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Changes in shape in Mg are studied at T&0 both in finite-temperature mean-field calculations
and in the exact canonical ensemble. With increasing temperature the canonical ensemble average
of the rotational energy spectrum tends toward a more equispaced harmonic spectrum. This de-
formed to spherical transition gives rise to a peak in the specific heat which is also seen in finite-

temperature Hartree-Fock approximation albeit at a slightly higher temperature. The canonical en-
semble average of the quadrupole moment does not, however, appear to vanish at the critical tem-

perature as is the case in the finite-temperature Hartree-Fock approximation.

INTRODUCTION &E &= g (2J+1)E e ""/Z(P)

(lb)

must exhibit a peaked structure at low temperature for
systems with a rotational spectrum. Here

&E&= g (2J+1)EJ ~g)e
' /Z(p)

J,v(J)
(2)

At zero temperature deformed nuclei exhibit a rota-
tional spectrum. This can be approximated microscopi-
cally in a mean-field treatment most simply by a cranking
calculation for each angular momentum of the band. A
simple constraint of the form & j„&=&J(J+1)is gen-
erally sufhcient to ensure that the cranked energy-level
spacings provide a reasonable first-order approximation
to the exact energy-level spacings. At nonzero tempera-
tures an interesting situation develops. As the system
heats up it tends to become less deformed on the average,
and in unconstrained mean-field calculations at a certain
critical temperature undergoes a deformed to spherical
phase transition. ' Clearly this cannot happen in a
cranked mean-field calculation as the equation of con-
straint must be satisfied f'or each angular momentum. In-
stead as the critical temperature is approached it be-
comes impossible to find solutions of the cranked mean-
field equations. This behavior has been demonstrated
previously in Hartree-Pock calculations in which a con-
straint on the total angular momentum has been used.

In the present work we have investigated the thermal
response of a rotational band in Mg in both the cranked
finite-temperature Hartree-Pock approximation and in
the exact canonical ensemble. In both cases we are in-
terested in examining the phase structure of the rotation-
al band as a function of temperature. Recently it has
been pointed out that in the canonical ensemble the
specific heat

Z(P)= g (2J+ 1)e
J,v( J)

(4)

p= 1/T; v( J) labels the states in each irreducible repre-
sentation with angular momentum J, and the subscript N
on C indicates that the specific heat is evaluated in the
canonical ensemble with the number of particles N in the
system fixed. In the present work we see evidence of this
peak in the specific heat at T=0.5 MeV but it is ob-
scured by a larger peak at T=2.6 MeV. %"e note also
that with increasing temperature the exact canonical en-
semble average of the rotational energy spectrum tends
towards a more equispaced harmonic spectrum associat-
ed with a spherical nucleus which suggests that the larger
peak at T=2.6 MeV is associated with a deformed to
spherical phase transition. In the uncranked finite-
temperature Hartree-Fock (FTHF) calculations in de-
formed systems a similar peaked structure is observed
and has been interpreted as the onset of a phase transi-
tion. ' Furthermore, the ensemble average of the quad-
rupole moment goes to zero at roughly the same critical
temperature. In the present work this vanishing of the
quadrupole moment at the critical temperature is not
seen in the exact canonical ensemble results. As has been
noted previously in model calculations work we find that
the critical temperature of the deformed to spherical
phase transition is predicted to lie higher in temperature
in the FTHF approximation than in the canonical ensem-
ble calculations.

The same peaked structure occurs in the specific heat
calculated in both the canonical ensemble and the un-
cranked FTHF approximation as well as for each angular
momentum of the rotational band in both the canonical
ensemble and the cranked finite-temperature Hartree-
Fock (CFTHF) approximation. Unfortunately, before
the critical temperature is reached it is no longer possible
to find solutions of the CFTHF equations for J&0; how-
ever, the onset of the phase transition appears to be
reasonably well predicted.
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NUMERICAL RESULTS

In order to perform the exact diagonalization, in the
present work we consider Mg as an inert ' 0 core plus
eight valence particles in the 2s-1d shell. The total num-
ber of states with even spin and isospin I=O is 4082.
Clearly the number of states in the system is not large,
but recent model studies of quantum spin chains have
demonstrated that quantum systems with few degrees of
freedom display quantum-statistical behavior. Numerical
studies of such systems have shown that they could be
adequately described by the canonical ensemble in spite
of the fact that only 2 states were present and the density
of states was too irregular to be described by a
Boltzmann distribution. Furthermore, in finite-tempera-
ture mean-field calculations at low temperature, only the
valence particles are thermally excited and it seems
reasonable, therefore, to neglect the thermal excitation of
the core.

In the CFTHF calculations the thermodynamic poten-
tial

Q=(H )T —TS pN—
is minimized with respect to the Hartree-Fock (HF) or-
bitals and the single-particle thermal occupation proba-
bilities f, subjected to the constraints

gf, =N

tures which are indistinguishable from those obtained
with the compete eigenspectrum. In the present work we
have used only those eigenstates which lie in the first
10—15 MeV of excitation energy for each angular
momentum.

DISCUSSION OF RESULTS

The numerical results for the ensemble average of the
energy are given in Fig. 1. In the FTHF approximation
the ensemble average of the energy rises more steeply as a
function of energy than in the full canonical ensemble
and is shifted up in energy. A similar behavior was noted
in previous uncranked calculations in Ne. ' The simple
smearing out of the occupation of the single-particle or-
bitals does not appear to approximate very well the tem-
perature dependence of the results obtained in the exact
canonical ensemble. Furthermore, in the FTHF approxi-
mation more structure is seen than in the canonical re-
sults. At T=3.1 MeV the abrupt change in slope is usu-
ally interpreted as the signal of a deformed to spherical
phase transition. This agrees reasonably well with a criti-
cal temperature of about 2.8 MeV obtained previously in
a realistic no-core calculation in Mg. The change of
slope at T= 1.7 MeV signals a change in the system from
a triaxial to an axially symmetric shape. '"

The numerical results for the ensemble average of the
energy of the J=O, 2, 4, 6, and 8 states as a function of

and

Here ( ) T denotes the ensemble average at temperature
T, the chemical potential is given by p, the number of
particles by N, and the entropy by S, where

S= —g [f lnf„+(1 f, )ln(1 f )] . — —

In the 2s-1d shell we used an effective Hamiltonian with
the Vary- Yang interaction, ' including additional third-
order corrections to the 6 matrix to provide a more com-
plete accounting of the core-polarization effects" and the
following single-particle energies:

ed = —5.00 MeV,
5/2

ed =0.08 MeV,
3/2

= —4. 13 MeV .
1/2

@'O &i+a-ma++ ~

I
I

1

Only the thermal response of the states of total isospin
I=0 were considered in the present calculations in Mg.
Relaxing this constraint is not expected to be overly im-
portant since the I&0 spectrum lies significantly higher
in energy.

The exact diagonalization of the effective Hamiltonian
was performed by means of the Lanczos algorithm. ' Be-
cause of the presence of the Boltzmann factor, the
lowest-lying eigenstates are most heavily weighted in the
exact canonical ensemble calculations. Previous calcula-
tions' have demonstrated that using roughly 10% or less
of the eigenspectrum produced results at low tempera-
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FIG. 1. The ensemble average of the energy as a function of
temperature in the exact canonical ensemble (Q) and the FTHF
approximation (0). For the angular momenta J=0, 2, 4, 6, and
8 the ensemble average of the energy in the canonical ensemble
and the CFTHF approximation (inset) are indicted by solid and
dashed lines, respectively. The J=0 solution of the CFTHF
equations corresponds to the FTHF solution.
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temperature are also given in Fig. 1 for the exact canoni-
cal ensemble and for the CFTHF approximation. The
canonical ensemble average of the energy has been calcu-
lated using Eq. (2) by summing over v(J) only for each
value of J individually. Note that the J =0 solution of
the CFTHF equations is the same as that obtained in the
FTHF approximation since the cranking term in this case
is identically equal to zero. For T~1.2 MeV we were
unable to find solutions of the FTCHF equations for
J&0. This is most likely due to the fact that with in-
creasing temperature the system on the average becomes
more spherical and it becomes increasingly more dificult
to fulfill the equation of co~straint. Aside from an
overall shift in energy the FTCHF results rise more
steeply with increasing temperature than those obtained
in canonical ensemble.

The temperature dependence of the moment of inertia
has been determined (see Fig. 2) by fitting the energy
spectrum in the canonical ensemble and the CFTHF ap-
proximation at each temperature to that of a rotor. In
both cases the moment of inertia decreases as a function
of temperature. For T & 1.2 MeV the errors in the fits in
the CFTHF approximation are negligibly small and not
significantly larger in the canonical ensemble which
confirms that the ensemble average of the spectrum
remains rotational in nature. The ensemble average of
the energy spectrum obtained in the canonical ensemble
has also been fitted to an equispaced harmonic spectrum
in which the level spacing has been adjusted at each tem-

perature to give the best fit (see Fig. 2). At lower temper-
atures the errors in this fit are rather large but they de-
crease with increasing T and become less than those ob-
tained for the fit to the energy spectrum of a rotor for
T) 2.4 MeV. This strongly suggests that a deformed to
spherical phase transition has taken place at a critical
temperature of T, =2.6 MeV.

In order to try to further verify that a phase transition
has indeed occurred we have calculated the specific heat
as a function of temperature (see Figs. 3 and 4). The
specific heat has also been calculated in the FTHF ap-
proximation (see Fig. 3). In this case we have used the
definition

and not that given in Eq. (lb). The two definitions are
inequivalent for finite-temperature mean-field calcula-
tions, ' and the definition given above is believed to be
more accurate. ' The derivative has been determined by
fitting a smooth curve to the values of (H ) T and
differentiating. In the FTHF approximation two prom-
inent peaks are seen in the specific heat at the same tem-
peratures at which the changes in slope is observed in the
ensemble average of the energy (see Fig. 1). The peaks in
the specific heat at T= 1.7 and 3.1 MeV correspond to an
average change in shape of the system from ellipsoidal to
axially symmetric and from axially symmetric to spheri-
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FIG. 2. Twice the moment of inertia for the canonical en-
semble (0) and the CFTHF solutions (0) together with the
respective rms errors in the fit to a rotational spectrum (0) and
(0 ) (X 10) as a function of temperature. Also shown is the en-
ergy spacing (0) for the best fit to a harmonic spectrum and the
rms error in this fit (0).
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FIG. 3. The specific heat as a function of temperature in the

canonical ensemble (0) and in the FTHF approximation ().
One should note that the values for the FTHF approximation
have been divided by a factor of 10 in order to display them on
the same plot. For the angular momenta J=0, 2, 4, 6, and 8 the
specific heat calculated in the canonical ensemble is also given
by the appropriately labeled solid lines.
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The derivative has been determined by fitting a smooth
curve to the values of (8)T J and differentiating it for
each value of the angular momentum. For all angular
momenta the specific heat increases rapidly with increas-
ing temperature. Unfortunately we were only able to find
solutions for T ~ 1.2 MeV. Hence we are only able to see
the onset of the deformed to spherical phase transition
without being able to ascertain the critical temperature at
which it occurs.

Lastly we have calculated the ensemble average of the
quadrupole moment and its fluctuations in the canonical
ensemble and in the FTHF approximation (see Fig. 6).
At T=O the canonical ensemble average of the quadru-
pole moment is zero because the spin of the groundstate
in Mg is zero. With increasing temperature ii becomes
negative and never vanishes. It is most unlikely that the
canonical ensemble average of the quadrupole moment
vanishes at higher temperatures since with increasing
temperature the states of higher angular momenta be-
come more important and their quadrupole moments are
predominantly negative. Furthermore, the Auctuations
are extremely large and clearly no indication of the de-

formed to spherical transition occurs. On the other

hand, in the FTHF approximation the ensemble average
of the quadrupole moment, which has opposite sign, van-
ishes at T=3.1 MeV. At this temperature as discussed
above the FTHF solution becomes spherically symmetric.

In conclusion we feel that there is ample evidence in
support of the existence of a deformed to spherical phase
transition in Mg at T=2.6 MeV. At this temperature
the peak in the specific heat in the canonical ensemble
has been shown to arise from a change in the ensemble
average of the energy spectrum from rotational to har-
monic. Somewhat surprisingly this change in the nature
of the energy spectrum is not rejected in the ensemble
average of the quadrupole moment which neither van-
ishes nor becomes significantly smaller in the canonical
ensemble. The critical temperature of the phase transi-
tion is predicted to lie slightly higher in the FTHF ap-
proximation. Again the presence of a phase transition is
signaled unambiquously by the presence of peaks in the
specific heat calculated in this case as the numerical
derivative of the ensemble average of the energy as well
as the vanishing of the ensemble average of the quadru-
pole moment.
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