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The A component in the nuclear ground state is evaluated in connection with the A dynamics.
The various microscopic processes which could originate such components are separately studied.
The role of short-range correlations is emphasized, as well as that of random-phase-approximation
corrections. It is shown moreover that a rather large number of A’s in a nucleus does not lead to

contradictions with the standard shell model.

I. SETTING THE PROBLEM

It is a well grounded achievement of modern nuclear
physics that not only nucleons are relevant in the study of
nuclear dynamics, but that mesons and barionic reso-
nances, like A’s, play an important role too. Surprisingly
enough, however, only a small number of theoretical
works have been devoted, in the recent years, to the
determination of number of A’s in large! as well as in
small®> nuclei, the mainstream of the research being de-
voted to the study of dynamical properties of A’s and
pions in nuclei in higher-energy regions. Only recently
Lipkin and Lee® renewed interest in the presence of A’s in
nuclei, suggesting a possible signature of A components
in the ground state of *He.

The question, nevertheless, is by no means trivial. In
fact, to our knowledge, the only detailed calculation of
the ratio N, /N in nuclear matters is that of Ref. 1,
which provided the surprisingly high value of about 7.5%
(at least). Of course a critical discussion of such an out-
come is needed, and is deferred to the end of this section,
but we may anticipate (also in view of our results in Sec.
III) that the procedure and the results are essentially con-
vincing.

If one takes the naive attitude of generalizing the shell
model considering an assembly of nucleons and A as a
system of independent particles moving in two different
potential wells, one for nucleons and one for A’s, then
(since the Pauli principle does not work for different par-
ticles) 7.5% of A’s is clearly too much, as it would com-
pletely destroy the shell structure. But in this respect
even extremely small numbers should be too much, since,
for instance, 0.8% will render 127 a magic number in-
stead of 126.

One is consequently led to examine more refined
schemes. For instance, there has been recently proposed*
a Hartree-Fock-like method for a system of nucleons and
A’s, where the A is taken as a stable particle. One should
remark that on the one hand this assumption could be
questionable (and we shall examine this point in what fol-
lows, but our conclusion is that the free A width is not a
relevant parameter, so enforcing the conclusions of Ref.
4); on the other hand, in Ref. 4 the consequent shell
structure is not examined in detail, so that no answer is
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given to the previous objection.

As a matter of fact a set of works of Bleuler et al.’ re-
gards instead the high number of A in nuclear matter as a
dramatic drawback of the standard shell model and as a
justification to overcome it, building up a shell model
composed of quarks instead of nucleons.$

However, this is not the only possible way out: we
could instead describe a heavy nucleus in terms of a
configuration mixing, as on the other hand is already re-
quired by the occupation number of the higher shells in
heavy nuclei, as is the case of 2°°Pb, which experimentally
turns out to be of about 0.7.” Then it may happen that a
large A component appears in the added configurations
without altering the occupation number of the closed
shells, but only subtracting strength from the shells above
the Fermi level.

There are many questions arising from this brief dis-
cussion.

(1) As a first point we need to understand in detail
which is the microscopical origin of the result of Ref. 1.
Let us remark first of all that their conclusions are strict-
ly linked to two quite satisfactory achievements. The first
point is that the N-N interaction used in the calculations
comes out from a very delicate analysis® of the N-N
scattering in terms of the mesonic theory. Once the in-
teraction has been obtained, then N-N phase shifts are
fairly described, and a detailed knowledge of the underly-
ing dynamics is available. Particular care has been devot-
ed to the 2-7m exchange which is responsible for the most
delicate feature of the interaction. In this context a pecu-
liar role is played by the so-called box diagrams (see Fig.
1) in which one or two A’s appear in the intermediate
state. The second relevant feature is that within this
starting point a good description of the nuclear matter is
obtained in lowest-order Briickner theory.’ In particular
it is emphasized in Ref. 9 that a large contribution to the
binding comes from the previously quoted box diagrams.
Then the number of A’s easily follow by deriving the
binding energy with respect to the chemical potential of
the A which in our case is in practice just the mass
difference M, — M.

Looking to the disadvantages of the approach, we may
remark that the parameters (coupling constants and
cutoffs of the form factors) are essentially determined
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(a) (b)

FIG. 1. Box diagrams: (a) with one intermediate A, (b) with
two intermediate A’s. Dashed lines denote both 7 and p.

from a best fit on the phase shifts on elastic N-N scatter-
ing, while more detailed information could be obtained
from other reactions involving mesons. For example, in
Refs. 1 and 9 the coupling constant for the 7N A vertex is
given by f2y, /4m=0.27 and the pNA vertex follows in
~ the strong-coupling scheme (C,=2.3) according to Holer
and Pietarinen.!® The cutoffs are of about 1200 MeV/c
for both vertices. All these parameters preserve a good
description of N-N phase shifts. Now, the pNA vertex is
of course badly known, but for the first one, instead,
better information should come from =-N scattering.
Here a recent fit'! which takes into account in a rather
refined way the nucleon Born term and one-loop correc-
tions leads just to a cutoff of about 700 MeV/c but with a
larger coupling constant (0.42, to be compared with the
previous 0.27 and the Chew-Low value 0.32, which is
used throughout this work). Previous works of the Bonn
group'? used indeed a smaller cutoff, without destroying
the agreement with experimental phase shifts. We can-
not give any insight for what concerns the relevance of
the increase of the coupling constant.

Another drawback of this scheme is intrinsic to the
complications of the calculations, since of course much
information is lost about the relevance of the elementary
ingredients involved. In this sense it is worthwhile to
consider a complementary point of view, in which one
avoids the heavy numerical calculations involved in the
solution of the Bethe-Goldstone equation, simulating
them by means of parameters of straight physical mean-
ing, but keeping continuously under control the elemen-
tary ingredients and their connection with the nuclear
dynamics.

(2) As we have remarked above, one could enquire
about the role of the A width in this context. There are
two different aspects of the question: in fact the A has by
itself a noteworthy width in the vacuum, and on the other
hand many-body effects may strongly affect the width in
the medium.'»?® As far as we are concerned with the
ground state, we shall show that the free width is
ineffective (then justifying the approach of Ref. 4). We
shall instead examine in detail the medium-induced
effects, which are directly connected with the ratio
N,/N.

(3) The last point concerns the prevision we could ob-
tain from the analysis of the momentum distribution of
the A’s and nucleons inside the nuclear matter (which is
the counterpart of the occupation number in finite nu-

clei). For instance our previous naive model should cor-
respond to a momentum distribution for the A peaked
around small momenta, while nucleon momentum distri-
butions should remain similar to a 6 function with re-
duced Fermi momentum. In this case we should inevit-
ably give up the standard shell model and look for new
schemes based, say, on QCD. On the contrary, should
we find a distribution slowly decreasing up to kp and
with a reduced tail above kg, then no decisive breakdown
of the usual mesonic theory of nuclear forces should
occur, the difficulties of this approach (which remain
nonetheless noteworthy) being instead on the level of so-
phistication required in handling the nuclear many-body
problem and in the too-high number of parameters (cou-
pling constants, cutoffs) involved, which are often neither
well determined nor of clear physical meaning.

In Sec. II we shall briefly describe the formalism used
throughout the paper; in Sec. III we shall describe some
microscopical models to evaluate the ratio N, /N in strict
connection with the A dynamics inside the nuclear medi-
um. In Sec. IV the momentum distribution is examined.

II. GENERAL FORMALISM

Our approach starts from the elementary consideration
that the average of the number operator
f d3x 1/}’;(x)1,bA(x) is connected to the A Green’s function

by

N
S8 = (Wl a0 o)

=—i lim TrG,(r',1,t'—1t)
t'—t

4 ‘
=—iTe [ LGy M

(the traces refer to spin-isospin sums). The A Green’s
function is furthermore conveniently expressed by means
of a Dyson’s equation

GA(p)=GR(p)+GQ(P)ZA(p)G4(p) )
with G (p) defined as

1
G(p)= - 3)
0P ___SM+in

P oM,

(where of course 8M =M, —M). The connection be-
tween N, and the A dynamics is evident by itself. The
connection with the nuclear binding energy follows by
observing that the diagrammatic meaning of Eq. (1) is
that of a A Green’s function closed on itself. Topologi-
cally this may by visualized as the class of all closed dia-
grams with a dot on a A line. Then each diagram is easi-
ly put in a 1-1 correspondence with the class of diagrams
containing at least one A line of the conventional
Briickner theory for binding energy, by simply squaring
one energy denominator containing a A. Since the pres-
ence of a A in a denominator is always accompanied by a
factor 8M we simply conclude that
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d
= — B.E. 4
Na=~30m @
Equation (4) translates the relations (2.17) and (2.18) of
Ref. 1.
The same relation may also be obtained in a more com-
pact way as follows. Consider the partition function in

the canonical ensemble:
Z =Tre PH (5)

The binding energy for the ground state is easily recog-
nized to be

B.E.=— lim 22 )
B—» B
On the other hand Z admits the functional-integral repre-
sentation

zZ= f@;b*i)zﬁ exp . (7

—fOBdTH(T)

The structure of H is of course the following: it will con-
tain (in the nonrelativistic limit) a kinetic part, an interac-
tion term (whatever it will be) and a term

[ & sMyl(x)y,(x)

which accounts for the mass difference between nucleon
and A. From this it follows that

sz = [lar [ ax (g ®)
where of course (n,(x,7)) is the average value of the A
density in a thermodinamical sense. In the limit B— o,
on the one hand, n,(x,7) becomes constant in time, and
on the other hand only the ground state contributes to
the average: this means

lim 19

InZ = [ d’ ny(x) . )

Comparing Egs. (6) and (9) the result (4) follows at once.

Until now, our results are exact. Now we need some
approximations, and we have the choice of approximat-
ing either the binding energy or the A self-energy. As far
as binding energy is considered, we shall be concerned in
practice with lowest-order perturbation theory only (at
least formally), as we shall see in detail in the next section
(provided that some suitable approximations have been
introduced).

We shall give here some more comments on the A self-
energy in order to clarify how some results of the next
section have been obtained. In particular we shall be
concerned with self-energy diagrams like those of Fig. 2.
The potential employed in the next section will be either
a one-pion or one-p exchange plus a Landau-Migdal pa-
rameter. In the case of pion we shall consider

2
7NN

Verld,90)= 2
m

m
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(for the p exchange only trivial changes are required,
which we shall avoid here for sake of brevity). Then the
diagram of Fig. 2(a) will read

fona d'q 1 +
S(p)=i—— | —LT-T'(G-S)(qG-S")
i 3rNN f (2m)* d d
XG%p —q)Vir(4,90)11(q,q0) » (11)

where Il (hatched bubble) denotes both a particle-hole
and a A-hole polarization propagator. Exploiting the
traces inside I1 we find

1_6f$rNA

I(g,q,)= |411,(q,q,)+
0 0 0 9 f127NN

Malg,q0) | . (12)

We shall use throughout the Chew-Low value f_ya
=2f.nn- The self-energy of Fig. 2(b) is simply obtained
by the replacement

H(q:qo)
1= Ves(q,90)1l(g,q

H(q,qo)—* 0) :HRPA(q,qO) (13)

in Eq. (11).
Once an approximation for the self-energy has been
given, we put it into the expression for G,,

GA(p)=[GR(P)IPZA(p) (14)

(the reason why we do not like to use the exact Dyson’s
equation for G, will be clarified later).

A nontrivial point (in principle) is the evaluation of the
matrix products: we have!*

LTIT- TN, T) =8, (15)

and

(a) (b)

FIG. 2. Self-energy diagrams for the A: (a) to the second or-
der, (b) in RPA. Dashed lines may denote both 7 and p.
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Here the term with A=0 turns out to be simply g2/3, while the tensor term has the structure

% % 2 (__1)3/2~'M
coSst - M —M 0O —COSt‘—"‘_‘z“—°

However, Eq. (1) requires a trace over M at the end of the calculation, then the tensor term is clearly averaged to O.
This lucky circumstance enables us to express the self-energy, in this approximation, as

o(lp—ql—kg)

Okr—Ilp—ql)

; [iva ¢ dg
3(p, =1
PP =3 "0 I G

with e(p)=p?/2m.

Po—4o—€lp—q)+in

Po—qo—€(p—q)—in

Vii(4,90)1(q,q0) (17)

This quantity has to be inserted into Eq. (14) and then in (1), the integration over p, being trivial. To render the eval-
uation of the ratio N, /N more reliable from a numerical point of view it is convenient to make the substitution
p—p+q and to perform a Wick rotation on the integration variable g,. We end up with the expression

kg

Vie(q,iqo)Tl(g,iqy)

Ny —2 ferAf

2= 24p [ “q%dq [~ d
N ﬂBk;- f,,ZTNN 0 P pf() q qf—oo qO

igo—

with the nontrivial gain, from a computational point of
view, that the functions V 4(q,ig,) and Il(q,iq,) are real,
smooth, and with definite sign.

Of course this procedure applies equally well to the di-
agram of Fig. 2(b). This approximation is also theoreti-
cally appealing, since it has been proven'> that a con-
sistent theory may be built up with an effective Lagrang-
ian, containing only bosons dressed with the random-
phase-approximation (RPA) series interacting via some
“elementary” vertices with all the nucleon dynamics, and
in such a theory our RPA self-energy amounts to the
one-loop approximation.

Two points remain to be explained. First of all we
want to justify the convenience of the approximation (14).
As a matter of fact, had we chosen to set

G (p)
GA(p)Z 1 &P

e S (19)
—-G(p)=(p)

then a Wick rotation should no longer be possible. As a
consequence we should have to do with an integral (over
Do) of a highly singular function. This task is not impos-
sible, but the numerical errors so obtained come out to be

FIG. 3. First-order binding energy diagram with a A line.

(18)

2+q2 4 2.2

~M+M+E | —PL

2MA 4 2M M3
—

comparable with the (small) numbers we are looking for.

The last remark is that in any case we always started
with a second-order (at least) term. It remains to be ex-
plained why the first-order contribution has to be dis-
carded. As a matter of fact, if we make use of Eq. (4) we
may consider such a term as the derivative of the dia-
gram of Fig. 3, which in turn may be described either as
an approximation to [G2(p)] " 'G,(p) integrated over all
p or to [G%p)] 'G(P) integrated over the Fermi sea. In
this second point of view the corresponding approxima-
tion for G (p) is, of course,

G(p)=Go(p)=V(p)G,(p) ,

with =V(p) given in Fig. 4. It is clear that such a self-
energy contribution is nothing but a renormalization of
the nucleon propagator, and if we choose to neglect, as it
is reasonable, all the effects which are not brought about
by the nuclear medium we may renormalize the theory by
subtracting to the self-energy its value taken at kp=0.°
In this way the finite part of the diagram vanishes and of
course its derivative too.

There remains to be proven two formulas needed in
Sec. IV concerning the occupation number of nucleons
and A’s. As far as A’s. are concerned, the occupation
number is nothing but { W,|gL(p)PA(p)| Do) [Pa(p) being
the Fourier transform of ¥,(x)], normalized in such a
way to coincide with the residuum of the propagator. In
practice we simply drop in Eq. (18) the integration over
d’p and change the normalization factor, getting (in RPA
approximation)

FIG. 4. First-order self-energy diagram for the nucleon, cor-
responding to the B.E. diagram of Fig. 3.
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k o 2va Vi(lp+al,igo) Mgpallp+al,igy)
nA(p)z_l_ 1 3_[ qudqfldcosﬁ‘qf dqof va Verllp+al,igo)gpallp+q Qg - (20)
3 (2m) Yo -1 —o U fIun M — (p+q)? 4 g%
M, | 2M

An analogous formula shall be used in Sec. IV for determining the occupation number of nucleons. This is a much
more difficult task, which will be examined in more detail in a subsequent paper. Here we shall limit ourselves to give
n(p) in a similar approach assuming that nucleon self-energy has the same structure as the A’s one, i.e., receives its
dominant contribution from the RPA-dressed pion. So we may simply change some trivial spin-isospin factors in (20)
and recall the different analytical structure of the nucleon propagator which may also have a hole part. Following the

same path as before an easy calculation provides

dq OUks—Ip—al)—6l

kg—p)

n(p)=0tkp—p)+ 5 [

(m)* (iqo—ep+eq_p)2

Of course other mechanisms are relevant in the deter-
mination of n(p). However, our aim here is to under-
stand how the momentum distribution is altered by the
presence of A’s in the ground state (if the nucleons are
subtracted from a small region around k. or if the high-
momentum tail is depleted). For this reason we shall
only concentrate our attention on that particular dynam-
ics which is also responsible for the presence of A’s, i.e.,
those self-energy diagrams having the same intermediate
states as the A self-energy previously considered.

III. NUMBER OF A’s IN NUCLEAR MATTER

We come in this section to the evaluation of N,. To
start with, we need an approximation for the A self-
energy, at some level of complexity.

The first job we shall deal with is to examine critically
the results of Ref. 1, in order to achieve a better under-
standing of its dynamical content. The approximation
used there is the so-called Briickner-Hartree-Fock
theory. In our scheme this amounts to considering the
two diagrams of Fig. 5, where the hatched blocks both

d>t

V2(q,igo)Mgpalq,iqq) - (21)

r

represent a G matrix built up from the Bonn potential, in-
cluding box diagrams. Of course the presence of two G
matrices does not amount to a double counting (even if
the diagram is regarded as a binding energy diagram, i.e.,
closing the A line on itself), but instead selects from all
the summed graphs those containing at least one box dia-
gram.

Here, in order to reduce the calculation to its elemen-
tary ingredients, we shall consider first of all a crude ap-
proximation, by simply replacing the G matrix with a 7
or p exchange. Clearly the box diagrams appear here as
the central objects of our problem. Let us, for instance,
define

Fina (81°9)(8,:q)

mi  qi+m?

AN _
Vat=

T, T,, (22)

the 2N-2A transition potential originated by a one-pion
exchange (the p exchange potential as well as the cases of
NN-N A transitions are obvious generalizations). The po-
tentials are presently thought of as static. Then the two-
pion exchange box diagram with two intermediate A’s
may be written as

[VA2(0)]TW2% (¢ +q)

<p,k|Vbox|p k >__Vb0)((q,p’k)__

27 p? | k*
oM oM

—28M —

23
(p'+1)? @3

M,

_(k—g—1)?
M,

where ¢ =p’'—p =k — k' denotes the transferred 4-momentum. Of course we avoid for sake of simplicity to give the

corresponding potential V
obvious.
The number of A’s turns out to be

—__29 __e_
LN a(SM)Tr (2 )3

(the trace being taken over spin and isospin variables).

The next step will be to simplify the so obtained poten-
tial in such a way to render them local. There are two
simple possibilities. The first one is to assume the barions
as static, so that previous expressions drastically simplify
to .

VYo for a NA intermediate state, as well as for the 2-p exchange, but the generalization is quite

k=) [ dk Ok — KLV (0;p,k)+ V(05 )] @4)

f

kg
367"

RpA—

28M2f o VA8 (0128 (1)

M2 f )B[VNA t)]TVNA(t

(25)
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FIG. 5. Self-energy diagrams contributing to N,. Hatched
blocks correspond to a G matrix. These diagrams have to be re-
garded as Goldstone diagrams.

It is obviously expected to be a failure of this scheme, and
it happens indeed, since if we use standard expressions
for m and p exchange, then after traces are performed
they behave like

£2
t2+m ,27 o ’
then implying a bad divergence of the integral. The
reason for which we have nevertheless considered this ap-
proximation is that we believe that much physics may be
understood from such a failure. There are of course three
possible reasons for this breakdown. (1) We have neglect-

gence, but the idea that only the internal structure of the
nucleon will prevent the number of A’s from being
infinite seems to be really unlikely.

The second point is more subtle, but we should consid-
er, at least for pion exchange, that the pion mass, which
plays the role of the range of the interaction, should act
in practice as a cutoff, and for momenta of this order of
magnitude the kinetic energy of the barions are indeed
negligible as compared with 8M. The question is of
course more delicate for the the p exchange because mo-
menta are cut to a much higher value, but nevertheless it
is irksome that convergence has to be ensured by barion
kinematics. The crucial point is of course the third, since
clearly the bad behavior of the potential for g— o
reflects the fact that in configuration space the one-pion
exchange potential (OPEP) has the well-known pathology
of a 8(r)-like contribution, which is rendered physically
ineffective by short-range correlations.

Let us first of all examine the points (1) and (2). We
may of course improve the convergence by taking into
account, even in an approximate way, the barion kine-
matics. If we imagine that in the model we are consider-
ing the external momenta remain small (and in practice
we need only momenta cut by k) then we could neglect
them in the energy denominators, thus again rendering
local the potential ¥®°%:

ed here any form factor at the elementary vertices. (2) box( \__ __ d’t AA t 1 AA
We have neglected the kinetic energy of the baryons. (3) Vidla)= 27)? (Ve (8] ¢2 Vaplt +4),
We have ignored short-range correlations. 28M + M.
The first point is obviously inadequate to solve our a
problem: it is clear that a form factor will ensure conver- (26)
TABLE I. N, /N in nuclear medium without correlations and different kinematics.
Static
approximation A= A=1300 MeV/c A=800 MeV/c
P25 (qr) © 9.9% 3.9%
PNA(7) © 20.8% 7.6%
P2%(p) o 47.1% 10.0%
PM(p) w > 100% 22.0%
Simplified
kinematic
PA5(mr) 10.9% 4.5% 2.3%
PNA(r) 10.5% 5.1% 2.6%
P2%(p) 65.2% 11.7% 3.8%
PN p) 47.7% 11.5% 42%
Full kinematics
(static mesons)
PA4(mr) 7.0% 4.8% 2.5%
PNA(rr) 7.5% 53% 2.8%
P2%(p) 70.0% 12.6% 4.1%
PN(p) 51.9% 12.5% 4.5%
Full kinematics
(dynamical mesons)
PA%(ar) 11.2% 4.5% 2.3%
PNA(q) 10.7% 5.1% 2.7%
P2%(p) 67.2% 12.8% 42%
PNA(p) 49.8% 12.3% 4.4%
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BM +
M 2M,
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These potentials are again divergent but less than before.
However, inserting them into (24), the derivation with
respect to &M and the nonrelativistic kinematics ensure
the finiteness of n 5.

In Table I the number of A’s are given in different con-
ditions, beginning from the simplest cases, namely the ex-
plicit evaluation of uncorrelated box diagrams within
different approximation schemes. We have in fact used
both the approximations (25) and (26) and (27) and we
have compared them with calculations containing the
complete kinematics [along the lines of Eq. (18)] both
with static and nonstatic mesons. :

Of course a proviso is needed: It must be reminded
indeed that the various perturbative schemes employed
here in general are not able to preserve the constraint
0<N,/N<1. Correlations and RPA schemes could, for
instance, allow negative values of N, /N and it is not al-
ways warranted for this ratio to be smaller than 1. If
such a result happens, we must regard it simply as a bad
failure of the approximation scheme.

We see that this happens for the p exchange in the stat-
ic case, as could be expected. It is to be remarked that
while the case of infinite cutoff leads either to divergences
or to completely unrealistic numbers, a sufficiently small
cutoff is able to make them at least likely. This in our
opinion is somewhat suspicious. We think in fact that
the relevant physical effect should not be cutoff depen-
dent, and that the form factor should only be responsible
for small adjustments. In this sense the values of Table I
for A= o0 means that the uncorrelated potential is quite
unrealistic even if one could artificially strongly reduce
the ratio NV, /N by operating on the form factor.

A further relevant point which comes out from this
table is that the approximation (26) and (27) seems to
work quite well. Moreover, contrarily to the previsions
of Ref. 17, the effect of the energy dependence in the
meson propagator is essentially negligible.

Next we come to the problem of short-range correla-
tions. The reason for which correlations must be includ-
ed is that of course when the nucleons exchange one or
more particles, or when box diagrams occur, the nucleons

3
box(o)___ 1 d t ]T

AA
26M Y (2 )3 &

2

fd3k VA8 (t+k)8(k —q,)
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(a) (b)

FIG. 6. Diagrams corresponding to short-range correlations:
(a) Uncorrelated diagram; dashed line may describe 7 or p ex-
change or a box diagram. (b) Correlation contributions; wiggly
line corresponds to a G matrix built up from w-meson-exchange
potential.

can never be too near one another because the exchange
of many w mesons provides to keep them far apart. In
other words the diagrams of Fig. 6(a) must be replaced by
the sum of diagrams described in Fig. 6(b). It may be
shown that this sum corresponds to evaluate the potential
(23) not between plane waves, but between the corre-
sponding states which are solutions of the Bethe-
Goldstone equation for the w-exchange potential.'!® In
practice, however, the simplest attitude in the current
literature is customarily to multiply the potential (which
is required to be local) by the pair correlation function,
either deduced from a G-matrix -calculation or
parametrized in some way.~ A very appealing parame-
trization of the pair correlation function}9 is

19

g(r=1—j,(q.r )==g(q)—8(3’(q)~ 8“’(q q.) (28)

C

with g, roughly of the order of the w mass. In practice
including correlations amounts, more or less, to substitut-
ing a potential ¥ (q) with

Vig)=

d’k
2

(2 ) (29)
If we follow the same attitude adopted in Refs. 8 and 9
then we should consider ¥°°*(q) as a piece of the poten-
tial, which needs to be correlated by means of the Bethe-
Goldstone equation in the case of microscopic calcula-
tions or by means of Eq. (29) if we want a simple parame-
trization.

Our case is particularly simple since ¥°°*(q) is needed
at ¢=0 only: one gets, for instance, in absence of barion
kinematics,

(30)

It is clearly seen that the convergence is improved since both terms have the same asymptotic behavior. Since each

one — 1 for t— oo, then the difference goes like ¢ 2

. But the original divergence was like [#2dr and we are left with

f dt only. In this approximate scheme then both binding energy and the number of A are unsatisfactorily determined.
Again we may invoke nuclear kinematics in order to make them convergent. The formula will be quite similar to Eq.

(30) with 1/8M replaced by the energy denominator:
AA
d 3t V,.,.‘p (t)
(27)? 12

20M +——
) M,

VbOX( 0)=— Vﬁ’A (t)— 2

fd3k VA8 (k—t)8(k —q,)

(31)
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FIG. 7. Some second-order sélf-energy diagrams neglected in
the present approach.

The next step should obviously be to evaluate the num-
ber of A’s in the approximation (31). This time, however,
at least in the limit of A— o, we have to do with nega-
tive values of ¥°°* which in turn entail N, /N <0. Even
for finite A may results remain unreasonable.

There are many possible origins for this breakdown:
one may question, for instance, the oversimplified way of

J

d’t 1
3 2
(27) 28M + t
M,

vigo)=—f

with the obvious gain that this time V®* is negative-
definite. But another nontrivial achievement is that also
the convergence of the integral is improved. As a conse-
quence we expect a strongly reduced effect both for what
concerns N, /N and the binding energy. The results ob-
tained from Eq. (32) are given in Table II for two
different values of ¢,.

It is worthwhile to note at this point that our con-
siderations seems to go beyond the purposes of our paper
and suggest that the relevance of the box diagrams in
evaluating the nuclear binding energy is overestimated in
the previously quoted infinite nuclear matter calculation
using the Bonn potential, and that a more coherent calcu-
lation would require the explicit introduction of the A de-
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introducing correlations, moreover we cannot forget the
already quoted difference between a two-body correlation
function and a correlated wave function; furthermore
some less relevant diagrams, like those of Fig. 7 have
been neglected; and finally we cannot give any insight of
what happens when the correlated box diagrams are
iterated in a full G-matrix calculation. All these con-
siderations, however, cannot hide an important drawback
of this scheme, which is, however, intrinsic to the ap-
proach of Refs. 8 and 9, namely the fact that the A dy-
namics is all confined inside the box potentials and has
been limited to the 21 (or eventually 2p) exchange.

As a matter of fact, what is neglected is that not only
the barions before and after the occurrence of the interac-
tion (meson exchange or box diagram) must be kept dis-
tant by the action of short-range correlations, but a
strong repulsive interaction is also expected between the
A’s inside the box diagram itself. In our simplified model
this new feature is introduced by correlating the meson
exchange instead of the box potential on the whole.

The analytical expression turns out to be

2

IV | 3 AN ( — -
Ve = s Ja*kvis (k—t)8(k —q,) (32)

gree of freedom inside the Bethe-Goldstone equation, to-
gether with a repulsive (w-meson exchange) A-A and N-A
interaction.

Coming back to Table II we see first of all that for the
most reasonable choice of the parameters (g,.=800
MeV/c and A=1300 MeV/c) we find a result analogous
to that of Ref. 1. The difference is, however, that in the
present calculation the most relevant contribution comes
from p-meson exchange, for which we expect some reduc-
tion once a G-matrix calculation is performed. In this
sense the results of Table II may be considered as an
overestimate of the true results.

These results are, in our opinion, interesting in that
they show the relevance of including the short-range

TABLE II. N, /N in nuclear medium with correlated meson exchanges.

g.=500 MeV/c A= A=1300 MeV/c A=800 MeV/c
PA%(qr) 0.26% 0.17% 0.28%
PNA(rr) 0.18% 0.15% 0.3%
P2%(p) 6.7% 1.8% 0.47%
PN (p) 7.6% 1.9% 0.44%
pt 14.8% 4.04% 1.48%
q.=800 MeV/c
PA%(7) 0.31% 0.62% 0.93%
PNA(q7) 0.26% 0.68% 1.1%
PA%(p) 2.8% 1.8% 0.62%
PM(p) 26.6% 2.9% 0.59%
pt 50.7% 7.0% 3.2%
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TABLE III. N, /N in nuclear medium with RPA correlations.

gl P(Z) P(Z) PgZ[) PRPA PRPA PF![’A
T P 0! T P )
0.5 1.61% 7.65% 9.26% 3.34% 12.55% 15.89%
0.6 0.83% 7.58% 8.41% 1.26% 8.16% 9.42%
0.7 0.33% 8.65% 8.98% 0.4% 6.26% 6.66%
0.8 0.11% 10.86% 10.97% 0.05% 5.61% 5.66%

correlations which modify the asymptotic (high ¢g) behav-
ior of the one-meson exchange potential and that they
bring into play the range of the correlations (g, !) as the
relevant parameter of the model. They are instead not
yet satisfactory in that other relevant dynamics has been
neglected. To make a simple example, we remind that a
correlated pion may propagate in the spin-transverse
channel as well and that the correlated p meson may
propagate in the spin-longitudinal one.?® That is, howev-
er, not the whole story, since other diagrams, like those
of Refs. 21 and 22 are also relevant, together with other
more complicated and mostly unexplored processes.

The customary attitude of nuclear physicists, besides
the quoted cases?"?>?0 in which some attempts have been
done of evaluating microscopical processes, is to separate
the interaction as a pure one-meson (7,p) exchange and
an effective interaction including each other diagram but
the single-meson exchange and to parametrize the latter
by means of Landau-Migdal parameters, along the lines
of Eq. (10). Of course the Landau parameters should be
different, in principle, for the spin-longitudinal (pion)
channel and for the spin-transverse (p) one. In practice,
for instance, the longitudinal interaction should account
for the correlations to the pion exchange coming from
the correlations, as discussed above, but it should also in-
clude that part of the correlated p exchange which propa-
gates in the longitudinal channel, and moreover it should
also embody all those diagrams we have neglected so far.
The same of course holds for the transverse interaction.
It is well known, however, that both the longitudinal (g; )
and transverse (gr) Landau parameter must have the
same limit (g') when the transferred momentum is van-
ishing. If we assume for the sake of simplicity that the
momentum dependence of the Landau parameters is
slow, they may be safely assumed as coincident. More-
over it has been outlined many times®>?* that different
values of g’ should be chosen for the different channels
N-N, N-A, and A-A.

Here we prefer to consider the Landau-Migdal interac-
tion as free parameters and to make use of the so-called
universality by setting gyy =8nva =8aa (always for the

sake of simplicity). We may now repeat the previous cal-
culation according to Eq. (18) and using the effective in-
teraction of Eq. (10). The results are given in Table III
for different values of g’. Here with “7” (or “p”) we
mean the whole effective interaction propagating in the
spin-longitudinal (or -transverse) channel. :

The difference with respect to Table II is that th
effective interaction used here accounts for a much richer
dynamics. Nevertheless the results remain of the same
order of magnitude. It is to be remarked that while the
pion-exchange effect is strongly depressed, the p-meson
exchange remains quite relevant.

The formalism of Eq. (18) is immediately translated to
the RPA scheme by means of Eq. (13). The results of the
RPA scheme (with the labels 7 and p denoting, as
specified above, the spin-longitudinal and spin-transverse
channel) are also reported in Table III. They show a
significant decrease of N, for high values of g'.

We want to remind the reader furthermore that the
number of A’s in the nuclear ground state is strictly con-
nected with an observable quantity, namely the A width
in the medium, as is clearly seen from Egs. (1) and (2).
The first term of (2) is of course irrelevant and since
N, /V is obviously real, then only the imaginary part of
2(p) comes into play. We have already remarked that
the A self-energy in the vacuum is also ineffective, as it
may be seen as a renormalization contribution, and we
are left with only the contribution of the nuclear medium.

The existence and relevance of such a contribution was
already discovered many years ago in studying the pion
optical potential: it was found indeed that a spreading
potential (i.e., a contribution to the imaginary part of the
optical potential coming presumably from two-body ab-
sorption) was required in order to make the various A-
hole models realistic.?3~2’

The microscopical origin of this spreading potential
has been examined in great detail in Ref. 28. The self-
energy diagrams considered here correspond exactly to
what is called “two-body absorption” in the quoted pa-
per. Higher-order diagrams are here neglected, while in
Ref. 28 are found to be relevant. It was shown, however,

TABLE IV. N, /N in nuclear medium with RPA correlations. Parameters like in Ref. 8.

gl P(2) P(2) Pgt) PRPA ‘ P,I}PA PPI:A
T P ™ of
0.5 1.27% 5.78% 7.05% 2.43% 8.70% 11.12%
0.6 ) 0.66% 5.73% 6.39% 0.96% 5.92% 6.89%
0.7 0.27% 6.56% 6.82% 0.32% 4.7% 5.02%
0.8 0.09% 8.26% 8.35% 0.05% 4.34% 4.4%
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FIG. 8. A momentum distribution: solid line refers to RPA
calculations, dashed line to second-order approximation.

in Ref. 13 that the whole series of 2-,3-,4-,. .. body ab-
sorption may be summed up by means of a set of integral
equations. In that paper the two-body absorption was
obtained as the first iteration of the integral equations,
starting from free pion and A. There was also shown that
the whole series is not convergent, and that the first itera-
tion overestimates the true solution of the integral equa-
tions. A direct comparison with the present work and
with Ref. 28 is unfortunately not possible because in Ref.
13 the effect of the p meson, as well as other off-shell
effects, was parametrized and not explicitly evaluated, so
that a microscopical description of what was included
and what was left out is lacking. Furthermore Ref. 13
provided a good description of the A self-energy near the
resonance (and in fact A photoexcitation? and inclusive
electron scattering in the A region®® were fairly de-
scribed), but there was much less confidence about off-
shell behavior, and in the present calculation the off-shell
effects may give relevant contributions.

A final remark concerns the parameters employed in
the calculation. In Table IV the same results as in Table
III are reported, but this time with the same coupling
constants and cut off of Ref. 1. This clearly shows how
much the results depend upon the parameter f _ya,
which turns out to be the crucial factor of the calcula-
tion.

1IV. THE MOMENTUM DISTRIBUTION

To better understand what is the effect of such a high
number of A’s in the medium it is of relevance to under-
stand how the A’s are distributed in terms of their
momentum and which nucleon levels are depleted. As
described briefly in the introduction, if the quoted de-
pletion is distributed smoothly in a wide momentum
range, we simply infer that the occupation number of the
external shells (mainly the valence shell) is somewhat re-
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FIG. 9. Nucleon momentum distribution in RPA.

duced, in good agreement with the experimental situation
as shown firstly in 2°°Pb,” and then examined in a variety
of heavy nuclei.’! The physical effect in this case should
not be the destruction of the whole shell model but sim-
ply the depletion of the tail of the momentum distribu-
tion for p > k. Since in fact a value of about 0.7 for the
occupation number of the valence shell in heavy nuclei is
a well established experimental outcome, also reproduced
by detailed microscopic calculations®® we reasonably ex-
pect that the same calculation, if the A’s are not explicitly
included, will overemphasize the tail.

Here we have evaluated the occupation number for
both A and nucleons along the lines of Sec. II [Egs. (20)
and (21)]. The momentum distribution of the A is given
in Fig. 8, evaluated in the frame of the RPA approxima-
tion, with g’=0.7. A pronounced peak is apparent at
small momenta. On the contrary, the nucleon momen-
tum distribution presents a very smooth behavior up to
kg (see Fig. 9) but a strong depletion of the tail.

We are now in position to draw some conclusions.

(1) We have seen the relevant role played by the so-
called box diagrams in the A self-energy. This implies
that as far as the ground state is concerned the natural A
width is irrelevant (since we are working well below the
threshold) and only those self-energy diagrams which
have a truly many-body origin come into play. This
justifies the assumption of Ref. 4.

(2) The order of magnitude of the result of Ref. 1 is
essentially confirmed. Owur analysis, even in absence of
complicated microscopical calculations, seems to put in
evidence two drawbacks of the previously quoted result:
on the one hand, the lack of a AA or NA short-range
repulsion leads to an overestimate of N,; such an overes-
timate is, however, compensated for by the choice of the
parameters (in particular f_y, and consequently
Sona=C,f zna, which are fixed in such a way to repro-
duce the NN scattering but fail with the 7N scattering).
As a conclusion the value of N, seems to be of the order
of 7%.

(3) This outcome is nevertheless not contradictory with
the shell-model structure: it would imply, on the con-
trary, a reduced occupation number of nucleons above
the Fermi level.
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