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Intrinsic basis function in the Dyson boson mapping
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This Brief Report deals with the solution of the shell-model Hamiltonian in the boson representa-
tion. In the present approach, the fermion Hamiltonian is exactly mapped to the boson space using
the Dyson boson mapping. The problem of mapping the basis states is resolved by employing the
intrinsic boson basis. The method has been applied to a model Hamiltonian consisting of a mono-
pole pairing and a deformation force. It is observed that only s and d bosons are dominant in the in-
trinsic wave function for the model case studied. This is synonymous to the interacting boson mod-
el approach.

Recently there has been extensive use' of the intrin-
sic states in the interacting boson model (IBM). The
essential reason for this is to reduce the dimensionality of
the problem. This dimensionality problem becomes quite
severe on the inclusion of the higher angular momentum
(J) bosons in the IBM, for example, on including the
J =4 (g) bosons in the IBM usually referred to as sdg
IBM. But the problem of fitting the large number of pa-
rameters still persists. For example, the sdg IBM Hamil-
tonian contains 35 parameters. These parameters are ob-
tained in a least-squares fit to the observed data. In this
fitting a large number of di6'erent parameter sets are ob-
tained which give almost identical results. Sometimes it
becomes quite diScult to fix upon a parameter set.

The parameters of a boson Hamiltonian can be fixed by
making use of a suitable mapping procedure. ' The
mapping transforms the ferrnion operators in the shell-
model configuration space to a physical subspace of the
bosons. In this way the parameters of the boson Hamil-
tonian are fixed from the fermion space. These studies
are also essential in establishing a microscopic basis of
the IBM or sdg IBM. Various mappings have been dis-
cussed in the literature. In this work we employ the
Dyson boson mapping (DBM). This mapping has a finite

character and therefore any fermion operator written in
terms of bifermion operators will have a finite number of
terms in the boson representation. For the evaluation of
the various required matrix elements one requires a set of
basis vectors. In principle, the basis vectors can also be
obtained through the mapping. But this approach has
been found to be quite cumbersome, and probably in
some cases impossible. In this Brief Report, we try to ex-
amine the problem by making use of the intrinsic basis
function. This intrinsic basis function approach has been
applied to a model Hamiltonian with monopole pairing
interaction. ' But with a monopole pairing Hamiltonian
the admixture between states is severely restricted. In
fact, in the case of a two-level model with monopole in-
teraction it has been shown that the unphysical (spuri-
ous) subspace is completely decoupled from the physical
subspace. Therefore, calculations with the intrinsic basis
in this two-level model case lead to exact results. In this
work we study a more realistic Hamiltonian which, in
principle, admits mixing between dift'erent states. We
study an example of a single j shell with the model Ham-
iltonian consisting of a monopole pairing and a deforma-
tion force,
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(2)

CJ =( —1)j C

and the square brackets []denotes a Clebsch-Gordan coefficient. The operators C. (C' ) in Eqs. (1) and (2) are the
single-particle fermion creation (annihilation) operators.

For making the transformation to the boson space we employ the DBM for a single j shell. This transformation is
given by
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where bJM (bJ M ) are the boson creation (annihilation) operators. In Eqs. (4a) —(4c) and hereafter the quantum number

j in the operators A and b is disregarded. It is to be mentioned that the mapping [Eqs. (4a) —(4c)] is nonunitary. This
nonunitary problem does not enter in this work, since we are mainly concerned here with the calculation of the ground
states. Moreover, this problem of nonunitarity in the DBM has already been resolved. ' Using the mapping, Eqs.
(4a) —(4c) the model Hamiltonian, Eq. (1) in the boson representation is
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where

J=v'2J+ I,
s =boo .

For the calculation of the energy, we make use of the in-
trinsic function defined through

where

bo=+~Job o
J

TABLE I. Ground-state energies obtained in this work for the various values of the deformation strength a, compared with the ex-
act results {Ref. 17).

No. of
pairs Exact

—6.0
—10.0
—12.0

$6

v=0.0
—6.0

—10.0
—12.0

$6g

—6.0
—10.0
—12.0

Exact

—6.12
—10.20
—12.23

sd

x=0.5
—6.12

—10.21
—12.28

sdg

—6.12
—10.21
—12.28

Exact

—6.44
—10.75
—12.9

K= 1.0
—6.42

—10.76
—13.0

sdg

—6.44
—10.78
—13.06

—6.90
—11.58
—13.96

~=1.5
—6.84

—11.57
—14.19

—6.90
—11.63
—14.25

—7.47
—12.62
—15.3

a =2.0
—7.33

—12.53
—15.60

—7.46
—12-.7
—15.76

—7.99
—13.6
—16.57

+=2.4
—7.76

—13.38
—16.86

—7.85
—13.6
—17.16
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TABLE II. Parameters ao and az [appearing in Eq. (11)]and A, (Lagrangian multiplier).

No. of
pairs

1.0
1.0
1.0

CX2

K=O. O

0.0
0.0
0.0

—6.0
—8.0
—6.0

CXp

0.99
0.99
0.99

Q2

v=0. 5
—0.132
—0.12
—0.11

—6.12
—8.18
—6.22

CXp

0.97
0.98
0.98

v= 1.0
—0.23
—0.22
—0.20

—6.42
—8.70
—6.85

0.95
0.96
0.96

v=1.5
—0.30
—0.29
—0.28

—6.84
—9.45
—7.87

0.94
0.93
0.94

&=2.0
—0.35
—0.346
—0.34

—7.34
—10.39
—9.19

0.9
0.92
0.93

v=2. 4
—0.37
—0.38
—0.38

—9.36
—11.24
—10.42

and p denotes the number of pairs. The weight factors
a JQ s in Eq. ( 1 1 ) depend on the dynamics of the system.
These are obtained through the variational procedure

with the constraint

g ajo= 1

J
(13)

(c iH'ic &

(mfa&
(12)

which is incorporated in Eq. (12) through the Lagrangian
~ultiplie~. In Eq. (12), the energy matrix is given by
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(@~H ~4&= — jp ao+—2(p —1) g ( —1) '

0 0 0 'aoaJ az aJ
1 2 3

8 J J
—paj $(—1)'
5
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1 02
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. 2 2
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Explicit numerical calculations have been carried out
for a single j shell with j = —", . In this case the possible
values of J in Eq. (11) are 0, 2, . . . , 10. Only even values
of J are permitted, due to the antisymmetry requirement.
Two sets of calculations have been performed. In one
case we allowed only J =0 and 2 in Eq. (11), which is
analogous to the IBM, and in the other case we included
J=4 bosons too. The results of this work are compared
with the exact results' denoted by "Exact" in Table I.
The calculations have been performed for various values
of the deformation strength, ~. For ~=0, i.e., for the case
of pure pairing, the results of these calculations are exact.
This is due to the fact that for only J=O the intrinsic
state is exactly the same as the physical state (the state
obtained through mapping). As is evident from Table I,
for the deformation values greater than zero, our results
are quite close to the exact results. It turns out that only
J =0 and 2 bosons are important in our model study.
This is clearly seen from the comparison of the energies
with J =0 and 2 bosons (sd) with those where J =4 bo-
sons were also included (sdg). It is to be pointed out that
in some cases our results overestimate the ground-state
correlations. This can be mainly attributed to the over-
completeness of the intrinsic basis. ' This overestimation

also appears in the random-phase approximation. The
overcompleteness is related to the fact that the intrinsic
basis contains unphysical (spurious) subspace in addition
to the physical subspace. The inclusion of g bosons wor-
sens the results in some cases, especially in the middle of
the shell. This is due to the fact that the addition of more
basis such as g bosons admits more spurious components.
But, as is evident from Table I, this problem does not
seem to be very serious.

The obtained state parameters ao and a2 are listed in
Table II. .As expected, the parameter a2 monotonically
increases with the deformation strength ~. The parame-
ters for a fixed K are almost the same for all the particle
numbers. This is due to the fact that in our model Ham-
iltonian we have a quadrupole mean field instead of the
quadrupole-quadrupole interaction. In the case of the
quadrupole-quadrupole interaction, the parameter o.2
changes with the particle number. '

In summary, we note that this approach is an alterna-
tive way of performing the nuclear structure calculations
in the boson representation. The parameters of the boson
Hamiltonian are fixed from the fermion space. In this
formalism the higher angular momentum bosons can be
easily included in the calculations. However, in the mod-
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el case studied, only J =0 and 2 bosons seem to be impor-
tant in the wave function. This is synonymous to the
IBM approach.

The method of intrinsic basis functions will be extend-
ed to the variational estimate of the ground state in the

multi-j-shell calculations with more realistic forces.

The author wishes to acknowledge Dr. M. A. Nagara-
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