentum discretized answers converge to a final result. The diagonalization method is
found to perform better in this respect. The theoretical expectation that the long range tails of the
potentials in breakup space do not sensitively affect the elastic S-matrix elements is demonstrated
numerically. This result provides the mathematical reason why the discretization of the breakup
continuum is a viable and practical procedure of including the breakup effects.

I. INTRODUCTION

The effect which the breakup of the deuteron, in the
nuclear field, has on the elastic deuteron scattering is de-
scribed by a set of integrodifferential equations which
couple the elastic channel with a continuously infinite
number of breakup channels. Because these equations
cannot be solved by the usual numerical techniques,
methods of discretization are required in order to reduce
the coupled differential equations to a finite discrete set.
Various types of discretization methods have already
been discussed in the literature, and the present study ad-
dresses itself to two particular ones which have been used
for the case of deuteron-nucleus scattering. One is the
discretization of the momentum continuum into finite
bins of size hk, ' which will be referred to as the k-bin
method in this report, and the other is the diagonaliza-
tion procedure of the n pHam-iltonian H„~(r) in terms
of L functions. Both methods lead to a finite set of cou-
pled equations now commonly denoted coupled discre-
tized continuum channels (CDCC) which are diff'erent
from Faddeev equations. The validity of these
mathematical methods has been carefully analyzed in
many respects. In particular, the investigation of the
convergence of the k-bin discretization procedure was
carried out by Karnimura and co-workers. The same
type of study for the I. method was also performed sepa-
rately by Levin and by Rasoanaivo. The purpose of the
present paper is to compare the two methods, i.e., to ex-
amine the sensitivity of the elastic scattering matrix ele-
ments S(L) to the number and range of the discretization
functions employed and inquire how the choice of the
discretization method affects the convergence to the final
result. Although our study of the k-bin discretization is
not as extensive as Kamimura s, it still goes beyond in
that it also discusses the diagonalization procedure and
then compares the two methods. Furthermore, the basis

functions which underly our diagonalization method are
different from all the ones previously utilized. Our
basis functions are purposely designed so as to make the
diagonalization more flexible for a close comparison.

Since the study, upon which this paper is based, was
completed, the validity of the CDCC method as a
three-body model was questioned. ' A study by Austern
and Kawai' shows that the method has intrinsic validity
in a limited region of channel space. This result is sup-
ported by Sawada and Thushima' who examine whether
the opening of a stripping channel has a destabilizing
eft'ect on the CDCC breakup results. Within their limited
size of the breakup channel space they do not find such
an effect on the elastic and breakup T matrices, showing
that the CDCC method is stable and unique. In view of
this added justification for the CDCC procedure as a val-
id, albeit restricted (because it does not carry the rear-
rangement channels explicitly) three-body treatment, the
present comparison between the L method and the k-bin
discretization method for solving the coupled equations
mentioned above is of renewed interest. Initially the
present study was motivated by the suspicion that the in-
clusion of the breakup effect on the elastic scattering or
on the stripping cross sections might depend heavily on
the treatment of the n-p continuum. In fact, the process
of discretization inevitably introduces systematic errors
into the calculations. For instance, the k-bin discretiza-
tion method defines a maximum momentum k,„(which
is the range of the momentum space to be discretized)
and also the size, Ak, of the momentum bins. The quan-
tity k,„ is usually chosen such that only the open chan-
nels are included, since the closed channels carry no Aux.
However, the effect of the coupling between open and
closed channels does not seem to be negligible in view of
the large strength of the coupling potentials. Therefore,
for a given scattering energy, a different criterion for the
choice of the maximum momentum k „ is desirable.
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The same problem exists in the diagonalization procedure
in which the eigenstates of the n-p Hamiltonian H„are
approximated by finite linear combinations of some I. -

functions. The size X of such expansions cannot be
chosen a priori in a reliable manner. Given those various
inherent problems of the CDCC, and given the fact that
the use of CDCC has been extended to the analyses" of
the breakup of light heavy ions like Li, Li, and ' C, it
seems reasonable to establish a close comparison of the
two methods of discretization in the hope of clarifying
what type of discretization is appropriate to a given reac-
tion at some given energy.

able r, one obtains the following coupled equations

[T(R)+Ed E—]Xd(R)+ Vdd(R)Xd(R)

+ fdkV„„(R)X„(R)=0,

[T(R)+Ek E]X—k(R)+ Vkd(R)Xd(R)

+f dkV „(R)X„(R)=0,

where

V; (R)= f 4,.(r)V,~(r, R)N (r)dr

(2.4a)

(2.4b)

(2.5)

II. THEORETICAL FORMALISM

V,s(r, R)= U
r rR —— +U R+—
2 n-A 2

The complete description of the CDCC approximation
to the three-body system, (n +p)+ 2, has already been
reported in several places. ' ' Therefore, we restrict
ourselves to the simplest form of the formulation and
concentrate on the derivation of the coupled integrodif-
ferential equations which is the main subject of the
present report. Ignored are the stripping channels, the
antisymmetrization, the spin, and the nonzero relative
angular momenta. Furthermore, it is assumed that the
interaction between the deuteron and target nucleus can
be described by an eftective complex optical potential
V,s(r, R) which is approximated by

with i,j =d, k, k'. The above equations represent the cou-
pling between an infinitely continuous set of functions (in

the variable k) and, thus they cannot be solved exactly.
The coupling potentials Vkd(R) and Vkk (R) have non-

negligible strength and a long range in the variable R. In
the k-bin method, the discretization technique consists in

averaging the coupling potentials over momentum bins of
size Ak and replacing the integrals over k by discrete
sums, whereas in the L diagonalization procedure the
basis functions are chosen from the start as a discrete and
complete set, as will be now discussed.

A. Diagonalization procedure

The basic idea' of the diagonalization procedure is to
construct a set of orthogonal basis functions 4(r) which
minimize the quantity J = ( 4 ~H„„E~&0 ) . T—he trial
functions C&(r) are given by the finite expansion

(2. 1) '(r)= g C, P, (r), (2.6)
where U ~ and U„~ are, respectively, the proton nu-
cleus optical potential and the neutron nucleus optical
potential, both evaluated at an energy equal to half the
incident deuteron energy Ed,' R and r are, respectively,
the deuteron c.m. position vector and the n-p relative po-
sition vector. The wave function of the scattering system
then obeys the following "model" Schrodinger equation

[T(R)+H„(r)+V,~(r, R) —E]%(r,R)=0, (2.2)

where T(R) is the deuteron c.m. kinetic energy; H„(r) is
the n prelative Ham-iltonian defined by H„(r)=T(r)
+U„z(r). In the latter expression, T(r) is the n prelative-
kinetic energy and v„(r) the central n-p potential.

In order to separate the r dependence from that of the
variable R one expands +(r, R) in terms of the eigen-
states of H„(r)

%(r, R) =Pd(r)Xd(R)+ f P&(r)X„(R)dk, (2.3)

where pd(r) and pz(r) are, respectively, the deuteron
bound and scattering states. The function Xd(R) is the
deuteron c.m. wave function and the functions Xk(R) are
the broken up deuteron c.m. wave functions which corre-
spond to the breakup states defined by Pk(r). The func-
tions X& (R) are only outgoing waves at large distances R,
while Xd(R) contains both incoming and outgoing waves.
If one now substitutes (2.3) into (2.2) and then multiplies
the subsequent equation, respectively, by Wd(r) and
C&~(r), and integrates each time with respect to the vari-

where the functions p;(r) are L functions such as
negative-energy steinberg functions, ' local Gaussian
functions, ' or Laguerre functions. The coefficient C;,
which are the variational parameters, are such that

=0, i =1,2, . . . , X .aJ
BC;

(2.7)

The condition above yields a system of homogeneous
linear equations in the C s

(2.8)

which admits nontrivial solutions only if the determinant
vanishes

(2.9)

[H„+u) (r) —g;](5,(r) =0, (2.10)

The above equation is an eigenvalue problem which, in

general, can be solved numerically without difficulty. For
each eigenvalue c.„, a set of coefficients C„ is found, with
n = 1,2, . . . , X. The discretization is thus achieved
through the process of truncating the set of basis func-
tions to the finite number X.

In the present study, the functions P;(r) are generated

by a harmonic oscillator potential w (r) which is added to
the n ppotential -U„(r) (see Fig. 1):
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X' '(R)= —y F' '(R)YLM(R ),
LM

(2.13)

where the radial parts F„L(R ) have the asymptotic form

MeV

v„(r }

fp r( fm )

F' '(R)= —[ HL —'(K„'R)o,„+S„' 'HL+'(K' 'R)] .

(2.14)

The function HL '(K„' 'R ) and HL+ '(K„' 'R ), respective-
ly, represent the incoming and outgoing Coulomb waves.
The quantity S„' ' is the scattering matrix element in
channel n, and L is the angular momentum of the center
of mass of the n-p pair relative to the nucleus; the corre-
sponding linear momentum is denoted by E„' ' and given
by

FIG. 1. Diagram of v„~+a(r).
K(N) — [(~ ) +E E(N)]1/22M

(2.15)

where w(r)=a(r ro) f—or r ) ro and w(r) =0 for r (ro.
The P, (r)'s are regular at the origin and asymptotically
they go to zero. The parameters a and r0 are real and
can be chosen arbitrarily. If the distance r0 is taken to be
sufficiently greater than the range of the deuteron
bound-state function @d(r), then a single negative energy
eigenfunction P)(r), which is very close to the deuteron
bound-state function, is obtained. This will facilitate the
numerical task of extracting the elastic component from
the wave function.

The present choice of the L basis functions provides
some interesting advantages. First, unlike, the other di-
agonalization methods which depend on a single pa-
rameter N, the present technique allows a systematic in-
crease of the configuration space by just displacing the
point r0 without involving a great number of L func-
tions, which is unavoidable otherwise. Second, the
method permits one to control separately the number of
basis states per breakup energy interval.

The wave function is now expanded in the set of func-
tions described above, but since only a finite number of
them is used, the expansion is incomplete and a trunca-
tion error remains

N
'P(r, R)= g 4'„'(r)X„' '(R)+ truncation error .

n=1

(2.1 1)

B. The truncated coupled equations

The "discretized" coupled differential equations ob-
tained by both the diagonalization and the k-bin methods
can be written in the form

N'

[7 (R)—g+e' ']X' '(R)+ y V1N)(R)X N (R)=(j,
n'

(2.12)

and should be solved with the same boundary conditions
as the original equations (2.4). In fact, the functions
X„' '(R), which play the role of the functions Xd(R) and
Xk(R), can be written as

where (Fd ), is the incident deuteron energy in the c.m.
system. The total number of states used for the discreti-
zation procedure is denoted by X, and n =1,2, 3, . . . , X
denotes any one of the channels, including the elastic
channel for which n =1. Furthermore, the coupling po-
tentials V„'„.'(R) are defined by

V' '(R)= J 4' '(r)V)r(r, R)C&' 'dr . (2.16)
0

We notice that, since the functions @'„)(r) are bound
functions, which decay asymptotically to zero faster than
exponentially, the above coupling potentials have shorter
ranges than their counterparts in (2.5), which decrease
like R times an oscillatory function of R. It is assumed
in this formalism that as N increases, which corresponds
to Ak becoming small in the k-bin method, the truncation
error in the expansion (2.11) will decrease, the range of
those coupling potentials (2.16) will be restored and, be-
cause the breakup space being included becomes large,
the scattering matrix S„' )(L) will converge to some fixed
value. These expectations will be borne out in the con-
text of the diagonalization procedure as will be seen in
the following calculations.

III. NUMERICAL ANALYSIS

The two discretization procedures previously discussed
are examined numerically for deuteron Ni scattering at
incident deuteron laboratory energies of 21.6 and 45
MeV. Each choice of a discretization method leads to
different coupling potentials and a different number of
channels, as is discussed in detail below. The resulting
coupled equations, (2.12) are then solved with the
Numerov method, ' ' and the behavior of the elastic
scattering matrix elements, in particular their conver-
gence to a final value, is examined. The change in the
discretization parameters also changes the long-range
part of the radial dependence of the channel and coupling
potentials for the breakup channels. A theoretical
study' shows that changes in these potentials which
occur beyond the range of the elastic to breakeup cou-
pling potentials should not significantly affect the elastic
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Eqs. (2.8), (2.9), and (2.10) are solved numerically. That
yields a set of N discrete eigenenergies c'„'. The corre-
sponding eigenfunctions are obtained by simply substitut-
ing P,. into Eq. (2.6). Figures 2 and 3 show the various
eigenenergies obtained with di6'erent values of N. For a
given choice of N, the coupling potentials (2.16) are cal-
culated with nucleon-nucleus optical potential parame-
ters taken from the works of Percy and Buck, ' and also
Becchetti and Greenlees, ' following the procedure of
Ref. 9. The parameters are listed in Table I. V,fr(r, R) is
given by the zero-order multipole of the potential de6ned
in (2.1), as is further described in Ref. 9. Some of the po-
tentials are illustrated in Figs. 4 and 5. For each choice
of N the number of channels n included in the solution of
the coupled equations is increased successively from one
(in this case there is no coupling to breakup channels) to
its maximum value N, and the corresponding elastic
scattering matrix elements SP(L) are plotted as a func-
tion of n. Some of the results are illustrated in Figs. 6—9,
where n is denoted as n —1. Thus, the results obtained

0
~ ~ ~ ~ ~ ~ ~O ~ ~ ~ ~ ~~ ~ ~ ~ ~

-2.225 — (I) ( t) ( t) (I) (t) — ( t )

FIG. 2. The eigenvalues a'„' of H„~(r) for rp=12 fm and
a =0.52 MeV/fm2.

scattering matrix elements, and a numerical con6rmation
of this result is also provided further below.

A. The diagonalization method of diseretization

In order to carry out the diagonalization procedure, a
number N of bound functions P;(r) are first calculated for
two values of ro (12 and 20 fm) and for a =0.52
MeV/fm . The nucleon-nucleon potential has the form

v„(r)= —Voexp( Pr ), —

V0=66.92 MeV, P=0.415 fm
(3.1)

80'21 6'Ed (MeV)
Nucleon

—44.92
4.52
0.75

—6.10
5.11
5.3

—2.21
5.11
0.53

—42.67
4.52
0.75

—7.20
4.877
0.58

—2.58
4.87
0.58

—50.52
4.528
0.75

—2.25
5.109
0.53

—6.58
5.10
0.53

—48.272
4.528
0.75

—3.35
4.87
0.58

—6.961
4.87
0.58

—51.60
5.00
0.65
0.00
5.00
0.60

—13.16
5.00
0.57

—49.56
5.28
0.62
0.00
5.00
0.60

—3.57
5.28
0.65

Vv (MeV)
~v (fm)
av (fm)
VI (MeV)

I (fm)
a, (fm)
mD (fm)
rD (fm)
a (fm)

'From Ref. 18.
From Ref. 19.

TABLE I. Nucleon-nucleus optical potential parameters corresponding to nucleon energies equal to
half incident deuteron energy Ed.
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without coupling to any breakup channels are shown for
n =0. The results for the absolute values of SI '(L) the
reAection coefficients, are shown in Figs. 6 and 7 for
Ed =21.6 MeV and for ro =20 fm. Figures 8 and 9 show
the results for Ed=45 MeV, in which the two sets of
III'„'(r)'s correspond to N=8 and 13, and ro=12 fm.
The values of the angular momenta I. are written on the
plots. We notice that as n increases the reAection
coefficients first change randomly and, as n becomes
large, converge to some stationary value. This conver-
gence tends to be faster generally for high angular mo-
menta than for low angular momenta. This feature is
probably due to the fact that breakup channels associated
to high breakup energies and thus to low channel ener-
gies E„' '=E —c'„' are being suppressed by the angular
momentum barrier L (I. +1)/R when L gets large.
Therefore, they carry little Aux out of the elastic channel.

Moreover, it appears that all channels need not be in-
cluded in order to reach convergence. In fact, what
determines the number of channels n needed to obtain
convergence, is to a large extent determined by the max-
imum value of the eigenenergy. For example, at

FIG. 4. Diagonal distorting potentials in channels 1—6, ob-
tained for the diagonalization procedure of discretization with
the parameters ro and o. equal to 20 fm and 0.52 MeV fm ', re-
spectively. Channel 1 is the elastic deuteron channel. The
Coulomb potentials are not yet included.
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0.1 0
r
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IIM
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FIG. 5. Real parts of some interchannel coupling potentials
for the conditions described in Fig. 3. The upper part shows
elastic to breakup transition potentials, the lower part shows
breakup to breakup transition potentials. The range of the
latter is visibly larger than the range of the former.

FIG. 6. Retlection coefficients ~S(L)~ vs the number n of
breakup couplings for even angular momenta L and Ed =21.6
MeV. The (+ ) denote results for a size of discretization space
N of 12, and the ( ~ ) correspond to N =8. The value of ro is 20
fm.



1714 RENE Y. RASOANAIVO AND GEORGE H. RAWITSCHER 39

Ed =21.6 MeV, for X =8 and 12 the corresponding con-
vergence values of n are 5 and 6, respectively, and the
corresponding eigenenergies are given by c.6

' = 15.36
MeV and c~' '=17.65 MeV. This is true for all I. values
between 0 and 13. Similarly, for Ed=45 MeV and a
smaller value of ro, the converged values of ~SP'~ are ob-
tained at slightly higher energies E6 '=24. 83 MeV and

'=24. 21 MeV for I. between 0 and 15. It would be
reasonable but misleading to expect that the maximum
value of the eigenenergy c.'„' is determined by the condi-
tions that the corresponding channel energy E„' ' be neg-
ative, since no breakup Aux is carried away by closed
channels. This expectation is supported by the ending
that for Ed=21.6 MeV the channels which could be
neglected corresponded to negative values E„' '. Howev-

er, for Ed =45 MeV the channels which could be neglect-
ed started with c8' '= 32 MeV, for which E„' ' is still posi-
tive. Additional results can be found in Ref. 9.

The next question to be examined concerns the size N
of the space of the basis set used to diagonalize the n-p
Hamiltonian H„~(r). For this purpose we examine the
convergence of the reflection coefficients ~Sp'(L)~ this
time with respect to the number X of the diagonalizing
eigenstates. We proceed with various sets of the eigen-
functions 4'„'(r) obtained with N =3, 4, 5, 8, 12, and 13

and for each N we include as many channels n as are
needed to obtain convergence for the S matrix elements.
As suggested by the previous results, the calculations
only involve open channels for both energies Ed=21.6
and =45 MeV. The converged values of ~SP'~ obtained
with each set of the functions 4'„'(r), for small partial
waves (L (10), are plotted against N in Figs. 10 and 11
for both energies. The dashed lines interpolate the points
which have not been calculated. We notice that for both
energy cases convergence of ~Sp'(L)~ sets in at N=5.
The breakup states for N =5 cover the breakup energy
range of approximately 20 MeV. The fact that a lower
incident deuteron energy requires the participation of a
large range of breakup channels and energies indicates
that the present method of including the e6'ect of breakup
may not be practical for very low incident deuteron ener-
gies. It also suggests a possible shortcoming of the adia-
batic method which assumes that only the low n-p break-
up energies (Ek &10 MeV) are important. Furthermore,
for the energy case Ed =21.6 MeV the points show some
instability as N increases from 5 to 12 especially for the
very low partial waves; on the other hand, for the case of
Ed =45 MeV this instability is less pronounced. This re-
sult shows the sensitivity of the method of discretization
to the choice of discretization parameters at the low

0.2 0 I I I I I I t
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FIG. 7. Same as Fig. 6 for odd angular momenta L.

pl~. 8. Reliection coefficients ~S(L)l vs the nntnber n of
breakup couplings for even angular momenta L and Ed=45
MeV. The (+ ) and {-)correspond to N =8 and 13, respectively.
ro

——12 fm
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approximately to a diagonalization spectrum obtained for
ro of 16 fm and %=13, or to ro of 20 fm and %=8.
Similarly, Ak =0.24 fm ' corresponds approximately to
ro of 12 fm and X =3. In order to make a systematic
comparison between the present diagonalization method
and the k-bin method, we first study the convergence of
the reflection coefficients IS(L)

I
with respect to the bin

size Ak by using the k-bin method. Then, we compare
the converged values of the elastic scattering matrix ele-
ments given by each method.

The calculations involve the same coupled difterential
equations derived previously. The transition potentials
are computed with the same optical-potential parameters.
The reflection coefficients IS(L)I for various angular mo-
menta are plotted versus the number of the bins i in Figs.
12 and 13 for Ed =21.6 MeV, in Figs. 14 and 15 for
Ed=45 MeV, and in Fig. 16 for Ed=80 MeV. Again,
these calculations involve only open channels. In Figs.
12 and 13, the crosses indicate the results obtained with
Ak =0.48 fm ' in which case there is only one open
channel corresponding to breakup energy can=5 MeV; the
open circles refer to the results obtained with hk =0.24
fm with &5=18 MeV, and the solid circles denote the
results obtained with Ak =0.12 fm ' with &5=15 MeV.

%'e notice that there are large discrepancies between re-
sults obtained from Ak =0.48 fm ' and those obtained
from Ak =0.24 or 0.12 fm '; the latter two, however,
seem to be in fairly good agreement with each other for
every partial wave. In all of these calculations, the con-
vergence of IS(L)I does not look as apparent as in the
case of diagonalization calculations until the angular mo-
menta get large, I. =11 for instance. Even the points
corresponding to small bins, Ak =0.12 fm ', do not
show signs of convergence. This result confirms the argu-
ment made previously on the sensitivity to the discretiza-
tion method at the low deuteron energies. At energies
above 45 MeV the convergence of IS(L) I with bin size hk
becomes adequate, as is shown in Figs. 14 and 15, where
solid circles designate results obtained with Ak =0.24
fm ' and crosses correspond to Ak =0.48 fm '. The
breakup space being covered is approximately the same
in both cases; it is equal to 30 MeV for the first case
(Ak =0.24 fm ') and to 26.5 MeV for the second case
(b, k =0.48). Furthermore, for every partial wave, we no-
tice that the crosses are pointing toward the converged
values of the solid circles, and the distances between
those two points diminish as I. augments. In fact, for
I. =9 and 10, we find the same results for both bins. In
the case of Ed=80 MeV, the bin size Ak =0.48 fm
seems to be already satisfactory since IS(L) I

reaches con-
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FIG. 12. Reflection coefficients IS(L)I vs bin numbers i for
bin sizes Ak =0.48 fm, 0.24 fm, 0.12 fm, and Ed =21.6 MeV.
No coupling is denoted with i =1. The angular momenta L are
indicated next to the curves.

FIG. 13. Same as Fig. 12 for additional values of L.



DISCRETIZATION METHODS OF THE SREWK.UP COXTrNUUM. . . 1717

L=O
, IS,(L) I

O.IB- ' IS,(L)l
L=Q

IS,( L&I

t l

p a 4
t t I I

e a 4 6

O.O 5 l

1 2 ~ 4 5
005 t I I

1 2, 3 4 6

IS,(L)I

O. l 5
IS(L&l IS,(L)l

O.O 5

~ g~= o.4sfm

t t t

2 3 4 6

~ hk=o.24&m

t l t I

2 3 4 I 2 B 4 5

FIG. 14. Reffection coefficients IS(L)I vs bin numbers i for
bin sizes Ak =0.48 fm, 0.24 fm, and Ed =45 MeV. FICs. 16. Reffection coefficients IS(L)I vs bin numbers i for

bin size Ak =0.48 fm ' and Ez =80 MeV.

vergence (see Fig. 16).
The comparison of the elastic S-matrix elements for

the two methods of discretization will now be discussed.
Figures 17 and 18 show the Argand diagrams of the con-

IS,(L.)l
Q. l S,

verged values of the S-matrix eIements at energies 21.6
and 45 MeV, respective1y. In Fig. 17 so1id circles desig-
nate the resu1ts of the k-bin calculations with hk =0.12
fm '. The crosses correspond to the results of the diago-
nalization procedure using the set of eigenfunctions N'„' '

correspond to hk„=0. 10 fm '. Apart from L =8, both
calculations are in very good agreement. In the case of
Ed =45 MeV (Fig. 18), the points are even closer to each
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trix elements. The crosses ( X ) show the diagonalization resolts
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represent the bin discretization resolts with hk =0.12 fm
The incident energy is Ed =21.6 MeV.
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other than in the 21.6 MeV case, which seems to indicate
that the agreement between the two methods of discreti-
zation become even better at high energies. In con-
clusion, the two methods of diagonalization give closely
similar results for the elastic deuteron channel S- matrix
elements, even though they differ slightly in the long-
range part of the coupling potentials.

C. Sensitivity to the long-range part of the potentials

In a separate study' it was shown that changes of the
long-range parts of the potentials in the channels coupled
to the elastic one (both the diagonal potentials as well as
the interchannel coupling potentials) should affect very
little the elastic S-matrix elements. This conclusion is
based on a cancellation which occurs in an integral in-
volving Green's functions and the tails of the potentials
io question. The cancellation takes place provided that
(l) these changes occur at distances larger than the
ranges of the elastic-to-inelastic coupling potentials
V~ „(8)and (2) that for these long-range distances the ir-
regular solution in the coupled channels (i.e., the chan-
nels other than the elastic one) are strongly oscillatory.
Condition (2) is satisfied if the Wentzel-Kramers-
Brillouin (WKB) approximation for the wave function in
the coupled channels is valid in the region of space start-
ing from distances less than the range of the V& „'s and
extending to infinity. Thus it should not be valid for the
high partial waves, whose turning points lie in the radial
region previously mentioned. Condition (2) should also
not be valid for the case when the energies in the coupled
channels become so low that the corresponding wave
numbers are larger than the distances over which the tails
of the potentials in the coupled channels vary
significantly.

Inspection of Figs. 4 and 5 shows that the range of the
potentials in breakup space is significantly larger than the
range of the bound-to-continuum transition potentials,
and hence the conditions (l) and (2) previously stated are
likely to be satisfied for the low partial waves, and also
provided that the incident deuteron energy is high
enough so that the energies in the important breakup
channels are not too low.

The purpose of this section is to present a numerical

confirmation of the predictions of Ref. 17. The calcula-
tion consists in separating the potentials in the breakup
space into short- and long-ranged components

v= v'"+ v" (3.2)
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FIG. 20. The elastic scattering matrix elements S(L) for the
two channel case. The open circles (o ) show the results for the
case that the (I) and (s) parts of V2 ~ are both included. The
crosses indicate the results when only the (s) part is included.

FIG. 19. Separation of V22 into short (s) and long (l) ranged
parts. The range of V'" is chosen to be comparable to that of
V& 2. Dashed line illustrates the artificially extended part of
V, 2. Only the real parts are shown.
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TABLE II. Center of mass channel energies.

Channel
Energy
(MeV) Channel

Energy
(MeV)

20.88
17.96
15.99

12.87
8.63
3.29

—3.16

V„'„' (R)= V„„(R)[1—e(R)],
V„"„',(R)= V„„,(R)[e(R)],

where

(3.3)

e(R ) = —,
'

t 1+tanh[ (R —R,„,) /a, „,] I (3.4)

In the application described below, R,„, and a„.„, are
given the values 10 fm and 0.8333 fm, respectively. In
the numerical calculation the I method of discretization

--0 5

Im St

I I

0.5

l2

II
b' ll

I I

Re SL.

and then ascertaining what effect the long-ranged parts
have on the elastic scattering matrix elemerits. The
short-ranged parts, V„'„' are chosen to have approximate-
ly the range of the Vi „'s. This is accomplished by apply-
ing a smooth cutoff to the V„„.'s by means of the function
[1—e(R)] which goes to zero for R ((R,„, and goes to
unity for R ))R,„,

is chosen, with the parameters ro and o. having the values
of 20 fm and 0.52 MeV fm, respectively. The calcula-
tion is done for the case of 21.6 MeV deuterons incident
on Ni, and either the two channel or the seven channel
cases are considered. Some of the potentials are illustrat-
ed in Figs. 4 and 5. The breakup energies and the corre-
sponding channel energies are listed in Table II.

For the two channel case the (l) and (s) parts of the di-
agonal potential in the breakup channel (channel 2) is il-
lustrated in Fig. 19. The corresponding effect on the elas-
tic S-matrix element is shown in Fig. 20. One sees that
the presence or absence of the relatively large bell-shaped
potential tail Vz"z has a rather minor effect on S(L), the
effect becoming larger for the large I. values, as is to be
expected from the theoretical argument. ' Calculations
have also been performed in which the tail of the cou-
pling potential V, z is artificially increased by the amount
V, 2 (also illustrated in Fig. 19). The effect which the
latter has is comparable to the effect which Vz 2 has, even
though the former is much smaller in magnitude than the
latter.

In the seven channel case a smooth cutoff of the long-
ranged parts of the potentials in breakup space has a
similar effect to that seen in the two channel case, only
the changes in S already occur for smaller values of L,.
This result is consistent with the expectation of the dis-
cussion made above. The effects on S are illustrated in
Fig. 21, in the form of an Argand diagram. A sharp
cutoff was also performed by decreasing the value of the
matching radius (beyond which all potentials other than
the Coulomb potential are set to zero). The result is also
shown in Fig. 21.

In conclusion, the numerical calculations confirm the
expectation' that errors in the long-ranged parts of the
potentials in breakup space do not significantly propagate
into the elastic scattering matrix elements. Since the
discretization mainly affects tht„. long-ranged parts of
these potentials, the result obtained in this section is re-
sponsible to a large extent for the success of the discreti-
zation methods analyzed in the present study.

IV. SUMMARY AND CONCLUSIONS

---0.5

FICx. 21. Argand diagram of the elastic scattering matrix ele-
ments S(L) for 21.6 MeV deuteron incident on 'Ni. The (+ )

indicate the results without coupling to the breakup channels.
All the other cases include coupling to six breakup channels, in
the diagonalization procedure, as is described in the text. The
solid circles (~ ) denote the case calculated in the presence of the
complete (L+S) inelastic potentials, and the matching radius
taken as 10 fm. The other two cases have the matching radius
equal to 15 fm. The open circles (0 ) and crosses ( X ) denote,
respectively, the results calculated with and without the long
range parts of the inelastic potentials. When the solid and open
circles coincide then only the open circles are shown. The re-
sults corresponding to the same orbital angular momentum L
have been grouped together and the value of L is indicated for
each group.

We have used two discretization methods for the pur-
pose of studying the effect of breakup on the elastic
scattering matrix elements, S'& '. These are the momen-
tum bin averaging method and the I. diagonalization
method. We have examined the convergence of S'] ' with
the number and density of discretization states and we
found that the values of S] ' converge to the same result
for either method. We also discovered that the rapidity
of convergence is energy dependent. For incident deute-
ron energies below 20 MeV, high discretization state den-
sity or small bin size Ak (slow convergence) is needed to
get stationary and reliable values. Above 45 MeV, con-
verged values can be obtained with less dense sets of
discretized states. This conclusion is based on numerical
convergence studies carried out for Ni as the target nu-
cleus. But it is also expected to be true for nuclei such as
Ca or Zn. The minimum size of breakup space needed to
obtain the above convergence is 20 MeV of breakup ener-
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gy, regardless of whether the breakup channels become
closed or not. Inclusion of the breakup states with rela-
tive n-p angular momenta larger than zero, neglected in
the present study, may require an increase in this
minimum size of breakup space.

Another effect due to the changing of the discretization
parameters is the modi6cation of the long-range parts of
the potentials which occur in the CDCC coupled equa-
tions. In a separate study' we found that the effect of
such modifications upon the elastic 5-matrix elements
should be negligible provided that the changes occur in a
region of space where the transition potentials between
the elastic and inelastic channels are already small. Nu-
merical calculations presented here confirm this expecta-
tion. This result may be the main reason for the good
convergence, found in this study, of the elastic deuteron
scattering elements with discretization parameters, espe-
cially for the higher incident deuteron energies.

Although the present report was limited to elastic
scattering, it should also be mentioned that t:he deuteron
breakup effect on transfer reaction cross sections such as
(d,p) cross sections has been found important in the ener-

gy range up to Ed =80 MeV. Different prescriptions 0

of including breakup e8'ect into the stripping calculations
have been studied and applied to various reactions. The
results were indeed satisfactory. However, there still
remain cases where there are serious disagreements with
experiments. ' It is fortunate that at these energies the
methods of discretization investigated in the present
work were found to be reliable.
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