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Inelastic (1+ = 0+) electromagnetic form factor of Li from three-body models
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Within the context of three-body (alpha particle plus two nucleons) models, and by assuming that
the ground state of He (0+) and the lowest 0+ excited state of Li are members of the same isospin
multiplet, the Ml transition form factor of Li for the inelastic electron scattering from the ground
state (J T=1 0) to the co=3.56-MeV excited state (J"T=0+1) is calculated. From the inelastic
form factor evaluated at ~q~ =co, the radiative width for the deexcitation of the 3.56-MeV 0+ state of
Li is given. It is suggested that the calculations of this work serve as a starting point for future in-

vestigations where refinements are made to the three-body models and more details of the elec-
tromagnetic interaction, e.g., meson exchange currents, are taken into account.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) on the
elastic electromagnetic form factors of Li within the
context of three-body models, we mentioned that at low-
excitation energies the 3 =6 nuclei can be satisfactorily
thought of as being made up of an alpha particle and two
nucleons. We then used the ground-state wave function
of Li derived by Lehman, Rai, and Ghovanlou (LRG)
to calculate the elastic electromagnetic form factors. The
calculation of the inelastic transition form factor of the
Li nucleus from the ground state to the 0+ (3.56 MeV)

excited state complements our work on the elastic elec-
tron process. By assuming that the ground state of He
(0+) and the 3.56 MeV excited state of Li(0+ ) are
members of the same isospin multiplet, we can use the
He ground-state wave function given by Ghovanlou and

Lehman (GL) as the final-state wave function of the in-
elastic process. This approach has been successful in pre-
diction of the semileptonic P decay of He. Our goals in
undertaking such a calculation are similar to those in I:
(1) to explain the physics behind the observed diffraction
minimum in the inelastic form factor, and in particular
assess the role of the underlying two-body eN and NN in-
teractions an the inelastic form factor; (2) to establish a
foundation for further, more sophisticated, but equally
consistent, nonrelativistic calculations.

We shall first briefly review the existing literature on
the subject. Then, in Sec. II, the derivation of the
relevant equations is presented. Our results are given in
Sec. III and discussion of the results follows in Sec. IV.
The paper closes in Sec. V with our conclusions.

Besides calculation of the elastic form factors of Li
(see I for more details), Krasnopol'ski et al also have.
used their variational approach as applied to three-body
models for the calculation of the inelastic form factor,
and included the following three configurations for
the excited-state wave function: tk, =l=L=O, S=OI,
IA, =l=L=1, S=1I, and Ii, =i=2, L =0, S=OI, where
A, and l refer to the angular momenta of the two-nucleon
system and the cx particle relative to the center of mass of
the two-nucleon system, respectively. I. is the total orbit-

al angular momentum, and S is the total spin. With this
wave function for the Li 0+ (3.56 MeV) state and the
same ground-state wave function used in their elastic
form factor work, the authors of Ref. 5 find that the ex-
perimental data for the inelastic form factor are ex-
plained rather well up to the first minimum, but for
higher values of q the data are underestimated by the
theory. Some of this underestimation may be attributed
to the meson-exchange currents which are brieAy dis-
cussed below. However, the magnitude of mesonic e6'ects
is not known, and it is not at all clear whether or not they
will compensate for the underestimation.

Having measured the (1+~0+ ) transition form factor,
Bergstrom tried to reproduce the experimental values by
using phenomenological cluster models. Both H- He
and a-d cluster models predict a value of 8.30 eV for the
radiative width for the deexcitation of the 0+ state which
is in good agreement with the experimental value
(l,„v„=8.16+0.19 eV). The inelastic form factor is
treated as a pure spin-Aip transition even though, in gen-
eral, convection-current terms are present. The oscillator
parameters of the wave function were taken to be the
same for the ground state and the excited state. The H-
He model reproduces the first minimum near the expect-

ed position, but overestimates the form factor in the first
maximum region. The a-d model, on the other hand,
predicts the minimum at a smaller q value and no varia-
tion of parameters consistent with the rms charge radius
moves it to the right place. If the radius constraint is re-
moved, agreement may be achieved for smaller values of
the rms charge radius, and the form factor, although in
agreement with the H- He model up to the second max-
imum, overestimates it by a factor of 2 in that region.
Both the H- He and a-d cluster models overestimate the
form factor near the peak of the first maximum. As not-
ed by Bergstrom, this seems to be inherent in all the oscil-
latorlike wave functions.

II. DERIVATION OF EQUATIONS

The transverse transition form factor is experimentally
extracted from the cross section for inelastic electron
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scattering from Li. In order to express the cross section
in a general form and to see how the transverse form fac-
tor is defined from the nuclear current, we begin with the
relativistic expression for the transition current of the in-
elastic process. Assuming that the nucleus is a "spin-1"
object which changes its spin value in the inelastic
scattering process to zero spin, the nature of the current
is limited further by imposing Hermiticity, current con-
servation, parity, and time-reversal invariance. These're-
quirements reduce the number of independent transition
form factors to only one:

Jg =[Ze/(V+26;2A'f)]F, (q )e"x q p Sf',

where 6', and 6'f are the initial and final energies of the
nucleus, V is the normalization volume, and E'p pp is the
completely antisymmetric tensor of rank 4. The p and

q are given in terms of the initial (p/') and final (pf")
foui-momenta of the nucleus by (p, +pf ) and (pf —p; ),
respectively. S; designates the polarization vector of a
freely moving particle of "spin 1."

Taking the target nucleus to be unpolarized, we can
use

polarization

of the

nucleus

2 2

~f";~f" =, '
lFi(q,') l'I qg"p—' pq "q—'+(p~q~)(p "q "+p'q") [(p q—~)' p'q'—]g

i f
(2)

where q:—q q~. The usual form for the inelastic cross
section in the laboratory frame assuming one-photon ex-
change is then given by

der Z a cos (0/2)
4E, sin (0/2) 2E,1+ sin (0/2)

2

X lFT(q')l —,+tan (0/2)
2q

(3)

where q:—q q. In Eq. (3), 0 is the angle between the in-
cident and outgoing momenta, a is th fine-structure con-
stant, E, is the incident electron energy, and I is the Li
mass. FT can then be related to F] by

FT(q )=&2/32 q~F, (q ) . (4)

( He(0+ )
~ ei J

~
Li( 1+ ) ),

In any other frame, the cross section will have a longitu-
dinal form factor piece as well as a transverse one. How-
ever, in that case the two form factors are not indepen-
dent.

The derivation of the inelastic form factor within the
nonrelativistic framework of the three-body model begins
by noting that only the transverse part of the constituent
current enters in the transition operator. (The arguments
are exactly the same as the ones given for the elastic mag-
netic form factor of Li in Ref. 1.) Therefore, one needs
to calculate the matrix element:

where

e&J=i g e ' eF~h(q )

j=1 J

J 2

+63~pjqk o i . (5)
mag(q )

[~l
2M

Here, 53~ =(1—53, ), F,h(q ) and F~, (q ) refer to the
charge and magnetic form factors and M is the mass of
the jth particle. The He and Li wave functions are
those of GL and LRG that have been derived on the
basis of three-body models of the A =6 system. ' In the
absence of any physical quantity by which the transverse
inelastic form factor can be normalized at ~q~ =0, one
may set the scale of the form factor by comparing the
cross section derived from the nonrelativistic (model-
dependent) nuclear current, in the impulse approxima-
tion, with the general expression in Eq. (3). With this in
mind, the exponential factor in the operator of Eq. (5) is
expanded (see I) to give the multipole contributions to the
inelastic form factor.

An important distinction between this case and the
elastic magnetic form factor is that here the final-state
wave function has total angular momentum J=O and is
antisymmetric with respect to the exchange of the two
nucleons, excluding the isospin part.

The above considerations plus that of parity and time-
reversal invariance eliminate all but a few terms, which
do not vanish by any other symmetry arguments. The
form factor in momentum space is then given by

&2/3
FT q

iq
2M&3 q&4~ [F,„(q ) F" (q )][4' )(p, k—)~[Y['llq) XP[, ' ] '

~%'
' (p+2q/3, k —q/2)]

+[@„FJ'„(q') p„F",s (q )]-
4vr

X[+[ol(p k)~[ Y[ol&&~[&l]l&l [ Y[&l(q )X o[&~ ] ll+[ (p+2q/3, k —q/2)]
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where we note that the argument of FT in the nonrela-
tivistic framework is q rather than q . The radiative
width of the (0+~1+) transition can be found from the
transition amplitude to be

r, , =54a~IFT(Iql =~)I',

where co=3.562 MeV is the excitation energy of the 0+
state in Li and a is the fine-structure constant. Detailed
expressions for the wave functions can be found in Refs. 2
and 3.

In the present calculation the contributions of the
meson-exchange currents are ignored. However, a
power-counting argument shows that the lowest-order
meson-exchange-current effects can be included in a non-
relativistic calculation such as this one in a consistent
fashion. The lowest-order isovector meson-exchange
current contribution to the 1+—+0+ inelastic transition
form factor is of O(1/M). ' Given the fact that the elec-
tromagnetic current operator used in this calculation is of
O(1/M) and the nonrelativistic wave functions used are
of O(1), it is easy to see that the lowest-order mesonic
effects can be consistently included in a nonrelativistic
calculation of the transition form factor. Although a cal-
culation of the mesonic effects will not be considered
here, it is hoped that the present calculation will set the
groundwork for later investigation of the magnitude of
the mesonic effects for the 1+—+0+ inelastic form factor
of Li within the framework of the three-body model.

III. RESULTS

For the benefit of the reader, we summarize the five po-
tential models used in our calculation before the actual
presentation of the results (for a full account see Refs. 2
and 3). In the "simple model, " the tensor force is not in-
cluded in the NN interaction and only the P3/2 corn-

ponent of the aN interaction is present. The P»2, P3/p,
and S]/2 components of the aN interaction are present in
the remaining four models. This enables us to see the
effects of the inclusion of the S&/z component of the o,N
interaction clearly. The P, &2 component of the aX in-

teraction is weak enough that any major observable
difference between the simple model and the remaining
four models is due to the presence of the S&/z part of the
interaction in those models. Furthermore, the remaining
models are labeled "full repulsive" or "projected bound
state" according to the representation of the S&/z aN in-

teraction by a fully repulsive potential or an attractive

potential (from which a Pauli "forbidden" bound state
has been removed by a projection method), ' respectively.
In order to assess the effect of the tensor force in the XN
interaction, each of the above Inodels is employed with
(0%) or (4%) tensor component.

The general procedures for the algebra and numerical
computation of the inelastic form factor are similar to the
elastic form factors and are explained in Ref. 1. Here we
simply state the results.

In this calculation of the inelastic form factor, we drop
the convection part of the current operator because of its
complexity relative to the expected smallness of its con-
tribution. Here, as in the elastic magnetic form factor
(see I), the contribution of

[tT[&)X +[2](q )][1)

is found to be negligible, leaving only the term with

[ [I)~ @[01(g)][I)

In Table I, the values for the radiative width in the
0+~1+ transition in Li are presented for different mod-
els. As mentioned in Sec. II [see Eq. (7)], the radiative
width is related to the value of the form factor at

~ q~
= co

where co = 3.562 Me V or
~ q ~

=0.0181 fm
Plots of the inelastic form factor FT(q ) for difFerent

models and for diff'erent fits (np or nn) (the labels "np best
fit "or "nn best fit" refer to the type of XX interaction) in
the He wave function are presented in Figs. 1 —3. All
models with the exception of the simple model show
diffraction minima between q =2.0 and 2.5 fm '. The
agreement in the second lobe with experimental data is
somewhat better in comparison with the magnetic elastic
form factor.

Experimentally the 1+—+0+ inelastic form factor has
been measured up to the value of q =3.0 fm ' by
Bergstrom et a/. It exhibits a minimum at about
q =1.20—1.50 fm and two maxima on either side of it
at about q=0. 6 and 1.9 fm '. For the analysis of this
work Bergstrom et al. 's results will be used (see Fig. 1).
The parametrizations of the isovector nucleon form fac-
tors that appear in Eq. (6) were taken from the work of
Hohler et al."

IV. DISCUSSIGN

The plots presented in Figs. 1-3 reAect the following
general features of the different models with respect to
FT(q ). (1) All models except for the simple model pre-
dict a diffraction minimum at q values approximately

TABLE I. Radiative width for de-excitation of the 0 state 1 (0 ~l+ ) =54aco~Fr( ~q~ =co)~ with
co =3.562 MeV and a = 1/137.04. Experimental result (Ref. 7): I (expt) =8. 16+0.19 eV.

Model

Simple model
Repulsive 4% (np best fit)
Projected bound state 0% (np best fit)
Projected bound state 4% (nn best fit)
Projected bound state 4% (np best fit)

r, , (eV)

6.69
6.65
6.94
6.71
6.79
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FIG. 1. The inelastic form factor (1+—+0+) of Li for the
projected model [{4%)for Li, np best fit for He], and the ex-
perimental data of Ref. 6.

FIG. 3. The inelastic form factor (1+—+0+) of Li. Compar-
ison of the projected bound state (4%), and the simple models
(the He wave function with the np best fit).
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FIG. 2. The inelastic form factor (1+—+0+) of Li. Compar-
ison of the projected bound state (4%%uo), projected bound state
(0%), and the full repulsive (4%) models (the He wave function
with the np best Qt).

0.8 —1 fm ' larger than the experiment. (2) The absence
of the tensor force leads to slightly larger values of
~FT(q ) ~

in the region of the secondary maximum (Fig.
2). (3) The projected bound state and the full repulsive
models, although basically indistinguishable in terms of
their prediction of the shape of ~Fz (q ) ~, are slightly dis-
tinguishable in terms of their prediction of the magnitude
of ~FT(q )~ in the region of the secondary maximum
(Fig. 2). (4) The diffraction minimum originates from the
Pauli repulsion between the alpha particle and each nu-
cleon as made manifest through the S&&2 aN interaction.
The importance of the S,&2 interaction in the aN system
for the production of the diFraction minimum is seen in
Fig. 3, where it is observed that the simple model (the
only model in which the S&&2 component of the aN in-
teraction is not included) does not render a diffraction
minimum. Finally, though not shown in the figures, it is
found that FT(q ) is not sensitive to whether the 'So NN
interaction originates from the nn or np fits.

The radiative width values (Table I) for the deexcita-
tion of the 0 (3.56 MeV) state of Li lie below the exper-
imental values by approximately 15-19%. This shows
that even at low q values (where Fr is evaluated for the
calculation of I ) the agreement with experiment is not
satisfactory.

What are the possible sources of discrepancies? As
mentioned in Sec. II, in the calculation of the inelastic
form factor of I.i one can in a consistent manner include
the lowest-order meson-exchange current operator con-
tributions. It is hoped that the present calculation would
serve as a first step toward future calculations of the
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meson-exchange-current contributions. In particular, it
would be interesting to see if the radiative width
discrepancy is mainly due to the rnesonic contributions or
the convection-current contributions. Calculations of
Dubach et al. show that the meson-exchange effects
change the form-factor values at the tail of the second
maximum and are only very important in the region of
the second and the third maxima. ' Based on their esti-
mate, the values of I would not change significantly upon
the inclusion of the meson-exchange-current operators.
On the other hand, the phenomenological shell-model
wave functions used by Dubach et al. are limited in that
they assume the valence nucleons reside only in the p
shell for the ground state and 3.562 MeV excited state of
Li, whereas the three-body model wave functions con-

tain all possible j-j coupling components for the valence
nucleons. ' Therefore, one might expect a greater contri-
bution from meson-exchange currents in the three-body
framework than in the model of Dubach et al. Of
course, it may be that both convection-current and
meson-exchange-current contributions must be included
before a better agreement with experiment is reached
even for low q values of the inelastic form factor.

How do the present results compare to those of
Krasnopol'ski et al.7 In the 0—1 fm ' region of q, the
results are comparable. However, beyond 1 fm ', the
curve of Ref. 5 falls more rapidly to produce a diffraction
minimum in FT(q) at roughly the value of q indicated by
the data, i.e., q —1.3—1.4 fm '. Moreover, their value of
FT(q) at the secondary maximum is only an order of
magnitude below the data rather than the 2 orders of
magnitude in the present calculation. At this stage it is
difficult to pinpoint the source of the differences. The au-
thors of Ref. 5 do not give the details of the electromag-
netic operator used. Also, unlike the present work,
where the J"T=O+1 excited state is a particle-stable
bound state as in nature, the 0+1 excited state is unbound
in the work of Ref. 5 and is approximated as a bound
state (binding energy +1.29 MeV) in their variational
framework. Though the authors of Ref. 5 limit the
angular-momentum configurations in their wave func-
tions, which we do not, they do have a better representa-
tion of the two-nucleon interaction through the Reid soft
core potential than our rank-one separable forms. This
latter aspect might explain some of the difference at the
higher values of q. In fact, improvement of our models
by use of higher-rank separable interactions to better
represent the XN interaction, especially the short-range
repulsion, should be the next step before consideration of
the long-range one-pion-exchange-type meson-exchange

currents. Of course, both the approach of Ref. 5 and the
present one treat the alpha particle as elementary. After
these aspects are carefully considered, if discrepancies be-
tween theory and experiment still persist, the role of the
alpha particle's structure must be investigated.

V. CONCLUSION

Three-body wave functions of He and Li have been
used to calculate the 1+~0+ (3.56 MeV) inelastic form
factor of Li. Once the underlying two-body interactions
are parametrized, the calculations are performed without
further parametrization at the three-body level. The fol-
lowing insights are extracted from the results of our cal-
culation: (1) The S&zz component of the aN interaction is
responsible for the production of the observed diffraction
minimum. (2) The form-factor values are only slightly
sensitive to the particular representation of the S&&2 in-

teraction in the aN subsystem. (3) The tensor force in the
XX interaction has a definite effect on the form-factor
values, especially in the region of the secondary max-
imum.

With these important insights with regard to the phys-
ics of the problem, we have removed some ambiguities
about our understanding of the 1+~0+ inelastic process
in Li. We have also given a framework for further ex-
tensions of the present calculation so that the meson-
exchange current contributions can be incorporated in an
unambiguous and consistent fashion. Inclusion of the
convection-current operator would push our quantitative
understanding still further. These extensions, in addition
to improvement of the underlying two-body interactions
and inclusion of the Coulomb interaction, are the limits
of our capabilities for the present, relatively sophisticat-
ed, nonrelativistic calculations.
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