
PHYSICAL REVIE%' C VOLUME 39, NUMBER 4 APRIL 1989

Isovector giant dipole resonance in hot rotating light nuclei in the calcium region
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The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are stud-
ied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual
interaction. The influence of temperature on the isovector giant dipole resonance is assumed to
occur through the change of deformation of the average field only. Calculations are performed for
the three nuclei ' Ca and Ti which have spherical, oblate, and prolate ground states, respective-

ly, to see how their shape transitions at higher excited states affect the isovector giant resonance fre-
quencies built on them. It is seen that, while the width fluctuations present at T=O vanish at
T=0.5 MeV in ' Ca, they persist up to T=1.5 MeV in the case of Ti. This behavior brings out
the role of temperature on shell effects which in turn affects the isovector giant dipole resonance
widths.

I. INTRODUCTION

The isovector giant dipole resonance (IVGDR) is an
out-of-phase small-amplitude co11ective oscillation of pro-
tons against neutrons with a dipole spatial nature. The
study of such a resonance has been and still is a major to-
pic of research in nuclear physics. But, until recently,
only the giant dipole resonances built on the ground state
of a nucleus were investigated. According to the hy-
pothesis by Morinaga' and Brink, not only the ground
state but also the excited states should have giant dipole
resonances built on them. On the experimental side,
Newton et al. first observed giant dipole resonances built
on excited states in heavier nuclei while in light nuclei
they have been studied in detail for the A =28 system by
Dowell et al. The study of giant dipole resonances in
hot rotating systems is interesting because it gives us two
additional degrees of freedom, namely, the temperature
and rotation which can provide us with new information
on the nuclear structure.

On the theoretical side, there are two types of calcula-
tions: (i) The harmonic oscillator model introduced by
Brink for the IVGDR built on the ground state which
has been extended to the rotating case by several au-
thors; (ii) linear-response theory used by Egido and
Ring extended to finite temperatures. ' In our previous
investigation, we have used the first method to study the
e8'ect of rotation on IVGDR of certain calcium isotopes
wherein the bulk of the angular momentum is of an
aligned nature; the shape and deformation of the above
nuclei at high spin were determined by the Mottelson-
Nilsson method for rotating light nuclei, and the allowed
angular velocities for these deformations were obtained
by the Fermi liquid drop model (FLDM).

In the present paper, we have used the Mottelson-
Nilsson method for hot rotating light nuclei" to obtain
the shape and deformation of ' Ca and Ti as a func-
tion of temperature and spin. This method is an exten-

sion of the earlier Mottelson-Nilsson method for cold ro-
tating light nuclei' and incorporates the efFect of temper-
ature also. The calculation of free energy and the total
energy in this method is based on the Mottelson-Nilsson
method' which has some marked advantages compared
to the Strutinsky method for cold nuclei, ' especially for
light nuclei. In this method, unlike the Strutinksy
method for hot rotating nuclei, '" there is no need to re-
normalize the single-particle level densities at finite tem-
perature.

The first step of our study is to determine the equilibri-
um deformations of nuclei at different spins and tempera-
tures using the Mottelson-Ni1sson method for hot rotat-
ing light nuclei. " The main advantage of this method is
that the changes of surface difFuseness with spin are au-
tomatica11y taken into account in this method. For the
study of the IVGDR which is mainly a surface effect, '

this method is thus more suitable. The next step of our
calculations is to find out the allowed angular velocities
for these deformations. This was done in our previous
work using the Fermi liquid drop model. ' But this
model has some restrictions when one wants to consider
prolate shapes and hence we have used the rotating liquid
drop model (RLDM) in this study. It is known' that the
angular velocities determined by RLDM are the same as
those obtained by the FLDM. The disadvantage which
can be pointed out in the present method is the nonin-
clusion of the I.s and I terms in the IVGDR frequency
calculations. But this, we hope may not alter the results
much for the case of 1ight nuclei considered here, since
the above terms may be very small or negligible for
them. "

In Sec. II we give, for the sake of completeness, a con-
cise account of the Mottelson-Nilsson method for hot ro-
tating light nuclei" for determining the shapes and defor-
mations as a function of temperature and rotation. Sec-
tion III details the method of obtaining the IVGDR fre-
quencies as a function of temperature and rotation. Fi-
nally the results are presented and discussed in Sec. IV.
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II. DETERMINATION OF SHAPES OF HOT
ROTATING LIGHT NUCLEI

I =I(e,y, co, )=g m;; m, =(j, ), , (2)

where the sum is taken over the occupied orbitals. The
single-particle energies in the fixed frame are calculated
as expectation values of the static Hamiltonian h, and
they are given by

In a rotating nucleus without internal excitation, the
nucleons move in a cranked Nilsson potential with defor-
mation described by c. and y. The cranking is performed
around one of the principal axes, the Z axis, and the
cranking frequency is given by co, . %'e diagonalize the
Hamiltonian in the rotating system

h '=h —co,j, (1)

in cylindrical representation up to %=6 shells. This is in
contrast to the Strutinsky method, wherein the diagonali-
zation up to %=11 shells is required. Thus there is an
enormous reduction in computation time in the present
method. Our results are restricted to smaller deforma-
tion with c &0.6 and spin I & 30. The eigenvalues of the
diagonalization are the energies in the rotating system,

e; . The total nuclear spin is identified with the com-
ponent along the rotation axis

Z =tr[exp[ —(h ' A—,N)/T]] .

Here E, S, and T denote the potential energy, the entro-

py, and the temperature, respectively. h ' is given by Eq.
(1) and A, has a meaning of the chemical potential, intro-
duced to conserve the particle number in the average.
The independent particle energy E and the entropy S at
high spins are defined as

E= pen;,
i=1

S= —g [n;inn;+(1 n,—)ln(. 1 n, )—],
i=i

where the single-particle energies e; are given by Eq. (3).
The occupation probability n; of a single-particle state i is
given by

n, =1/[ 1+. exp[(e; ' —A, )/T]]
It is to be noted that unlike the Strutinsky method, ' in
this method there is no need to renormalize the single-
particle level density at finite temperature.

III. EFFECT OF TEMPERATURE AND ROTATION
ON ISOVECTOR GIANT DIPOLE RESONANCE

FREQUENCIES

e;=e; '+Ac), m; . (3)

The total energy is obtained as

E =E(c,y, co, ) = g .e, +E, , (4)

F( (P; ],T I)=E( [P;],I) TS( [P;],I), —

calculated for the grand partition function

(5)

where E, is the nuclear Coulomb energy which depends
on the deformation. Since the eQ'ect of the pairing corre-
lation is negligible in light nuclei, the latter can be taken
to rotate with the rigid body moment of inertia. But this
is true only if one uses the cranked harmonic oscillator or
the Wood-Saxon potential. This is generally not possible
in the case of the Nilsson potential because of the strange
property due to the I term. But the latter term is very
small for the light nuclei considered in the present inves-
tigation. The renorrnalization of the rotational behavior
is hence found to be unnecessary here. Furthermore, we
do not renormalize the spin or the total energy and the
latter will not lead to any problem since we are dealing
with only energy difFerences but not their absolute values.
In the present calculations where the energy dependence
on spin is taken directly from the sum of single-particle
energies, if the difFuseness changes with spin, this should
be automatically accounted for. One can construct an
energy surface for fixed I from Eqs. (2) and (4), and the
minima in these surfaces then determine the shape and
deformation of the given nuclei.

For systems at the finite temperature, the shape at high
spins is determined by the lowest minimum of the free en-
ergy,

To study the properties of the IVGDR's in rapidly ro-
tating light nuclei, one can use, for the average field of
the nucleus, ao oscillator potential with deformation pa-
rameters consistent with the angular momentum of the
system. It is therefore essential to first track the
rotation-induced changes of nuclear shapes. This can be
done within the framework of either the rotating liquid
drop model' or the Fermi liquid drop model. But
RLDM is preferred to FLDM since the latter has some
restrictions when one wants to consider prolate shapes.
Further, it is known that the angular velocities deter-
rnined by RLDM are the same as those obtained by
FLDM. The magnitude of the angular velocity of nu-
clear rotation 0 can be simply estimated by considering
the nuclear rotation as that of a rigid body. As is well
known, this assumption seems to provide a reasonable
picture of nuclear rotation. Thus we have the relation'

&r(r+1) r
(10)

l'lg llg

which relates the angular velocity 0, angular momentum
I, and the nuclear moment of inertia J'„.s. Here J„g
denotes a rigid-body moment of inertia for a nucleus of a
given shape which may itself depend on angular mornen-
turn I. Looking for the lowest rotational states, one
should employ the largest possible moment of inertia,

g 5/3
2/fi = [1 &5/4~ s cos(y 2n/3)] —Me—V ' . . (l l)

72

In order to obtain the xVGDR energies of the rotating
nucleus, the average field of the nucleus has been taken to
be an oscillator potential with deformation parameters
consistent with the angular momentum of the system.
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The rotation-induced changes of the shape of nuclei
can be simulated by the average Hamiltonian of a triaxial
harmonic oscillator

where r3(v) is the third projection of the Pauli isospin
matrix

A

H,„(Q)= g h (Q),
v=1

where

Pt2
h(Q) —+ + (~~x~+c02y~+c02Z2) Qlx y z z

(12)

(13)

1 0
0 —1

and g is a parameter that characterizes the isovector
component of the neutron or proton average field

and

l.,= g 1,(v)
(p) & =x,y, z

co;x; (v) . (15)

PB CO)

H;„,=g
i =x,y, z v=1

(14)

is the operator of rotation about the z axis. To generate
the isovector dipole excitation mode, we add to the Ham-
iltonian (12) the efFective dipole interaction

The frequencies of the giant dipole resonance in a ro-
tating nucleus can be obtained by diagonalizing analyti-
cally the Harniltonian (12) with the efFective interaction
(14) within the framework of the standard random-
phase-approximation procedure.

Transforming to the laboratory system, we get the fre-
quencies of the giant dipole resonance as

cubi=(1+g)'~ co, ,

COy +Ct)x
A@2+ Q = ( 1+rI ) +Q +—,

' [(1+g ) (co~ —co„) + 8Q (1+g )(co~ +co„)]'
1/2

(16)

COy +@Ox
c03+Q= (1+ri) +Q —

—,'[(1+g) (coy c0 ) +8—Q (1+rj)(a)2+co2 )]'~~

' 1/2

Thus we obtain five frequencies, co1, $2 —0, &2+0,
c03 0, and co3 +0, for the collectively rotating triaxial
nuclei. For prolate nuclei (co„=co~&co,) rotating about
an axis perpendicular to its symmetry axis, all the above
five frequencies will exist. But for oblate nuclei
(co„=co &co, ) rotating about its symmetry axis, as first
shown by Hilton in Ref. 7, only two frequencies, namely,
co, and Q2 —0=$3+0 will exist and thus all effects due
to rotation vanish and only those purely due to deforma-
tion will be left. For the spherical nuclei (co„=co =co, ),
which comes under the latter category, one gets only one
frequency, namely co, =co2 0 c03+Q.

Since the influence of temperature effects on IVGDR is
assumed to occur through the change of deformation of
the average field caused by temperature, the above ex-

pressions [Eq. (16)] themselves are used for the study of
hot rotating nuclei also. The temperature decreasing the
shell effects has an appreciable influence on the evolution
of the shape of the fast rotating nuclei. Consequently, the
inhuence of the temperature effects on the IVGDR occur
through the change of the deformation--parameters of the
average field.

IV. RESUI.TS AND DISCUSSION

The aim of this work is to study the combined effects of
rotation and temperature on the properties of IVGDR in
the light nuclei ' Ca and Ti. We have considered the
effect of rotation alone on the IVGDR in certain calcium
isotopes in our earlier paper, and in this work we include

TABLE I. Shape and deformation af Ca with temperature and spin.

0 MeV 0.5 MeV 1.0 MeV 1.5 MeV

0
4
8

12
16
20
24

—180
—180
—180'
—180'
—180'
—180'
—180

0.0
0.0
0.0
0.2
0.1

0.1

0.4

—180
—180
—180'
—180
—180
—180
—180

0.0
0,0
0.1

0.1

0.1

0.4
0.5

—180'
—180
—180
—180'
—180'
—180
—180'

0.0
0.0
0.1

0.1

0.1

0.4
0.5

—180'
—180
—180'
—180
—180
—180
—180'

0.0
0.0
0.1

0.1

0.1

0.3
0.4
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TABLE II. Shape and deformation of Ca with temperature and spin.

0 MeV 0.5 MeV
y C

1.0 MeV 1.5 MeV

0
4
8

12
16
20
24

—180
—180
—180
—180
—180'
—180'
—180'

0.1

0.1

0.2
0.1

0.1

0.3
0.5

—180'
—180'
—180'
—180'
—180'
—180
—180'

0.0
0.0
0.1

0.1

0.1

0.1

0.4

—180
—180
—180
—180'
—180
—180'
—180'

0.0
0.0
0.0
0.1

0.1

0.1

0.4

—180'
—180
—180'
—180'
—180'
—180'
—180'

0.0
0.0
0.0
0.1

0.1

0.2
0.3

the effect of temperature also in the investigation of
IVGDR properties. It has been found' ' that the heat-
ing of a nucleus essentially does not inhuence the charac-
teristics of the IVGDR with or without rotation. How-
ever, the temperature decrease of the shell effects has an
appreciable inhuence on the evolution of the shape of fast
rotating nuclei. ' Consequently, the inhuence of the tem-
perature effects on the IVGDR occurs through the
change of the deformation parameters of the average field
determining the characteristics of the IVGDR. We have
used this fact in our calculations reported here.

In a recent series of experiments at Seattle, statistical
giant dipole resonance decays in a wide range of excited
nuclei from A =24 to 66 have been studied. In these ex-
periments, most of the compound nuclei were formed at
initial excitation energies between 35 and 52 MeV and
spins in the range of 0—25k. These energies correspond
to mean final-state temperatures ranging from —1 MeV
in heavy systems to -2 MeV in the light systems. In or-
der to fix the upper limit of temperature that should be
considered for the above nuclei, we have first determined
the equilibrium deformations of Ti by the Mottelson-
Nilsson model for hot rotating nucleus at different tem-
peratures and compared them with those obtained by the
RLDM. It has been found that Ti, which remains pro-
late with v =0.2 until about a spin of I=12 at T=O, be-
comes spherical between I=O —12 at T=1.5 MeV and
this behavior at T= 1.5 MeV closely coincides with that
predicted by RLDM calculations. Thus it has been con-
cluded that the shell effects persist up to a temperature of
about 1.5 MeV in " Ti and so, in our calculations report-

ed here, we varied the temperature from 0 to 1.5 MeV in
steps of 0.5 MeV.

In Tables I—III we show the shape and deformation of
Ca and "6Ti obtained from the Mottelson-Nilsson

method for hot rotating light nuclei as a function of tem-
perature and spin. These are used as input parameters to
get the rotational velocities by the RLDM. Then the fre-
quencies of the IVGDR as a function of temperature and
rotation are obtained by using Eqs. (16).

We present our results for the case of ' Ca and Ti
in Figs. 1(a)—1(d), 2(a) —2(d), and 3(a)—3(d), respectively.
For spherical shape of a nucleus, there is only one
IVGDR frequency in the intrinsic or the laboratory
frame. But for prolate and oblate shapes, we have two
frequencies in the nonrotating case, the splitting being
caused by static deformation. When such nuclei start ro-
tating, the two frequencies will divide into three in the in-
trinsic frame. These three modes observed in the intrin-
sic system divide, in the laboratory frame, into five fre-
quencies for the prolate case while the transformation to
the laboratory frame just brings the frequencies back to
coincide with their original values at zero rotation for ob-
late system rotating about the symmetry axis. This ex-
pected behavior is clearly brought out in Figs. 1 —3. In

Ca and Ca (see Figs. 1 and 2) the frequency splitting
has only one or two components since they have only
spherical shape or oblate shape rotating about the sym-
metry axis. But this behavior changes in Ti (see Fig. 3).
For this nucleus, the splitting has five, one as well as two
components depending upon the prolate shape rotating
about a perpendicular axis, spherical or oblate shapes ro-

TABLE III. Shape and deformation of Ti with temperature and spin.

0 MeV 0.5 MeV 1.0 MeV 1.5 MeV

0
4
8

12
16
20
24

—120'
—120'
—120'
—120
—180'
—180'
—180'

0.2
0.2
0.2
0.1

0.2
0.1

0.2

—120'
—120
—180'
—120'
—180
—180'
—180'

0.2
0.2
0.2
0.1

0.1

0.1

0.2

—180'
—140
—180'
—180'
—180
—180
—180

0.0
0.0
0.0
0.0
0.1

0.1

0.2

—180
—180
—180'
—180'
—180
—180'
—180'

0.0
0.0
0.0
0.0
0.1

0.2
0.1
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FIG. 1. (a) —(d) Dependence of the isovector giant dipole energy E on the angular momentum I for Ca at difFerent temperatures.
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FIG. 2. {a)-(d) Dependence of the isovector giant dipole energy E on the angular momentum I for Ca at different temperatures.
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FIG. 3. (a) —(d) Dependence of the isovector giant dipo1e energy E on the angu1ar momentum I for Ti at different temperatures.
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tating about the symmetry axis, respectively, at different
spins and temperature. If we consider the effect of texn-

perature alone, we see that the width Auctuations vanish
at T=0.5 MeV itself in the case of ' Ca, but persist up
to T=1.5 MeV in the case of Ti. But the general
broadening of IVGDR widths with excitation is clearly

seen in all the cases considered.
To sum up, in this work we have chosen three nuclei

which are spherical, oblate, and prolate at the ground
state. %'e have studied their shape transitions with tem-
perature aq.d rotation which in turn inAuence the
IVGDR properties.
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