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Calculation of rotational spectra of well-deformed nuclei up to very high spins
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A new three-parameter formula is presented and is used to analyze systematically the rotational
spectra up to very high spins (below band crossing). An overall and excellent agreement between
the calculated and the observed spectra is obtained for all the actinide and the rare-earth deformed
nuclei. In the derivation of this formula from the phenomenological Bohr Hamiltonian, a small axi-
al asymmetry and vibrational effects (including anharmonic vibration) have been taken into account.

I. INTRODUCTION

In recent years, Coulomb excitation experiments with
very heavy-ion beams (e.g., 2®Pb ions) provided abundant
information about the high-spin levels of ground rota-
tional bands (GRB?’s) in actinide nuclei. Because the mo-
ments of inertia of actinide nuclei are about twice those
of the rare-earth nuclei, the two-quasiparticle S bands do
not compete with the GRB until much higher spins.!
Therefore, the yrast levels with even spin and parity in
actinide nuclei may belong to the GRB to higher spins
than those in rare-earth nuclei. Thus, the recent data
provide an ideal opportunity to test the applicability of
various formula for rotational spectra.

Usually, it is believed that the Harris? two-parameter
»? expansion E =aw’+Bw* is better than the two-
parameter I (I + 1) expansion

E=AI(I+1)+BI*I+1)?.

However, analysis of the new data on rotational bands to
higher spins clearly shows that! the Harris parameter a is
by no means constant, but varies, sometimes violently,
with increasing w? [or I(I +1)]. In Ref. 3 the Mallmann
plots* were used to display how well the various variable
moment of inertia (VMI) models (distinguished by an ad-
ditional parameter n, see Ref. 3) can be fitted to the ex-
perimental data. The results show that for rotational nu-
clei

[R,=E(4)/E(2)%3.20],

the best value for the model appears to be n =1 (which is
equivalent to the two-parameter Harris formula) at low
spins (I < 10), increasing towards o for high-spin states
(I>16). Recently, the three-parameter Sood>¢
semiempirical formula (SSEF) was used to fit the GRB in
232Th, 32728y, By choosing appropriate values of the
parameters, fair agreement was obtained with the experi-
mental data.

In this paper a new three-parameter formula for rota-
tional spectra is presented and is used to analyze sys-
tematically the rotational spectra of well-deformed nuclei
up to very high spins (below bandcrossing). Comparison
between the calculation using this formula and a large
number of observed rotational spectra is carried out. An
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overall and excellent agreement is obtained. The theoret-
ical argument for this formula is briefly sketched.

II. FORMALISM AND CALCULATION

A. Two-parameter expression for rotational spectra

In Ref. 7 the collective spectrum of a well-deformed
nucleus with small axial asymmetry (sin?3y << 1) was in-
vestigated in the framework of the phenomenological
Bohr Hamiltonian with a 3 separable potential

1
2Bf?
where the first term is the usual harmonic potential with
surface rigidity C and the second one is due to the centri-
fugal stretching effect. B is the inertia parameter. In a
simple estimation, the function y(cos3y ) is assumed to be
Iv(iv—1)

cos?3y

y=1icp*+ x(cos3y) , (D

x(cos3y)=x,+ (2)
with parameters ¥, and v. Expanding the rotational en-
ergy of the Bohr Hamiltonian in powers of sin’3y and
omitting the contribution of O(sin*3y) to the energy ei-
genvalues, we obtain a simple closed form expression for
individual rotational bands in well-deformed nuclei. For
the GRB of an even-even nucleus it reads®

EN=a[V1+bI(I+1)—1], (3)
where only two parameters, a and b, are involved and
a =fio[xo+9(v+171"? =V'C/B . @
2 2

9 2v+3

p=L1__92v+3
3 xo+9(v+1)2

(5)
It was shown’ that Eq. (3) is equivalent to the VMI mod-
el’ except that a smoothly varying stiffness parameter is
introduced. The parameters a and b are found to be re-
lated to the nuclear moment of inertia at 7=0, J,, and
nuclear softness, o,

2
=1, (6)

1617 ©1989 The American Physical Society



1618 H. X. HUANG, C. S.
40}
S 30t
Q
2 L
= 20F
o |
L 1ot
3
m
Il or
m L
<
_10 -
1 1 L 1 I 1 i 1 1 Il ]
0 4 8 12 16 20 24 28 32
I

FIG. 1. AE =E(I)¢;—E (I)g, vs I for 2*U. The open circle
gives the results calculated using the two-parameter Eq. (3) and
the thick line shows the result by the three-parameter SSEF
(Refs. 5 and 6).

b

5

From Eq. (3) the radius of convergence I, for the energy

expansion in powers of I (I +1) can be estimated
1

r ‘/g .

From Eq. (3), and definition I, =[I(I+1)—K?*]'2, it

can be shown that the kinematical moment of inertia is
given by

)

o=

I (8)

-1

dE | g VIFBITFD), ©)

(1) — ZI
=1, | SF

which increases with increasing I. Equation (3) can also
be rewritten as
—-1/2
(fiw; )? .
a’b

=1Jwi+3id0j+3T,0%+ -, (10)

1_

E(w1)=a [

ﬁZ

SH_1# S 3
a’b

yeens 11
-70 2a2b’ ..70 8 ( )

in terms of the rotational frequency
o = LdE
' #dI,

WU, AND J. Y. ZENG 39

40
).
—
= 30
[
5 +
w 20r
©
)]
i
g 10f
¢ -
€3]
| oF —— A Sy —
) L
<
-10F
1 I TR A 1 F— A 1 1 1 J
0 4 8 12 16 20 24 28 32
I

FIG. 2. AE =E (D) ¢y—E (I)¢y vs I for 2*U. The filled circle
gives the result calculated using the three-parameter Eq. (4) and
the thick line shows the result obtained by the three-parameter
SSEF (Refs. 5 and 6).

Therefore, the puzzling fact that ? expansion converges
much more rapidly than the I (I 4+ 1) expansion is under-
standable because the inequality

(fiw;)?  bIUI+1)?—K?]
a’b  1+bI(I+1)

<1 (12)

always holds.

In a previous paper'” preliminary analyses on the
GRB’s in even-even actinide nuclei show that the two-
parameter expression (3) can fit the observed data very
well up to very high spins (below bandcrossing). As an il-
lustrative example, the differences between the observed
rotational spectra in 2*U and the results obtained using
the two-parameter formula, Eq. (3), as well as those by
the SSEF three-parameter formula for comparison, are
given in Fig. 1. Moreover, from Eq. (3) the observed fact
that the dynamical moment of inertia J'?’ is always larger
than the kinematical moment of inertia 7!’ (except in the
bandcrossing region) can be reproduced naturally. !°

0

B. Modification. Three parameter expression
for rotational spectra

For most actinide nuclei the results calculated using
Eq. (3) agree very well with the observed data. However,
for a few lighter actinide nuclei (e.g., 2>’Th), the agree-
ment is less satisfactory. Analysis shows that for >*Th

TABLE 1. Experimental and calculated energies (in keV) of 2°2U. The calculated values correspond to the three-parameter
description explained in the text and SSEF is from Abzouzi et al. (Refs. 5 and 6).

2 4 6 8 10 12 14 16 18 20
Exp? 47.57 156.17 3223 540.7 805.5 1111.2 1453.5 1828.0 2231.5 2658.4
Cal 47.34 156.01 322.1 540.5 805.5 1111.6 1453.8 1828.1 2230.7 2658.8
SSEF 47.3 155.9 321.6 539.7 803.8 1109.4 1451.7 1826.5 2230.0 2658.0

#Reference 6.
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the value of the parameter a in Eq. (3) increases slowly
with I (within 8%). It is expected that a better expression
may be obtained if a weak I dependence of the parameter
a is taken into account. So, Eq. (3) is tentatively modified
as follows:

E(D=a[l+cI(I+D[VI+bIT+D—1], (13)

with an additional parameter c. A possible argument for
such a modification will be given herein. Now let us ana-
lyze the GRB’s of well-deformed nuclei in terms of Eq.
(13). Table I lists the calculated and experimental results
of 232U and Fig. 2 gives

AE(D=E(I)y—E (g

of 2**U. For comparison, the SSEF results® are also
shown in Table I and Fig. 2, respectively. It can be seen
that the present results are better than those of the SSEF.
The overall comparisons between the results calculated
using Eq. (13) and the experimental data for all the ac-
tinide nuclei are listed in Table II. It is well known that,
for the most rare-earth nuclei, the bandcrossing occurs at
I.~10-12, so only four to five yrast levels belong to the
GRB. This clearly limits the conclusions that can be
drawn about the general applicability of a formula for ro-
tational spectra. Therefore, only those rare-earth nuclei
with I, > 16 are considered, and the results are given in
Table III. Obviously, from Tables II and III, it can be
seen that an overall excellent agreement between the cal-
culation with Eq. (13) and observed data is obtained.

Now we give a possible argument for the modified Eq.
(13). For the high-spin states it seems more reasonable to
add an anharmonic term into the potential (1), i.e.,

v=1icp*+ (cos3y)+kpB*, (14)
CB+ o g X(cos3y B

where k is a new adjustable parameter. Indeed, to the
first order of perturbation, the energies of the GRB can

be written in a three-parameter form, namely,
EN=a[VT+bI(I+1)—1]+k[{B*);—(B*)]
=q'[VI+bI(I+1)—1][1+k'VI+bI(I+1)],
(15)

in which the original parameters @ and k have been re-
placed by two equivalent parameters @’ and k’. Obvious-
ly, because the k' term is a small correction, Eq. (15) can
be rewritten as a simpler and more convenient form, Eq.
(13). In fact, the results calculated by Eq. (15) are almost
the same as, and in some cases better than, those obtained
by Eq. (13).
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III. DISCUSSION AND SUMMARY

A new three-parameter formula for the rotational band
of a well-deformed nucleus is suggested on the basis of
the phenomenological Bohr Hamiltonian. In the deriva-
tion of this formula a small axial asymmetry and vibra-
tional effects (including anharmonicity) have been taken
into account. The agreement between the calculation us-
ing this formula and the observed ground bands (below
bandcrossing) of all the actinide and the rare-earth de-
formed nuclei is astonishingly excellent, which perhaps
implies that the formalism described earlier may have
some truth.

The physical meaning of the parameters involved in
this formula and their relation with the VMI model are
discussed. (1) The value of b may be considered as a mea-
sure of nuclear softness. The relative spacing of a rota-
tional spectrum

R(D=E(I)/E(2),

is mainly determined by b, and the radius of convergence
of the I(I +1) expansion of E (I) can be estimated from
the value of b. (2) #?/ab = J, represents the nuclear mo-
ment of inertia at spin 7=0. The moment of inertia in-
creases with increasing I (or w;) which reflects the
influence of the centrifugal stretching and vibrational
effects. (3) Parameter ¢ describes the effect of anharmoni-
city, and analysis shows that for most well-deformed nu-
clei the value of ¢ is very small. (4) Finally, when b and ¢
tend to zero we get a strict I(J +1) rule characterizing
the spectrum of a rigid rotor with axial symmetry.

As pointed out by Hamamoto®® although around the
ground state of medium or heavy nuclei there is no
clear-cut evidence for the deviation of nuclear shape from
axial symmetry, the deviation is expected for high-spin
states. Nuclear axial asymmetry (the y dependence of
the Bohr Hamiltonian) may be considered as, at least
partly, a macroscopic manifestation of the Coriolis in-
teraction in a rotating nucleus. According to the cranked
shell model (CSM), axial symmetry cannot remain when
an axially symmetric nucleus is cranked around an axis
(e.g., x axis) perpendicular to the symmetry axis (z axis),
and the projection of angular momentum along the sym-
metry axis, K, is no longer a good quantum number. A
particle-number-conserving treatment for the CSM Ham-
iltonian shows? that the K structure and the seniority
structure of the ground band, and the low-lying excited
bands, will become rather complicated due to the Coriolis
antipairing effect in the high-spin states. Details will be
published subsequently.
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