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Symmetric collision of two slabs in the framework of the Vlasov equation
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A phase-space description of the collision between two slabs of nuclear-matter is presented. An-
isotropic distortions of the Fermi surface are included in the distribution function. The present re-
sults are compared with the predictions of the time-dependent Hartree-Fock and hydrodynamical

approaches.

INTRODUCTION

The Vlasov equation has been extensively used for the
description of several processes observed in many particle
systems.!~* It is an appropriate tool for studying a classi-
cal system of fermions moving in a mean field determined
by the density. The Vlasov equation can be identified as
the leading term of a Wigner-Kirkwood expansion of the
time-dependent Hartree-Fock (TDHF) equations in
powers of 7.5 When the classical limit is taken, only the
quantum statistical effects are maintained. Indeed, the
Pauli principle is incorporated into the dynamics by al-
lowing the distribution function to take only the values O
and 1.

The exact solution of the Vlasov equation for finite sys-
tems can only be obtained by numerical methods.® Ap-
proximate solutions for the Vlasov equation have been
obtained by means of different parametrizations of the
trial distribution function.””® Some of these approaches
have given the energies and the fractions of EWSR for
the collective excitations of atomic nuclei in good agree-
ment with experimental results. In a very recent paper,’
the validity of such kind of approximations is discussed
by comparing them with the exact solution in an infinite
system.

The present note reports an application of the varia-
tional description of nuclear fluid dynamics presented be-
fore.!” The system under consideration is now composed
of two slabs of nuclear matter, infinite in the transverse
directions, and limited in the z coordinate. We are in-
terested in describing the time evolution of the system in
the framework of the Vlasov dynamics, starting from
given initial conditions.

The motivation for the present calculation is two-fold.
In one way, it is instructive to compare the results now
obtained with those of the simpler version of this kind of

|

application.!! One expects to get a better understanding

of the main features resulting from a richer parametriza-
tion of the distribution function. On the other hand,
compariscn with the predictions of TDHF (Ref. 12) as
well as with nuclear hydrodynamics'®>!* can give a better
insight into the advantages and also the limitations of the
semiclassical models based on the Vlasov equation.

Although the geometry of the system is quite simplified
(in order to limit the complexity of the numerical calcula-
tions) one hopes that it exhibits some important aspects
present in the real collisions of heavy ions.

NORMAL MODES FOR A SINGLE SLAB

We describe the excited modes of the system by the ap-
proximate solutions of the Vlasov equation. In the
present approach these solutions are obtained by means
of a suitable parametrization of the trial distribution
function
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takes into account the distortions of the Fermi surface
(static deformations) and the generator function Q (r,?)
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introduces the dynamical deformations (currents, . . .).

The Lagrangian of the system in the harmonic approxi-
mation reads now as
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where E [p,Xqp] and T'[¢, 5] are, respectively, the potential and the kinetic-energy functionals. The Landau parame-

ter Fy is given by
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By allowing for the free variation of the fields one obtains the following equations of motion:
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An additional boundary condition is imposed to
prevent an infinite current at the surface:!°

’x\a¢aB|surf= 0. (®)

In order to investigate the potentiality of this semiclas-
sical formalism, we begin by considering a slab of nuclear
matter, with the nucleons confined to move in the region
—L =z =L and look for the eigenmode solutions of such
a system.

For the longitudinal modes, one has two traceless solu-
tions for the tensor fields ¢4
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with the corresponding coupled scalar fields
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Each one of the set of solutions i (i =1,2) corresponds

to one longitudinal velocity for the propagation of the
sound waves, namely,

2 plz'" l6 FO
2

C1‘2=2m 7+T
1/2
F, 1 |96
3 35 |7 +8Fo .an

This fact, not present in the more simplified version of
this formalism,!! is related with new important features
of the dynamics.

The wave vectors ki and k}" are linked by the equa-
tion

o, =c kM =c, k| : (12)

We can also add a solution of the type

(62,113 =85k " cos(k {z) cos(w, 1) , (13)

2
p
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which only affects the boundary condition (8).
The complete solutions for the fields ¢ and ¢,z are su-

perpositions of the previous particular solutions with
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convenient coefficients F,;:
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For the remaining fields, we have
pM(z,t)=p{"(z)sin(w,?) , (17a)
Xod(z,)=x\0(z) sin(w, 1) , (17b)
8R"(z,1)=8R""(z)sin(w,1) . (17¢)

The spatlal parts [p{"(z) X(”’(z)] are related to ¢""(z)
and ¢a/3 z) by means of the equations of motion for the
normal modes. The surface displacement &R ")(z)
(z==L) is obtained from the boundary conditions.

SYMMETRIC COLLISION OF TWO SLABS

Before we present the sequence of the results and draw
some conclusions, it is important to specify the choice of
the dynamical quantities relevant for the evolution of the

Ozt Pt Jizb
t=0 /\ | l ‘

7 N\

e i N W

I e I

/"\H

~—~J pJ

/__l'\-
T v

/AN Y
| 11 | ] ] ]
-1 0 11 0 1-1 0 1
z (fm) z (fm) z(fm)

t=0.17 l

FIG. 1. The potential velocity ¢(z,¢)

system as well as the initial conditions.
The nuclear matter density is given by

=g [ 55

and the current density along the z-axis is obtained in a
similar way:
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We also define the velocity potential
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whose time evolution is determined by the first-order
fluctuation of the density [Eq. (6c)]. The current density
in the interior of the system is related to the fluctuation
of the density by means of the continuity equation [Eq.

a)] and at the boundaries it expresses the velocity of the
nuclear surfaces as given by Eq. (7a). In Fig. 1 the veloc-
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, the transition density 8p(z,1), and the current density j,(z,t) are displayed as functions of z,

at several instants. (The numbers on the left of the figures give the time in units of 1072 s.)
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ity potential §, the first order fluctuation of the density,
8p=p;—(pp/2)Xqe and the current density j, are
displayed as functions of z, at several instants.

We consider two slabs in motion parallel to the z axis
and approaching each other, and choose the instant t =0
when the two slabs touch each other. The initial condi-
tions are then

#(z,0)=L +z, z€[—L,0]
_ 21
¢(z,0)=L —z, z€[0,L]

for the velocity potential, all the other fields being zero:
?0p5(2,0) =X 45(2,0)=p(2,0)=56R (2,0)=0 . (22)

At the initial time, the density of matter is essentially
constant in a wide region in the interior of the slabs. We
assume that it is well represented by a square well:

p(z,0)=py, —L <z <L,
(23)

p(z,0)0=0, z<—L and z>L ,

where p is the saturation density of the nuclear matter.

After the collision of the two slabs, a slight increase of
the density appears around the contact surface and prop-
agates outwards. The existence of two different velocities
for the sound waves produces interferences of the waves
generated in the shock region giving rise to the structures
shown in the graphs.

At the time # =0.255X 10722 s, the initial situation is

more or less inverted. The nuclear current density shows
that all the matter is now moving towards the boundaries
and away from an imaginary surface dividing the com-
pound slab into two. This effect may be interpreted as an
indication of the tendency of the system to separate
(fission) into two parts. The effect becomes more and
more pronounced at subsequent instants with two dis-
tinct lumps emerging at time ¢ =0.3875X 107 2% s. How-
ever, since a linearized theory cannot explain nonlinear
processes, it would be unreasonable to expect a well-
defined fragmentation of the compound system.

The shock wave gets reflected on the boundaries and
goes on interfering with itself for all times. The initial ki-
netic energy is transformed into the excitation energy of
the collective modes.

The present calculation goes beyond the previous sim-
ple Vlasov description'! by including high-order distor-
tions in the trial distribution function. One thus obtains
a more complex pattern for the behavior of the macro-
scopic fields, in good agreement with TDHF (Ref. 12)
and hydrodynamical approaches'®!'* for the same simple
systems. One finds now that there is no recurrence time.
The loss of memory of the initial conditions, clearly
shown, can be interpreted as an indication of the damp-
ing of the excitations.
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