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Coulomb instability of hot nuclei
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An equation of state for asymmetric nuclear matter is derived and used to investigate the instabil-
ity of hot nuclei caused by the Coulomb force. This equation of state takes into consideration the
effect of degeneracy of the Fermi system. The nucleus is treated as a liquid drop with a sharp edge
and a surface tension. Both the liquid and the surrounding vapor are described by the derived equa-
tion of state. The equations describing the coexistence between the drop and the vapor are deter-
mined and solved. The instability of these hot liquid drops at temperatures above a certain limiting
value is verified by the absence of any real solution of the coexistence equations at such tempera-
tures. The value of the limiting temperature depends on the nucleus but is always less than the criti-
cal temperature of nuclear matter. It is found that high-order degeneracy effects as well as symme-
try energy corrections must be included in the calculation if meaningful information about the bulk
and surface properties of hot nuclear matter is to be extracted from any measurements of the limit-

ing temperature.

I. INTRODUCTION

The occurrence of two distinct Quid phases, a dense
liquid phase and a dilute gaseous phase, in nuclear matter
has been the subject of several theoretical investiga-
tions. ' These two distinct phases coexist at tempera-
tures below the critical temperature T, whereas only one
Auid phase can exist at or above T, . Associated with
these two phases is the possibility ' of observing phe-
nomena related to the liquid-gas phase transition near or
below the critical temperature. Such a transition may
occur in the hot equilibrated compound nuclei produced
in intermediate-energy heavy-ion collisions. However, it
was recognized early on ' that the finite size of these
systems and the presence of the Coulomb force may lead
to a substantial modification of this phase transition. In
particular, hot charged nuclei become unstable above a
temperature T„much lower than the critical tempera-
ture T, of infinite nuclear matter, as demonstrated' by
the inability of these hot nuclei (or liquid drops) to exist
in equilibrium with the surrounding vapor of nucleons for
temperatures T & T~; . This Coulomb instability was in-
vestigated in Ref. 14 with the use of a simple equation of
state for nuclear matter that included only the first-order
degeneracy correction and neglected symmetry energy
effects.

In the present work a more elaborate equation of state
is used that includes higher-order degeneracy corrections
as well as the isospin effects associated with the symmetry
energy in order to study the effect of these corrections on
the stability of hot nuclei. As will be seen this will lead to
a better understanding of the bulk and surface properties
of hot nuclear matter.

In Sec. II the equation of state for asymmetric nuclear
matter is derived. The equilibrium conditions between
the liquid drop and the surrounding vapor are then stud-
ied in Sec. III. The resulting coexistence equations are
solved in Sec. IV and the importance of each of the

corrections introduced into the equation of state is inves-
tigated. Section V contains a discussion and concluding
remarks about the present work.

II. THE NUCLEAR EQUATION OF STATE

t3+—(1+@3P )p
ri+r2

5(r, —r2), (2.1)

where P is the spin-exchange operator, and the density
dependence has been generalized as suggested by Ref. 3
to control the stiffness of the equation of state. The origi-
nal Skyrme interaction is linear in the density (cr = 1).
For symmetric nuclear matter, in which protons and neu-
trons are treated equally and the Coulomb force is
switched off, the equation of state does not depend on the
values of xo and x3 and is given by:

P(T,p)= —aop +a3(1+cr)p +

n-
oo

+Tp 1+ g b„
n=i

(2.2a)

or

P(T,p) = —2aop+a3(2+a. )p'

+T ln
n+1

n

(2.2b)

where p is the nuclear density, P is the pressure, p is the
chemical potential, T is the temperature in energy units,
g is the spin-isospin degeneracy (g=4), and A, T is the

The starting point in obtaining the desired nuclear
equation of state is to assume an effective nucleon-
nucleon interaction of the Skyrme type

U12 r0( 1 ++0 )~( I 2)
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thermal wavelength of the nucleon,
1/2

2~%
A, T= IT (2.2c)

The parameters ao and a3 in (2.2a) and (2.2b) are related
to the parameters of the Skyrme interaction:

ao= —,to,=3 a =
—,', t (2.2cl)

2&3
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(2.2e)

while the b, s are the coe%cients of the virial series for an
ideal Fermi gas. The first five coeKcients are given by

bi = =0.177,
v'2

8

temperature T, of nuclear matter determined by the
present equation of state, Eq. (2.2). The values of T, are
seen to differ very little from the corresponding values
obtained in Ref. 14, also listed in the table. This is due to
the fact that at such high temperatures the higher-order
degeneracy corrections [n) 1 in Eq. (2.2)] are negligible.
On the other hand, for temperatures T ~ T]; which are
much lower than T„ these higher-order corrections be-
come important and cannot be neglected as will become
apparent in later sections.

If the proton number Z and neutron number N are not
equal, the protons must be treated separately from the
neutrons by assigning different energy levels and a
different chemical potential for each species. The chemi-
cal potential for species q will then be given by'

A,
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(2.5a)

where q =p (or n) for a proton (or neutron), g, =2 is the
spin-degeneracy of each species and c is the single-
particle potential energy for species q:

=8.30X10 '

The quantity (A.zp/g) that occurs in Eqs. (2.2) is a
measure of the degeneracy of the Fermi system so that
these equations are expansions in the degree of degenera-
cy. ' The equation of state used in Ref. 14 corresponds
to Eqs. (2.2) but with the n) 1 terms neglected, i.e., the
effect of degeneracy is included to first order only. The
values of ao and a3 (or, equivalently, to and t3) and cr can
be determined by the properties of the ground state of nu-
clear matter:

E = —to
xo1+ p

—(xo+ —,
'

)p
2
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(2.5b)
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with Vc,„~(p) being the Coulomb potential energy for a
uniformly charged spherical drop of radius 8:

1/3

cr =(K 9Eq Etc )/—(9Ee+—3Etc ),
aopo= [(1+cr)E~+(cr+ ,

' )Etc ]/cr, —

a3po+ =(E~+Etc/3)/cr,

(2.3a)

(2.3b)

(2.3c)

1 Ak
a, = — +-',-(xo+ —,')aopo —a3po+ .=30 MeV, (2.4)

where k+ is the Fermi momentum.
Two sets of parameters so determined are given in

Table I. The difference between the two sets stems from
the difference in the values of K used in their evaluation
which directly affects the values of o.. Apart from xo and
x3 (which do not affect the results for symmetric nuclear
matter) these two sets are identical to the parameters
used in Ref. 14. This is done in order to facilitate the

comparison between the present results and those of Ref.
14. Also listed in Table I are the values of the critical

where Ez and Ez are the nuclear matter binding energy
per particle and kinetic energy per particle, respectively,

po is the nuclear matter saturation density, and
K =9PO(B E/Bp ) is the nuclear incompressibility. In

addition x3 is given the usual value' of 1 while xo is
determined by the symmetry energy coefficient in nuclear
matter

x= p

p

so that

Z
(2.6a)

p„=+(I+a), p =+(I—a), (2.6b)

and expanding Eq. (2.5a) up to second order in the asym-
metry parameter o., leads to the chemical potential for

where 3 =N+Z is the total number of nucleons in the
liquid drop. Strictly speaking, Eq. (2.5a) is correct only
for short-range forces so that the inclusion of the
Coulomb term in (2.5b) is a simplifying approximation.
However, since the equation of state is mainly deter-
mined by the much stronger short-range nuclear force
this approximation is not expected to have a drastic effect
on the results of the calculation. The Coulomb term is
included here rather than added later because it is the
most important source for the asymmetry between the
protons and neutrons and because Eq. (2.5a) with the
Coulomb term will eventually only be used for a drop of
liquid nuclear matter. Finally, it must be noted that if
the Coulomb force is switched off and N=Z so that
p =p„=p/2 then Eq. (2.5a) reduces to Eq. (2.2b).

Introducing the variables
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the neutrons:

p„(Tp, a)=P(TP)+p„, {Tp, a), (2.7a) p&(T,p, a) = —', (xo+ —,
' )aop —2a,p

+'

where p, (T,p) is the chemical potential for symmetric nu-
clear matter, Eq. (2.2b), and p, , is the a-dependent
correction:

I ~rp+T 1+ g (n+1)b„
n =1

n

p~,y~(T p, a)=p, (T p, a)+pa(T p, a)

with

(2.7b) (2.7c)

Pz( TP, a) = —cra3P + T ——+1 (n —1)

n =1

A, Tp
n

a2 (2.7d)

p (T p, cz)=P(T p)+p, ,„(Tp, a)+pc, „,(p),
where

(2.8a)

p~,„(T,p, rr)=p„,„(T,P, —~)

Note that p, is linear in n while p2 is proportional to a .
Similarly, the proton chemical potential is given by

I

so the expression used in Ref. 14 is maintained here also
for ease of comparison. It must be pointed out though,
that the expression (2.10c) is correct at T=O (apart from
a small exchange term). Finally, it is noted that the pres-
sure depends quadratically on a whereas the chemical po-
tentials contain terms linear as well as quadratic in o..

= —vl(»p ~)+p~(»p ~) (2.8b) III. THE COEXISTENCE EQUATIONS
and

4~ppc,„t(p)= Vc,„|(p)= —', Ze
1/3

(2.8c)

With the chemical potentials determined it is then pos-
sible to obtain the total pressure of the system by using
the Gibbs-Duhem relation:

(2.9)

which yields

P(T p, a)=P(T p)+P,„(Tp,a)+Pc,„i(p), (2.10a)

where P(T,p) is the pressure of symmetric nuclear
matter, Eq. (2.2a), P,„(T,p, a) is the o.-dependent
correction:

y(T)=1. 14 MeVfm 1+—-2 3 T
2 T.

3/2
l1—

T.

(3.1a)

Following Ref. 14 the hot nucleus is considered .as a
spherical drop of uniformly distributed nuclear matter at
constant temperature with a sharp edge. The bulk pres-
sure inside this drop is governed by the equation of state
(2.10). This drop is in thermal, mechanical, and chemical
equilibrium with the surrounding vapor which is taken to
be an electrically screened gas of nucleons that obeys the
equation of state (2.10) without the Coulomb term. For
the temperature dependence of the surface tension y( T)
of the liquid drop, the formula suggested by Ref. 12 and
used in Ref. 14 is also used here in order to facilitate the
comparison:

P,y (Tp, a)= —', (xo+ —,')aop —(1+a )a3p +

n (n +1) ~rp+Tp n
n=t

n-

This expression vanishes at the critical temperature T,
and has the correct quadratic decrease with T at low tem-
peratures. The surface tension provides a further contri-
bution to the pressure inside the liquid drop:

(2.10b) P,„,r = —2y( T) /R = —2y ( T) 4~p
1/3

(3.1b)
and Pc,„i(p) is the Coulomb contribution:

1/3
2e 24~pPc-|(P)= (2.10c)

This expression for Pc,„i(p) is the one used in Ref. 14 and
divers from the expression actually calculated from the
Gibbs-Duhem relation, Eq. (2.9), by a factor of —', . How-
ever, since the inclusion of the Coulomb force is done in
an approximate and simplified manner in both cases, it is
not possible to prefer one expression over the other and =P(T pv)+P, „(Tpv ~v) (3.2a)

where A is the radius of the drop.
With all these ingredients it is now possible to write

down the coexistence equations at equilibrium which are
the standard requirements of the equality of the inside
and outside temperatures, pressures, neutron chemical
potentials and proton chemical potentials:

P(T PL )+P,~ {T PL, aL)+PcoUt(PL )+P,„,&(T Pl )
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P(TPL)+P.,„(TPL ~L)

=P(»pv)+P, (T Pv civ)

P(T PL )+V,,„(TPL ~L )+Pc..i(PL )

=I (TPV)+P„., (»Pv &v» (3.2c)

P( T&PL )+ 2PCoul(PL ) +P2( T&Pl. & ~L )

where the subscript L refers to the liquid drop and V to
the surrounding vapor, and where allowance has been
made for the asymmetry parameter o; z of the vapor to be
different from the asymmetry parameter o.L inside the
hot nucleus. Equations (3.2) are thus a generalization of
Eqs. (2.5) of Ref. 14 to the case where symmetry energy
effects are taken into consideration and protons and neu-
trons are not treated as identical. The solution of the
three simultaneous equations (3.2) to determine the three
unknowns pl, pi„and o. ~ can in principle be much more
di%cult than the solution of the two simultaneous equa-
tions of Ref. 14. However, a major simplification occurs
if Eqs. (3.2b) and (3.2c) are added and subtracted from
each other and use is made of Eqs. (2.7b) and (2.8b). The
resulting two equations together with Eq. (3.2a) form a
new set of coexistence equations that are to be solved:

&PL )
sym

( &PL & ~L ) +~C l(oPuL ) + Psu& f( T&PL )

=P (Tpv)+P, (Tpv, av), (3.3a)

(3.3c). Another diff'erence between Eqs. (3.3) and (3.4) is
the fact that Eqs. (3.4) contain only the first-order degen-
eracy correction whereas degeneracy is included in Eqs.
(3.3) to any order desired. The inclusion of the higher-
order degeneracy corrections must, however, be treated
with care since the series that appear in Eqs. (2.2), (2.5),
and (2.7) are asymptotic (or semiconvergent) series' that
converge only in the limit of high T. The summation of
these series must be carried out by employing the usual
techniques of stopping the summation at the term of
lowest magnitude and the averaging of successive
terms. ' Associated with this summation is an unavoid-
able computational error which tends to zero as the tem-
perature increases. In the present calculations degenera-
cy is included to fifth order, i.e., terms with n 5 are in-
cluded in the various summations. The averaging of suc-
cessive terms means effectively that only half of the last
term (n=5) is included in the summation and this was
used in the present work for all calculations involving
temperatures + 5 MeV since in such cases the tempera-
ture is low enough that the fifth-order term becomes
comparable to the fourth-order term. In such a situation
averaging of successive terms is necessary to reduce the
computational error. For temperatures = 5.5 Me V
averaging was found to have a very small effect ( + 1%)
and so it was not used in calculations involving higher
temperatures.

P( T Pv)+82( T Pv ~v)

P'1( T'PL +L ) pVcoul(PL ) Pl( T&Pv ~v) (3.3c)
IV. SOLUTION OF THE COEXISTENCE EQUATIONS

AND THE COULOMB INSTABILITY

I ( T PL )+PCoul(PL )+I'u.r(T&PL ) =P( T P V ),
z

P ( PI. )+ Pc..l(PL ) =P(T—Pv»

(3.4a)

(3.4b)

where P and P are given by Eqs. (2.2) but with the n) 1

terms neglected.
The similarities and differences between the present

coexistence equations (3.3) and Eqs. (3.4) used in Ref. 14
are to be noted. The pressure equations (3.3a) and (3.4a)
differ by the presence of the symmetry correction for the
liquid drop as well as for the surrounding vapor. The
chemical potential equations (3.3b) and (3.4b) diff'er not
only by the symmetry correction terms but also by a
modification of the Coulomb term. In addition Eqs.
(3.3a) and (3.3b) must be solved simultaneously with Eq.

The simplification in solving the coexistence equations
(3.3) results from the fact that the left-hand side of (3.3c)
is a very slowly varying function of pl so that without
knowing the exact value of pL it is possible to use (3.3c)
to determine ca~ for a given pi, and the resulting a~ is
then used to solve Eqs. (3.3a) and (3.3b). A further
simplification results if the symmetry corrections are
neglected for the vapor state in Eqs. (3.3a) and (3.3b).
These corrections are both proportional to a~. In this
approximation Eqs. (3.3a) and (3.3b) become completely
independent of av [which is now solely determined by
Eq. (3.3c)] and are quite similar to the coexistence equa-
tions of Ref. 14 which in the present notation can be writ-
ten as follows:

In the present section the coexistence equations (3.3)
are solved first by making some simplifying approxima-
tions and then exactly. The results of the various solu-
tions are compared with each other and with the results
of Ref. 14 in order to investigate the importance of each
of the corrections introduced in the present work. As a
first step the efFect of the higher-order degeneracy correc-
tions alone is investigated without including the symme-
try eff'ects. For this purpose Eqs. (3.4) are solved for the
case where P and P are replaced by P and P [see Eq.
(2.2)], and the results are compared with those of Ref. 14
which are carried out with P and p. One such calculation
is shown in Figs. 1 and 2 for the case of a ' Ag nucleus
at a temperature of 5 MeV. The equation of state used
corresponds to the first force given in Table I (cr= —,').
Figure 1 shows two 5-MeV isotherms for this nucleus:
one is calculated with the first-order degeneracy correc-
tion only (i.e., the same as in Ref. 14) and the other one is
calculated to fifth order in the degeneracy (n ~5). The
corresponding bulk isotherms are also shown in the
figure. The drop isotherms differ from the bulk isotherms
by the inclusion of the same Coulomb and surface contri-
butions to the pressure as used in Ref. 14 so that the
difFerence between the two drop isotherms is due entirely
to the higher-order degeneracy corrections. The in-
clusion of these corrections is seen to be important at
liquid densities since their contribution is comparable to
the Coulomb and surface terms. Figure 2 shows the
dependence of the chemical potential on the pressure at
T=5 MeV for both the bulk and liquid-drop situations.
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TABLE II. Equilibrium values of the vapor and liquid-drop densities, pressure and chemical poten-
tial for a ' Ag nucleus at T=5 MeV. All calculations are carried out with the first force listed in Table
I. The type of calculation refers to the various approximations used in solving the coexistence equa-
tions: 3, degeneracy is included to first order only, symmetry corrections are ignored, i.e., the same as
Ref. 14; B, higher-order (n 5) degeneracy corrections are included but no symmetry corrections; C,
higher-order degeneracy corrections are included, symmetry corrections are included for the drop but
not for the vapor; D, exact solution of Eqs. (3.3), i.e., with the inclusion of all corrections for the drop as
well as vapor. The last column gives the values of the asymmetry parameter of the vapor surrounding
the nucleus as calculated by solutions C and D.

Type of
calculation pv (fm )

2.75 X 10
1.75 X 10
2.0X 10
3.9X 10

p~ (fm ')

0.158
0.176
0.176
0.176

P (MeVfm )

0.010
0.007
0.008
0.017

p (MeV)

—32.2
—33.6
—33.1
—33.1

&v

0.98
0.79

corrections alone, the next step is to include, in addition,
the symmetry correction terms for the liquid drop and
neglect them for the surrounding vapor. This amounts to
dropping the vapor symmetry terms on the right-hand
side of Eqs. (3.3a) and (3.3b) which thus become decou-
pled from Eqs. (3.3c) and can be solved like Eqs. (3.4) to
obtain the equilibrium values of pL and p~. The depen-
dence of the drop chemical potential on the pressure with
the symmetry e6'ects included is also shown in Fig. 2
where it is given by the dotted-dashed curve. It is seen
that the inclusion of the symmetry corrections for the
drop partially counteracts the eAect of the degeneracy
corrections as the coexistence point moves from point B
to point C. The new location of the drop-vapor coex-
istence point is listed in row C of Table II which also
gives the value of the asymmetry parameter o. ~ of the va-
por surrounding the hot ' Ag nucleus. This value of az
is determined by solving Eq. (3.3c) with the equilibrium
values of pI and p~, and it is found that a~ is rather
large and close to the maximum value of 1 indicating that
the surrounding vapor consists mainly of neutrons. Al-
though this value of a~ is somewhat too large (see below),
yet the preponderance of the neutrons is qualitatively un-
derstood in terlns of the Coulomb barrier which hinders
the evaporation of the protons. ' It is also in qualitative
agreement with the results of finite-temperature Hartree-
Fock calculations. ' This point will be discussed further
below.

The last step is to include the symmetry terms for the
vapor especially since o.z, as has just been observed, turns
out to be quite large which means that the symmetry
correction contribution to the vapor may not be neglect-
ed. This means that the three simultaneous equations
(3.3) are to be solved exactly. As mentioned in Sec. III,
advantage is taken of the fact that the left-hand side (lhs)
of Eq. (3.3c) is a very slowly varying function of p~. As
an example, for a ' Ag nucleus at T=5 MeV the lhs of
Eq. (3.3c) decreases from a value of 7.197 MeV at
pL=0. 17 fm to 7.161 MeV at pl =0.18 fm . Since
the equilibrium value of pL is expected from the previous
approximate results to lie in the interval 0.17 &pl &0.18
fm (see Table II), the error involved in determining av
in this case will be ( l%%uo whatever value is used between

the two limits just quoted. In the calculation the value
7.18 was used for the lhs of Eq. (3.3c). The resulting a~,
which is now a function of p~, is then inserted in the
right-hand side of Eqs. (3.3a) and (3.3b) and the resulting
vapor pressure and chemical potential are given by the
dotted curve shown in Fig. 2. This curve intersects the
(dotted-dashed) liquid-drop curve at point D which thus
corresponds to the exact coexistence point determined by
Eqs. (3.3). The corresponding equilibrium quantities are
given in row D of Table II, where it is seen that the in-
clusion of the symmetry corrections for the vapor has a
very noticeable eAect on the equilibrium values of the
pressure and the vapor density but a negligible effect on
pl and p. The resulting value of av=0. 79 is lower than
the approximate value of 0.98 obtained by neglecting the
vapor symmetry terms (row C of Table II). Nevertheless,
it still indicates that the vapor consists mainly of neu-
trons. This lower value of a~ is also more reliable since
terms 0 (n ) have been neglected in deriving the symme-
try contribution, which means that the lower az is more
acceptable. It must be noted, however, that whereas the
drop curve (the dotted-dashed curve of Fig. 2) corre-
sponds to a fixed value of al (aL =,'o', for ' Ag) the dot-
ted vapor curve does not correspond to a fixed value of
o.'~ since for every point on this curve the value of a~ is
determined by Eq. (3.3c).

A general feature of the solutions of Eqs. (3.3) is that as
the temperature is increased the liquid-drop p-p curve
moves upward with respect to the corresponding vapor
curve so that at the limiting temperature T&; the coex-
istence point coincides with the upper boundary of the
vapor phase. For T ) Tj; the liquid and vapor curves
do not intersect at all and Eqs. (3.3) do not have a solu-
tion. The meaning of T&; is thus obvious: below Th
the nucleus can exist in equilibrium with the surrounding
vapor whereas above T&; the nucleus is unstable and will
fragment or emit charged particles. This is the Coulomb
instability investigated in Ref. 14 and mentioned in the
introduction in the present work. The details of what ac-
tually happens to the unstable hot nucleus are, however,
beyond the scope of this work. Figure 3 illustrates the
existence of T~; by plotting the p-p. curves for the case of
a ' Ag nucleus at three successive temperatures of 6, 6.1,



39 COULOMB INSTABILITY OF HOT NUCLEI 175

I I
[

I
[ r

r

rrrr
I

7
T=62 Mev

)
& -38—

-40
36 -0

[

-0.2
I I

0.2

r't

rr

—40 I

-0.4 -0.2

0.0

37 T=6.1 MeV

(D

~ -38—

-39—

I

0.0 0.2-36—

r

r

-40

Q)

& -38—

-39—

I

0.2
I

0.0
P (MeV frn 3)

-0.4 -0.2

0.4

0.4

0 4

FIG. 3. The chemical potential versus the pressure below, at,
and above the limiting temperature. The solid curve describes
the vapor phase while the dashed curve describes a drop
representing ' Ag. Above Th the two curves do not intersect
and no drop-vapor coexistence is possible. Both the vapor and
drop curves contain the degeneracy (n ~ 5) and symmetry terms.

TABLE III. Values of the limiting temperature for the nuclei
Ag and pb calculated with the two forces of Table I. The

force is identified by the value of o.. The letters A, B,C, D refer
to the various approximations used in the calculation (see cap-
tion for Table II). The last column gives the values of the asym-
metry parameter of the vapor surrounding the nucleus as calcu-
lated by the exact solution of the coexistence equations (i-.e.,
solution D) at T= T[;

Nucleus
T~; (Me V)
B C

109A

109A

2o8Pb

2o8Pb

6.57
9.20
5.40
7.81

7.31
9.72
6.27
8.51

6.80
9.22
5.49
7.60

6.10
8.28
4.05
5.56

0.45
0.41
0.77
0.76

and 6.2 MeV. The calculations are carried out with the
first force of Table I (a =—') and include the symmetry as
well as degeneracy corrections. For this case Th =6.1

MeV and for higher temperatures the drop and vapor
curves fail to intersect.

The value of T~; depends on the approximation used
in solving the coexistence equations and this in turn
reflects the importance of each of the corrections intro-
duced in the present work. Table III shows the values of

T~; for the two nuclei ' Ag and Pb calculated with
the two forces listed in Table I. The results indicate the
importance of including the higher-order degeneracy
corrections as well as symmetry effects since these correc-
tions are similar in magnitude to those brought about by
changing the force used in the bulk equation of state or
changing the temperature dependence of the surface ten-
sion. Changing the force used in the equation of state
can change the limiting temperature by 2—3 MeV, as can
be seen in Table III, with the softer equation of state
(o.= —,

'
) leading consistently to lower values of T„

Changing the expression used for the surface tension was
found in Ref. 14 to change T~; by —1 MeV. On the oth-
er hand, the inclusion of both the degeneracy and symme-
try corrections lowers T&; by 0.5—2.2 MeV for the cases
listed in Table III. These corrections must therefore be
included if measurements of T~; are to be used, as sug-
gested by Ref. 14, to study the bulk and surface charac-
teristics of hot nuclear matter.

The dependence of the limiting temperature on xo [see
Eq. (2.1)] can also be investigated. Although in principle
the value of xo is determined from the symmetry energy
coefficient a, of nuclear matter through Eq. (2.4), yet it is
useful to treat xo as a parameter and see how it affects
the value of Th, especially since there is some uncertain-
ty in the value of a, and the other quantities that enter
Eq. (2.4). For this purpose Tj; was determined for a

Ag nucleus with the o. = —,
' force of Table I but with

different values of xo. It was found that T~; dropped
from 6.1 to 5.1 MeV when xo was increased from 0.75 to
1, and that T„was raised to 6.4 MeV when xo was de-
creased to 0.5. This indicates that Th is sensitive to the
value of xo being used.

Finally, it is of interest to investigate the variation with
temperature of the asymmetry parameter a~ of the va-
por. In order to be able to compare results obtained with
the use of different forces for the same nucleus or the re-
sults for different nuclei, values of a~ at the limiting tem-
perature and at 1.1 MeV below Tj; are calculated. This
is more meaningful than comparing values of a~ at the
same absolute temperature since different forces lead to
different limiting temperatures even for the same system.
Values of n~ at the limiting temperature are given in the
last column of Table III and it is seen that for a ' Ag nu-
cleus the o. = —,

' force gives +~=0.45 while the force with
o. =1 leads to a slightly lower value a&=0.41. The corre-
sponding values at 1.1 MeV below T„(i.e., at 5 and 7.2
MeV) are 0.75 and 0.60, respectively, indicating that the
abundance of the neutrons in the vapor increases as the
temperature is lowered. As mentioned earlier, this can be
qualitatively understood in terms of the Coulomb barrier
which is more effective at hindering the evaporation of
the protons at lower temperatures. The difference be-
tween the values of o,'~ predicted by the two forces can
also be understood in terms of the Coulomb barrier since
the limiting temperature is higher for the o. =1 force; at
such higher temperatures the protons are more successful
at overcoming the barrier which leads to a reduction in
a z. Also, it must be noted that the height of the
Coulomb barrier itself depends on the nuclear force used.
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The values of az for Pb at the limiting temperature are
almost equal (0.77 and 0.76) for both forces. These values
are larger than for the ' Ag case and this is due to the
fact that the Coulomb barrier for Pb is almost twice as
high as for ' Ag whereas the limiting temperature is
lower than for ' Ag. At T = Th —1.1 MeV the solution
of Eqs. (3.3) for Pb leads to values of av) 1; e.g. , the
force with o. =1 gives +&=1.18 at T=4.45 MeV. Such
values for a& are not physically acceptable since, by
definition, ~ai, ~

must be ~ 1. The occurrence of values of
at, ) 1 is due to the fact that terms 0 (ai ) have been
neglected in deriving Eqs. (3.3) [see Eqs. (2.6)—(2.8)].
Such terms would be important when

~
a z is = 1. In any

case the present results indicate that av is large ( =1) so
that the vapor consists almost entirely of neutrons at
such low temperatures.

V. DISCUSSION AND CONCLUSION

In the present work the effect of the symmetry correc-
tions as well as the higher-order degeneracy contributions
to the equation of state of nuclear matter has been inves-
tigated. The results indicate that these terms must be
taken into consideration when investigating the stability
of hot nuclei. In particular, they may not be neglected if
measurements of the limiting temperature are to be used
to study the equation of state of nuclear matter or the
temperature dependence of its surface properties. This is
the main difference between the present work and Ref. 14
whose results nevertheless remain qualitatively correct

especially as regards the existence of the limiting temper-
ature.

In carrying out the present calculations many of the
simplifying features used in Ref. 14 were also used here.
This was done for the purpose of facilitating the compar-
ison between the two sets of results. Such simplifying
features included the assumption of a uniform density
distribution inside the nucleus and also for the vapor, the
neglect of the temperature dependence of the Coulomb
contribution and the treatment of the vapor as being
completely screened. One other feature is that the equa-
tions of state used here as well as in Ref. 14 do not in-
clude the density dependence of the effective mass. This
is due to the fact that the effective nucleon-nucleon in-
teraction given by Eq. (2.1) does not contain the finite-
range terms that are present in the original, and more
general, Skyrme interaction. It is these finite-range terms
that lead to an effective mass m*(p)&m. The role of the
density dependence of the effective mass will be investi-
gated in a future work.

Finally, the approximation of neglecting terms 0 (a )

must be examined, especially in light of the fact that the
asymmetry parameter for the vapor o. z turns out to be
close to unity in certain cases. This entails that in such a
situation the higher-order symmetry terms must be in-
cluded in the calculation or that the pressure and chemi-
cal potentials must be evaluated exactly and the expan-
sion in terms of powers of a& given up altogether. This,
however, means that the simplicity gained by transform-
ing the present coexistence equations to the form given in
Eqs. (3.3) will be lost and the system of three simultane-
ous coexistence equations has to be solved numerically.
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