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The connection between the strong-coupling approximation to quantum chromodynamics and
nuclear properties observed at low and medium energies and momentum transfer is examined. The
strong-coupling approximation to quantum chromodynamics indicates that, for nuclei, the Pauli
principle is obeyed at the hadronic level, so that quarks in different hadrons are treated as distin-
guishable objects. Furthermore, the gluonic effects of flux-tube rearrangement are small. Instead, a
more significant strong-coupling approximation to quantum chromodynamics string-breaking term
leads to meson emission from baryons. This mechanism is used to compute meson-nucleon and del-
ta coupling constants and form factors. Qualitative agreement with experiment is achieved. Thus
the strong-coupling approximation to quantum chromodynamics reproduces the salient features of
the meson-baryon picture of low momentum transfer nuclear physics.

I. INTRODUCTION

Baryons and mesons are the building blocks of ordi-
nary nuclei. However, quantum chromodynamics
(QCD), with its quarks and gluons, is widely regarded to
be the fundamental theory of the strong interaction.
Therefore I ask if QCD can reproduce the baryon-meson
dynamics of ordinary nuclei.

The purpose of such a question is two-fold. First, one
can attempt to use the existence of nuclei to test the va-
lidity of QCD. Secondly, any derivation of baryonic as-
pects of conventional nuclear physics is expected to be
approximate, and to break down at sufficiently high
momentum transfer. Studying the breakdown may indi-
cate the experiments to search for the onset of true quark
and gluon degrees of freedom in nuclei. The present pa-
per is intended as a first effort in applying QCD to under-
stand the nucleus; only qualitative aspects are discussed.

One way to address such questions would be to employ
lattice simulations, but current computer technology is
not in a sufficiently advanced stage. Instead, one may use
and model the strong coupling lattice QCD (SCQCD)
Hamiltonian.!™* The name SCQCD arises as follows.
The lattice spacing, a, (if large enough) provides a
momentum scale for which the strong coupling constant,
g, takes on large values. Thus one is able to treat the
Hamiltonian by making low-order perturbation expan-
sions in terms of inverse powers of g. The use of this ex-
pansion involves a departure from QCD, because, in gen-
eral, one is not able to take the continuum limit of a
(hence g) approaching zero. However, long-range phe-
nomena are of most relevance to nuclear physics, so the
strong-coupling expansion may be suitable.

I repeat: The basic assumptions of this work are that
the strong coupling limit correctly describes the neces-
sary features of the long distance behavior of QCD, and
that one need not take to the continuum limit (g2—0) in
order to understand the low momentum transfer physics
of the continuum theory. Thus, SCQCD, as defined pre-
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viously, is not QCD. A conclusion drawn correctly from
SCQCD may turn out to be invalid. Nevertheless, it is
interesting to examine the implications of SCQCD for nu-
clear physics. This has not been done. Furthermore, one
should recall that SCQCD was the first technique to yield
the long-range linear confining potential. This result sur-
vived the necessary more detailed lattice simulations.
Indeed, strong coupling calculations of the string tension
can be carried out sufficiently so that a smooth joining to
the weak coupling region (scaling) is obtained.’

Using SCQCD to compute the entire nuclear wave
function is not necessary. One derives the conventional
description of nuclei by starting with a two-nucleon in-
teraction and subjecting the nucleons to the Pauli princi-
ple.® Thus, it is reasonable to study the Pauli principle of
composite nucleons, and examine the connection between
SCQCD and the nucleon-nucleon interaction. There are
some striking qualitative questions which require
answers. What are the main features implied by
SCQCD? Does SCQCD predict elements or terms entire-
ly different from the conventional meson-exchange pic-
ture? Does SCQCD predict three and higher body in-
teractions very different from what is now expected? The
goal of this paper is to address these issues.

The results are that for nuclei, SCQCD indicates that
quarks in different hadrons may be treated as distinguish-
able. (This may be necessary for the very existence of the
nuclear shell model.”) It is also shown that SCQCD leads
naturally to the idea that nucleons interact by meson ex-
change. Moreover, the values of pion-nucleon and
omega-nucleon coupling constants computed in the
framework of SCQCD are qualitatively consistent with
observations. Thus, SCQCD seems to yield the conven-
tional baryon-meson picture of nuclei at low and inter-
mediate energies.

Here is an outline of the paper. In Sec. II, the lattice-
regulated, locally-gauge invariant Hamiltonian is dis-
cussed. The ideas of strong coupling QCD have been
used to develop phenomenological wave functions of the
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mesons and baryons.®”!! The phenomenologies and the
theory are related in Sec. III. Furthermore, I show how
to use continuum wave functions to evaluate matrix ele-
ments of the lattice Hamiltonian. In Sec. IV the require-
ments of local gauge invariance are shown to lead to the
result that the baryonic Pauli principle applies in nuclei.

Another set of terms occur when the magnetic field en-
ergy leads to gluonic interactions called flux-tube rear-
rangements. Such effects are potentially very different
from those of meson exchanges, but seem very small'? as
discussed in Sec. V. Then the dominant inseraction be-
tween hadrons would arise through breaking of the
color-flux tubes. Local gauge invariance requires that
such flux-tube or string-breaking effects lead to quark-
pair formation.

Quark-pair formation can lead to meson emission. Ap-
proximate treatments of the string-breaking part of the
SCQCD Hamiltonian'>'* are discussed, and the meson-
baryon coupling constants are computed in Sec. VI. A
final section is reserved for summary remarks and discus-
sion of possible improvements, extensions, and implica-
tions.

II. THE SCQCD HAMILTONIAN

The Hamiltonian formulation of QCD is to be applied
towards understanding nuclear physics. This treatment
has been reviewed extensively,!~*!* so only features of
relevance to the following applications are reproduced.

The Hamiltonian of QCD is amenable to an approxi-
mate treatment!”* in which three-dimensional space is
treated as a discrete lattice of points. The time variable
remains continuous. The points on the lattice are denot-
ed by the vector x. The links / join the points x and
x+a€ and where aq is the lattice spacing and € is one of
six unit vectors: up, down, left, right, forward and back.
The lattice theory is constructed so that the correct con-
tinuum limit (@ goes to 0) and local gauge invariance
(LGI) are maintained. LGI is needed to satisfy the re-
quirement that every point in space be color neutral.

I next describe the lattice variables, beginning with the
color electric field. As in the continuum theory, the elec-
tric field is the momentum variable canonically conjugate
to the vector potential. Thus the electric field is the time
derivative of the vector potential A [a three by three
color SU(3) matrix], and the temporal gauge ( 4,=0) is
used. The lattice version of the electric field is E (/)
where the electric field lies on the link / (between x and
x-+a€) and is parallel to the vector €. The electric con-
tribution of the energy, Hy, can be written as!

2
H,=2-SEW-EW, 2.1
2a 4

which is the lattice version of the familiar term involving
the volume integral of E2. The proportionality to g2 re-
sults from a convenient definition of electric units.!

The lattice equivalent of the vector potential A is the
operator U (x,€)[=U ()]

Ux@)=Pexp |i [*T Az)-dz 2.2)

X
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The local gauge transformation (LGT)
g(x)—S(x)g(x),

(2.3)
U(x,8)—>S(x+a®)U(x,8)S " Ux),

(where S (x) is a unitary color matrix) reduces to the con-
tinuum form for small values of a. The term g (x) is the
quark field operator. The plaquette operator U,

U,=TrU(MU((2)U(3)U(4) , 2.4)

[see Fig. 1(a)] is used to construct the magnetic field con-
tribution to the Hamiltonian!

Hy=—53(6-U,~U)). 2.5)

ag® %

The dynamics of the gauge boson field is specified by stat-
ing the lattice version of the canonical commutation rela-
tions

[EXD,U;(IN]=5[A°UD];8y - (2.6)
The description of the Hamiltonian is completed by

specifying the quark contribution? (for quarks of zero
bare mass)

~L

(b)

(c)

(10-<—Q+[30—-—0————+-—0+ LI I Y

(d)
O—<+<teceo —— ﬂ(—o

FIG. 1. Lattice dynamics. (a) A plaquette. (b) A gauge in-
variant ¢g pair, n =3. (c) Some (one-dimensional) components
of a physical meson wave function. (d) An example of the ac-
tion of Hy, on the configuration of (b). In this and other figures,
quarks are represented by filled circles, antiquarks by open cir-
cles, and flux lines by lines.
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=t i - “
H, 2 ; {[x"(Urn,)x(r +1,)

—x'(r +8,)U 1 (r,8,)x(r)]

X(—1Y+cyc. perm.} , 2.7)

in which “staggered” fermions are used, species doubling
is eliminated and, chiral symmetry is maintained. The in-
dex r stands for (x,y,z). The field operators x(r) are sing-
lets in spin and isospin, come in three colors,? and have
eight components representing the 4 (Dirac) X2 (isospin)
components of the quark field operator, q. Strange and
charmed quarks can also be included.

Adding up all the contributions, one finds the lattice
Hamiltonian H

H=Hg+H,+H, . (2.8)

The terms in this expression are written in the order g”",
with terms of highest power of n appearing first. The
strong coupling expansion is defined by solving the
theory of Hy exactly, and then treating the remaining
terms as a perturbation. (The strong coupling expansion
is not the favored method for lattice computations,15 but
I am interested in qualitative issues.) A modified strong
coupling expansion is discussed in Sec. III.

The lattice version of the theory maintains the basic te-
net that all states must be invariant under local gauge
transformations. Physically, this is the statement that
color vanishes at every lattice site. For example, the
configuration

gt (x+a@)U(D)g(x)[0)

(|0) is the unperturbed vacuum) is invariant under the
transformation (2.3).

To understand the theory let’s examine the dynamics.
Consider first, confinement. The unperturbed vacuum
|0) is defined so that

E4D]0)=0.
olulo)y=o.

(2.9a)
(2.9b)

Note that Eq. (2.9b) is a property of the physical vacuum.
One may use the commutation relation (2.6) to show

EXDU(D]|0)=4U(D]0) . (2.10)

Thus we see that the string-bit operators U create electric
flux and energy. (Similarly, U t'can destroy electric flux
and energy.) Recalling Hy, we see that the electric ener-
gy gets a contribution of (%)gz/a for each term U (l) act-
ing on the unperturbed vacuum. A quark antiquark pair,
separated by a line of n links, has an electric energy of na
times (%)g2 /a.? But na is just the distance between the
fermions, Fig. 1(b). Thus, one obtains the linear
confining potential. (For strong coupling, g is propor-
tional to a and the potential is independent of a.) This
confinement is not spoiled by including higher order
terms.’ The basic result is that the operator Hg counts
the number of flux links, it does not change that number.
Next, examine the quark Hamiltonian, H,. This term

causes both the quark kinetic energy and ¢g pair produc-
tion (string breaking). H, can destroy a quark, create a
flux link, and create a quark. This can change the length
of a qg pair joined by a flux line (a kinetic energy term)
and also lead to the creation of a new ¢g pair (string-
breaking or quark-pair creation).

The use of “staggered fermions” has interesting conse-
quences. Quarks (antiquarks) exist only on even (odd) lat-
tice sites. Therefore, mesons must consist of an odd num-
ber of links. The influence of this on the kinetic energy is
that a mesonic component of length a can be converted
to one of length 3a only by a two-step process in which
the intermediate state has an extra “meson.” Thus the
imposition of the lattice version of chiral symmetry (2.7)
leads to the close association of the quark kinetic energy
operator (hence, constituent quark mass) with a cloud of
mesons, and a contribution to the constituent quark mass
is generated by a version of the Nambu Jona-Lasinio
mechanism. !¢

This interesting feature is not exploited in this paper
(see the following). In any case, the length of a string is
not an eigenvalue so that a physical state is a superposi-
tion of strings of different lengths and shapes, Fig. 1(c).

The H,, term (B?) is of order g ~* with respect to the
E? term. It consists of plaquettes which destroy and
create flux lines. Its.action is to rearrange flux lines. See,
for example, Fig. 1(c).

III. RELATING THE LATTICE HAMILTONIAN
TO CONTINUUM HADRONIC WAVE FUNCTIONS

The previous section deals with the lattice Hamiltoni-
an. In principle, one may use the strong coupling expan-
sion to obtain energies and wave functions. However, the
numerical difficulties are huge. Moreover, using continu-
um wave functions for the hadrons would increase the
number of possible applications. In the following I indi-
cate a general procedure to use continuum hadronic wave
functions in the evaluation of the lattice Hamiltonian.

The Hamiltonian (2.8) may be rewritten as

H¥n=T+V+(H,—T)+Hy+H,—V), (3.1

in which T is a continuum fermion mass and kinetic ener-
gy term, and V is the usual linear potential or between
the quark and antiquark. The motivation for [3.1] is that
one may define a solvable unperturbed Hamiltonian
H,=T+V and, in principle, treat the remainder
H —Hy,=H, to all orders of perturbation theory. One
can obtain the energy and wave functions of the Hamil-
tonian of Eq. (3.1) using standard perturbation theory.

The significance of Eq. (3.1) is that one can use contin-
uum wave functions to evaluate matrix elements of the
lattice Hamiltonian. As an example, consider the evalua-
tion of Hy for a meson. Let ¢(r) be the eigenfunction of
H,, where r is the ¢gg separation. One may define a
different lattice for each value of r, and then divide r into
n pieces of length a. Assuming that the electric flux line
is parallel to r (see the following) each segment has an en-
ergy 2g?/a(=ca). Approximating the sum over line
segments by an integral gives
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($|Hgl¢) =0 [drrlp(n))? . (3.2)

Perturbative evaluations of Eq. (3.1) may define a
reasonable strategy for a complete treatment. However,
attaining such a goal is beyond present intentions. I only
want to use (3.1) to understand the relationship between
QCD and phenomenological applications.

With this in mind, examine the different contributions
to H,. Start with H,,. This term introduces kinks into
the string and is responsible for the restoration of rota-
tional symmetry and the roughening transition.>!®
Furthermore, H), causes the physical vacuum to acquire
a gluon condensate. Calculations!” show that the restora-
tion of rotational symmetry occurs over a wider range in
g2 than one would expect.!® For points that do not coin-
cide with the axes of the lattice, a value of g* as small as
two gives reasonably round equipotential surfaces. How-
ever, the situation is complicated. Kogut et al.'” find
that the restoration of rotational symmetry occurs in the
weak coupling region of g. Merlin & Paton'? obtain the
restoration at a larger value of g (g*=4) closer to the
strong coupling region, indicating the adequacy of strong
coupling theory. The flux tube can deviate from a
straight line path. This wandering or ‘“‘delocalization”
leaczios to a contribution —/12r to the ¢g potential ener-
gy.
Another problem is the thickness of the flux tube. Re-
cent lattice calculations by Sommer?! (who finds a narrow
flux tube of diameter 0.2 fm), and Caldi and Sterling,?
support the narrow flux tube picture. One may then im-
agine that the color electric flux is on the line between the
quark and antiquark. However, long-wavelength oscilla-
tions of the flux line lead to a term —/12r which sup-
plements the linear confining potential.

Consider next the term H, — 7. In the work of the Illi-
nois® and Toronto'®!! groups the continuum kinetic en-
ergy T is taken to be (—V2+m?)!/2, Corrections due to
the finite-size lattice are not examined. In addition, the
term H, leads to emission of ¢g pairs, and therefore to
hadronic decays via meson emission.'>'* Such terms are
discussed in Sec. VI. The magnetic spin dependent in-
teractions also rise also from the H, term.?

Putting all this together leads to the notion that strong
coupling theory provides a reasonable qualitative ap-
proach. As long as gR 1.1 (¢ R0.11 fm), the necessary
higher-order corrections do not seem to destroy the basic
picture of confinement and the need to use gauge invari-
ant physical states. Thus one can attempt to apply
SCQCD to nuclei by using flux line ideas. The first step
is to recall significant features of phenomenological ha-
dronic wave functions.

A. Phenomenological meson wave functions

The standard procedure for phenomenological applica-
tions is to supplement the confining term by the —w/12r
term, the color electric 1/7 term, and the color-magnetic
hyperfine interaction. For example, Carlson et al.,® and
Godfrey and Isgur'® have achieved an excellent descrip-
tion of mesonic spectra as well as various transition rates
with this procedure. Kumano and Pandharipande'*

FIG. 2. Locally gauge-invariant flux-line configuration for a
baryon. )

made the useful observation that using the hydrogen
wave function

Yolr)=2v3"2 """, (3.3)

where v=V'3/(2R,,) and R,, is the rms radius of the
meson M, is sufficient to reproduce matrix elements in-
volving wave functions (of the same rms radius) deter-
mined from variational methods.

B. Baryonic wave functions

The baryons are treated with a set of approximations
that are similar to the ones made for mesons except for
one essential difference. Local gauge invariance requires
the electric field energy to be treated as a three-body po-
tential: Writing the baryon state in a local gauge-
invariant manner, along with assuming linear flux, leads
to the geometry of Fig. 2. The introduction of a coordi-
nate (R), additional to the three quark coordinates
(ry,1,,T3), is necessary to preserve local gauge invariance.
The total electric field energy is taken to be proportional
to the sum of the lengths:

3
V=0 E 1r,~_R| .

i=1

In this case the electric flux lies along each of the three
vectors r; —R. One determines R by minimizing ¥V with
respect to R. Variational calculations determine the
spectra and wave functions. Excellent reproductions of
the data are achieved by Carlson et al. and Capstick and
Isgur. However the preceding ansatz is not yet supported
by lattice calculations.

One possible problem is the size of the baryons. For
example, the computed radius of the nucleon is about 0.3
fm according to Carlson et al. and 0.4 fm in the
Capstick-Isgur calculation. Meson cloud and recoil
terms could increase the computed value of the nucleon
size.

IV. LOCAL GAUGE INVARIANCE
AND THE PAULI PRINCIPLE

The construction of nucleon wave functions in accord
with the criteria of local gauge invariance (LGI) has im-
portant implications. Greenberg and Hieterinta?*%
(GH) implemented LGI by introducing a link-operator
formalism. GH showed that LGI leads to models in
which quarks in different hadrons act as distinguishable
objects. Inner products between two-hadron states have



only those terms expected for Bose mesons and Fermi
baryons considered as elementary particles because over-
lap terms arising from contractions of quark operators in
one baryon with quark operators in another vanish.

The intent of this section is to show that SCQCD leads
to the GH result. I discuss the significance of this before
giving the details.

Consider the motion of composite sizeable nucleons
through the nucleus. If two such objects are close, a
quark in one nucleon can be at the same position as a
quark in another. If the quarks behave in the same
manner as electrons in molecules, quark exchange effects,
arising from the Pauli principle, are present.?®

However significant, quantum electrodynamic (QE)
effects lead to a breakdown of the nuclear shell model.
Let’s follow Krein and Maris’ here. They start with

~ Weisskopf’s®” derivation of the shell model. For nucleons
in the medium the nucleon-nucleon interaction is the
Bruckner G-matrix

G ={piPalQVIY; ;) ,

in which p; and p; are the initial and final momenta of in-
dividual nucleons, ¢p1,p2 is the wave function, and where

Q is a projection operator for nucleons above the Fermi
sea. For p,p, <p, energy-momentum conservation says
p1,p3 <py, and therefore {p}p5|Q =0. Thus, G and the
scattering cross section o vanish, so the mean free path
A(A=1/po) is infinite. One obtains an independent par-
ticle shell model, even though V is quite large.

Krein & Maris reexamined the equation {p'p,/Q =0
using composite nucleons. The key point is that QE
causes {pip;|p;ps) to be nonzero even if pj,py <p, and
P3:P4>ps. Thus, A acquires a finite value. The exact
value is not an issue. A A as large as 20 fm would be a
severe problem since the imaginary part of the shell mod-
el potential would be real. In the independent pair ap-
proximation, A must be infinite, so QE does not seem
compatible with the existence of the nuclear shell model.

Is there any way to avoid the preceding result? One
way is if nucleons are very small and/or nucleon-nucleon
repulsive interactions separate the nucleus, so QE effects
are negligible anyway. It might also be that there are
holes in the Fermi sea. Two nucleons in the Fermi sea

J

(0| ULp(r' +ai', " UL, (', 8) U, (5,8) U, 5(r+af, D)|0) =8, 18,3,85 41,

but
(O|[U(r,8)U(r+af,m)]*|0)=0.
The last relation follows from

U(r,n)U(r+afi,m)=U(r,r+afi+afi;c) ,
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can scatter into these openings. Such effects are of fourth
order in the hole-line expansion, and are far less
significant.

Thus the validity of the shell model indicates how non-
perturbative QCD works. Namely, QE effects are very
small. It is therefore interesting to see if SCQCD repro-
duces the necessary suppression of QE effects.

I now return to calculational details. GH did not
derive a detailed relationship between their formalism
and QCD, but stated that the link operators are an “ab-
breviated description of the infinite number of degrees of
freedom associated with the gluon.” The lack of a direct
relationship with QCD means that one does not know
how compelling is the GH conclusion about the Pauli
principle. In later work, Robson?® derived a relationship
between the link operators of GH and the string-bit
operators of QCD.

In this section I argue that the central results of GH
emerge from SCQCD. This requires the assumption that
the strong-coupling expansion, in which the gluonic de-
grees of freedom are treated in terms of flux lines, be a
reasonable approximation. Explicit link operators are
not required to obtain the present result that quarks in
different hadrons can be treated as distinguishable.
Meson-nucleon vertex functions are also examined. A
nucleon can emit a quark-antiquark pair bound together
as a meson. It turns out that the quark in the meson is
distinguishable from the three quarks in the proton.
Thus, SCQCD and the conventional dynamics of nuclear
physics have significant points in common.

As a first step, we examine inner products between
two-meson states. We take the quarks to be on lattice
sites, so the paths are connected by the lattice links.
Gluonic correlations of the vacuum are neglected here,
but examined in Sec. IV A. It is useful to present some
simpler matrix elements.?’ The basic one is

OlUL (5, B U5 (r,8)|0) =8, .84 118,685, .  (@4.1)

LUYM,A3

Note that Kronecker 6 functions appear as a result of
treating space discretely. Two states formed by a single
link operator acting on the vacuum have a nonzero over-
lap if, and only if, the starting, ending points, and direc-
tion of the string-bit operator are the same. Next consid-
er other terms:

& 9%uOvB (4.2a)

(4.2b)

and the result that [ U (r,r’;¢)]? cannot transform as a color singlet. (The notation U(r,r’;c) denotes a flux line, starting
at r and ending at r’, along a path denoted by ¢.) With (4.1) and (4.2) as examples, one can state a result involving more
general operators, U (x,y;c), which are built from a connected string of link operators. This is

(01U 4(x,y'5¢ ) U, 5(%,¥30)10) =8, 18 y/8ee18,5D 5y = 18,0858, - 4.3)
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[Including the starting (x) and ending points (y) in the definition of the path ¢ simplifies the notation.] The meaning of
(4.3) is that two different paths formed by string-bit operators are orthogonal. Examples are shown in Fig. 3. The re-
sults (4.1)—(4.3) are essential to the derivation of the desired inner products. These are the mathematical relations of
the string-bit operators. We shall assume that these operators are relevant for physical continuum states. This is the
essential approximation.

Next consider a single meson state. We impose the requirements of local gauge invariance and Gallilean invariance
to write

_ 3o @ P2
|M (p) x’zy,c(a ) (2m )72
in which bT(x)[dT(y)] are that part of ;b(x)[zﬂ(y)] that creates quarks (antiquarks) with standard anticommutation re-
lations. The indices a,f refer to color indices. Other indices are not written. The operator I" acts on the flavor-spin
degrees of freedom so that the appropriate quantum numbers are obtained. A discrete version of the wave function, as
expected from the lattice Hamiltonian, is given here.

The function x,(|x—y|) weights the various paths from y to x by numerical factors. The strong coupling expansion
predicts that the most important path c is the straight line from y to x. The amplitude for other paths is reduced by at
least one power of g2. The total momentum of the state (4.4) is p.

The intent is to examine mesonic overlaps. The simplest is (M (p’)|M (p)). Eq. (4.3) may be used to obtain

T’%(|x—y|)d,*;(y)ruﬁau,y,c)byx)lo) : (4.4)

3
<M<p'>lM(p>>=2a’lxc<r>lzTr<r*r)§ (-;;)—Se“v—r””‘ : (4.52)

Approximating the summations over r, ¢, and r by integration gives
(M (p")IM(p))=8(p—p )3 fI)(c(|z|)|2d3zTr(FTl")=6(p—p') . (4.5b)
(4
Using the equality sign in the first step of Eq. (4.5b) amounts to neglecting terms of higher order in a. Such terms are

already neglected in deriving the Hamiltonian.
Now consider two-meson states formed by a direct product of states of Eq. (4.4). The overlap function

involves using Eq. (4.4) four times. Use the four sets of coordinates x;,y; and the four path indices ¢; with i =1,4.
Then O, is a sum of integrals of products OO,. The “gluonic” terms have an overlap O; with

0;=40|UYc,)UT(c))U(c;)U(cy)]0) , 4.6)
in which the abbreviated notation ¢; =(x;,y;;c;) is used. The quark terms require an overlap @Q:
0o =40lb(x,)d (y,)b (x,)d (y,)d (y)b (x;)d (y,)bT(x)]0)
=[8(y1,¥3)0(y2,¥4) —8(y1,¥4)8(y,,¥3) 11 8(x,X3)0(X,, x4) —8(x, x4)8(x%5,X3)] , 4.7

with color flavor-spin indices suppressed. The terms of positive sign of (4.7), see Fig. 4(a), yield contributions to @,, of
the form

or

These are the direct terms. The negative terms of (4.7) are those in which a quark or antiquark are interchanged, as
shown for example in Fig. 4(b). Such terms are dubbed ‘““quark exchange.”

Equation (4.7) is standard. Its use under the assumption that @;=1, leads to a variety of so-called?’ “quark-
exchange effects.” However, the presence of O kills the quark-exchange effects. To see this, use (4.7) to integrate over
X3,X4,¥3, Y410 Oy Then

Oy=73, fd3x1d3x2d3y,d3y2e
Clcz
C3C4

—ipy(x,+y,)/2 —ip,(x,+y,)/2
PR e R (I —yi X (1 —¥2 O

ip3~(x]+y])/2e ipy(x,+y,)/2

X { e, Ix =yixe, (Ixa—y2lde +(3=4)]

ip3~(x2+y1)/2eip4-(xl+y2)/2

—[xe,(Ix=y1)x., (Ix; —y2]De +(3=4)]} . 4.8)
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(a!

CHl=ed o

(b)
<o——o ’o—————o> =0

(c)

B

FIG. 3. Examples of orthogonal flux-line configurations lead-
ing to vanishing overlaps.

The factors I" and V'3 are omitted in (4.8) to simplify the
notation. (Sums over x; and y; are approximated as in-
tegrals.) The first terms of the integral of (4.8) are the
direct terms and the second are the exchange terms.

The overlap O is needed to evaluate Eq. (4.8). There
are two cases of interest. First suppose the four curves ¢;
do not intersect. Then a direct evaluation using the ideas
behind (4.1)-(4.3) yields

Os=[8(cy,¢3)8(cy,c4)+8(cy,c4)8(cy,c5)] . 4.9)

A simple example of Eq. (4.9) is given in Fig. 5(a). The
use of (4.9) in (4.8) yields a contribution [©'P] to O,,:

OQ=8(p;—p3)8(p,—py)+8(p,—py)8(p,—p;) .  (4.10)

The result (4.10) follows from (4.5b) and the observation
that the Kronecker 8 functions of (4.9) cause the contri-
butions of the exchange terms of (4.8) to be those of a set
of measure zero. Thus the exchange terms vanish.

What happens if the curves do intersect? Then the re-
sult (4.9) is not obtained. Consider the initial state with
all of the curves c; straight lines. This is the relevant sit-
uation in the strong coupling limit. Drawing four
straight lines, each beginning at a quark and ending on an
antiquark, that have an infinite number of intersections is
not possible. Thus the lowest energy configurations do
not cause a correction of Eq. (4.10). Instead, one finds
the situation of Fig. 5b, in which c¢; and ¢, are not

(a) (b)

FIG. 4. Meson-meson overlaps; (a) a direct term, (b) an ex-
change term.
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(b)
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5[5

*—-o0 + € /\O

FIG. 5. Meson-meson overlaps with configurations obeying
LGL .

straight lines. These correspond to higher than minimum
energy components of the wave function. See Fig. 5c, in
which the second term is smaller than the first by at least
two powers of 1/g2. Hence, in the strong coupling limit
terms of O with intersecting flux lines are of order
(1/g2)* and are negligible. Such effects are ignored.

The net result is that the meson-meson overlap func-
tion is

(M (p;)M (p,)|M (p3)M (p,)) = 8(p,—Pp3)8(p,—Ps)

+8(p;—p3)8(p,—ps) -
(4.11)

Equation (4.11) is the central one of this section. It re-
quires the validity of the strong coupling expansion. This
is that flux lines (as opposed to blobs) exist and that
high-order (n > 3) terms in g ~2" are small.

A question of relevance to many-body physics is over-
laps involving three (or more) meson states. The ortho-
gonality properties of the U matrices, Eq. (4.3), lead to
the result that matrix elements such as

(M (p,;)M(p,)M (p;)IM (p,)M(ps)M(pg))

are simply those of the usual Bose mesons, again provid-
ed that the strong coupling expansion converges reason-
ably well.

Turn now to baryonic properties. I again argue that
the gluonic overlaps kill the quark-exchange terms.
Baryon wave functions are needed. Local gauge invari-
ance leads to
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IBY="S €"p(x;,w,c;)[U(w,x;,¢)bT(x))]
e}

X [U(w,%5¢7)b (x,) ]

X[U(w,x3,¢3)b7(x3)]70) . 4.12)

Recall Fig. 2. The € is the usual totally antisymmetric
tensor, invariant under LGT. Each of the terms in the
sum of {c;} is invariant under the transformation (2.13).
[Spin-flavor indices are suppressed in Eq. (4.12).]

The overlap properties of two-baryon states are ob-
tained by computing the overlap:

<B(P1 )B (Pz)lB(P3)B(P4)> ’

in which p; labels the momentum and magnetic quantum
numbers. The geometric aspects of computing the B-B
overlap are more complicated than for meson-meson
overlap. However, the result that the overlap function is
the same as for elementary identical baryons emerges
from the same assumptions. To see this is to begin by ob-
serving that ‘

[U(@,X,5,¢5)b " (x,)]TU (@,%3,¢5)b T (x3)]5€™

have the color transformation properties of an antiquark
(t) at @. Then use the mesonic derivation. This is not
necessary. One can also assume that the electric field
vectors lie on the vectors r; —R. If the strong coupling
expansion is valid and flux tubes are narrow, one can ob-
tain the result

(B(p1)B(p;)|B(p3)B(ps))=8, , 8, , —8,,8, , .

(4.13)
Similarly one may show that

(B(p,)|B(p,)M(p;))=0 (4.14a)

and
(4.14b)

Eq. (4.14a) follows immediately from the lack of an anti-
quark in the baryon wave functions. That the flux line
joining the g7 pair of meson p; must be contiguous with
the one of meson p, gives (4.14b). Equation (4.14) is as-
sumed in the standard meson-baryon dynamics.

A. Effects of vacuum correlations

Both quark and gluon condensation occur in the QCD
vacuum (eigenstate of lowest energy). Here the latter is
considered. The dressing of the bare vacuum by pla-
quettes causes a nonzero expectation value of the square
of the color-magnetic field. The physical vacuum |Q) is
related to the bare vacuum |0) by

1

Q)= |1+ ———F—
) +—/\H/\

ANH,, ||0) (4.15)

where A =1—]0)(0| and the energy of the state € is
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chosen to be zero. Thus, (Q|U,|Q) does not vanish. In
SCQCD this matrix element is of order 1/g*; and there-
fore very small. However, SCQCD does not reliably pre-
dict glueball properties, so other techniques to estimate
(Q|U,|Q) must be used.

Consider the implications of the gluonic structure of
the vacuum for the overlap term of Fig. 5(a). Take each
side of the square to have length a. After the fermion
contractions are made, one is left with four flux lines
forming a plaquette U, , Fig. 6(a).

01T, l0)
(QIUPI|Q) does not. Thus, there is a nonvanishing

The matrix element vanishes, but

quark-exchange term. However, the matrix element
(Q|U,|Q) is not likely to be unity so that one does not
expect to reproduce the conventional quark exchange
(QE) terms. One multiplies this matrix element by the
appropriate factors as in (4.8) to evaluate the overlap O;.

In the following, I estimate the influence of vacuum
correlations for the term of Fig. 5(a). The conventional
QE term is multiplied by { Q| U, Q). This can be relat-

ed to results of QCD sum rules.’* One knows

(Q|B?|Q)=(600 MeV)* . (4.16)

The relationship between B? and plaquettes is

(a)

A Y
2 - < - 2
I 2a ;.

FIG. 6. Vacuum contributions to quark exchange given by
expectation values of U(c). (a) single plaquette term, (b) four
plaquette term.



(Qlfd3xB2|Q)=;_5‘1;(Q|Z(UP+UJ)|Q)C , @17
p

where the subscript ¢ denotes connected matrix elements.

Consider the expectation value of just one plaquette.
Use- the translational invariance of the vacuum
({Q|B?|Q) and (| U,|Q). are independent of position)
on both sides of (4.17). Then,

N, N
2 =—_2 =__2 i
(Q|B?Q)V gza(Q]Upllﬂ)c % (aly, 12),.

(4.18)

In (4.18), V is the volume of space and N, is the number

of plaquettes (squares of side a) on the N XN XN lattice.

For large N, one has N, =3N?=3V/a?, so
2,4

(aly, lo).=—£(alB0) . (4.19)

To evaluate the quark-exchange effect we need to know

values of g and a. It is reasonable to take g~2 so that
a=0.2 fm.3! Using these, along with Eq. (4.16), gives

(Qlv, [o) ~1 . (4.20)

Recall that a vanishing result corresponds to elimination
of QE terms, and that the value assumed in Pauli an-
tisymmetrization is +1. Thus the result (4.20) implies a
strong suppression of QE; furthermore even the sign is
opposite to the conventional value. Thus conventional
quark exchange may be erroneous.

Next I argue that even a magnitude of 1 is likely to be
an overestimate. This is because the single plaquette
term of Eq. (4.20) is relevant only if all fermions are close
together. [Recall Eq. (4.8).] This occurs with a limited
probability. Cases in which the separation of the fer-
mions is controlled by several plaquettes, as in Fig. 6(b),
occur far more frequently. In that example, one needs
the expectation of U(c) as where ¢ is the closed path
around the perimeter of a square of are 4a?, Fig. 6(b).
The expectation value of a plaquette of area 4 =(TR) is
given by the Wilson loop

w=(Q|U(c)|Q),
W(A)=Ce 74 .

(4.21a)
(4.21b)

in which T is a Euclidean time separation. I assume that
it is valid to replace T by-a spatial separation. Then the
U (c) expectation values for two areas 4; and A, are re-
lated by

W(A4,)

W=CXP[“0(A2“A1)]

(4.22)
Since our case of interest has 4,> A, [compare Figs.
6(a) and (b)], the general overlap |[(Q|U,|Q)]| is
significantly less than 1.

The present estimate is only a first examination of
gluonic suppression. The g2a* dependence of (4.19) indi-
cates the crude nature of the result. More work will be
needed to firmly settle the question. However, the
present result is that QE effects are negligible.
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B. Summary of Pauli principle result

The arguments presented earlier indicate that the ex-
change terms are very small. This is because local gauge
invariance (LGI) causes each of the standard quark direct
and exchange terms to be multiplied by very different
flux-tube overlaps (gluonic matrix elements). In the
strong coupling approach, the many gluons in the wave
function are confined in a narrow tube. The exchange
term generally requires an overlap between two flux tubes
pointing in different directions. Hence it is plausible that
the exchange terms are small.

V. SCQCD AND HADRON-HADRON SCATTERING

The present intent is to work out the consequences of
SCQCD for nuclear physics. Therefore scattering pro-
cesses should be considered. An earlier publication'? ex-
amined meson-meson scattering and found that flux tube
rearrangement (FTR) terms, in which color electric field
configurations are changed, provide only a small poten-
tial. Furthermore, it was argued that string-breaking
effects involving quark-pair creation are far more impor-
tant than FTR.

This result is very different from the string flip-flop
model®? and other approaches? based on the use of adia-
batic potential surfaces. Here a specific scattering prob-
lem is used to investigate the difference. The string flip-
flop model is recovered only by neglecting the quark ki-
netic energy operator.

The contrast between SCQCD and the string flip-flop
model is then emphasized by comparing two calcula-
tions**3° made in 1+ 1 space-time dimensions. Thus the
string flip-flop model is not a consequence of SCQCD.

A. A scattering problem

Turn to an example for meson-meson elastic scattering.
Nonrelativistic kinematics are used. As a further
simplification, consider channels for which the distin-
guishable quarks and antiquarks all have the same mass.
(An example is 7+ — 7~ (or ud,d@ ) interactions.)

Start with a simplified Hamiltonian in which only the
quark kinetic energy (7) and the electric energy term,
Hg are included. Call T+H;=H,. Since T does not
cause FTR and Hj is not included, the flux tube between
a ¢gg pair in a meson is a straight line. Then H, can be
written as

Pi2

Hy=3 -+ 3r;0;. (5.1)
LJ

T 2m

(9,7:1 if there is a flux line between a quark i and anti-
quark j. If no flux line between i and J exists, (OU—.“—‘O.
Now consider the plane-wave states. These consist of a
direct product of a bound state wave function for each ¢gg
meson multiplied by a plane-wave factor. Such states are
written using a first-quantized formulation, in which the
quarks and antiquarks in one meson are labeled 11 and in
the other by 22, Fig. 7(a). An alternate would be 12 and
21, Fig. 7(b). Denote the two possibilities of Fig. 7 as
|¢,) and |¢,). The states |¢,) and |¢,) represent prod-
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(b)

2 2 2 2

FIG. 7. Meson-meson scattering configurations.

ucts of two mesonic bound states. Furthermore, the
plane-wave states |¢, ,) depend on the relative momen-
tum e.g., [¢, ,(p)). Then,

l$:(p)) =M 7(p))&|M;5(—p)) ,
l6,1p)) =M 5(p))® M ,:(—p)) ,

(5.2a)
(5.2b)

in which |M_(p)) is given by Eq. (4.4) or its continuum
limit. As discussed in Sec. IV, the states |¢;(p)) obey the
overlap property

(8:(p")8,(p))=8(p—p")3,; - (5.3)

It is necessary to examine the influence of H, on a single
bound state. This is

pi+pi
Tom T

IM_.(p))=ho(im)|M_(p))

2
P~
M +M,_ ][Ml_".,(p)):

(5.4)

in which M_ is the meson mass, and quark i/ and anti-
quark m are joined by a flux line in |M__ (p)).

Now consider how H,, [of Eq. (5.1)] affects |¢,(p)).
The key point is that the operators O,; and 0,5 act on
the existing flux lines. Hence,

05,051 . (5.52)

On the other hand, when H acts on |¢1(p__)) there is no
flux line between quark 1 and antiquark 2. Hence O;
(and also O,;) vanishes:

OO0 (5.5b)
The use of (5.5) simplifies Hy|¢,(p)):
p?
Hylé(p))= 2‘2#+0(|r1_fT|+’fz“r§|) l6y(p))
2
- 12,4, tM gt My |16i(p)) (5.6)

in which (5.4) is used to write the last line, and p, is the
reduced mass.

The meaning of (5.6) is clear. The confining potential
Hp, when combined with the quark kinetic energy, does

not cause scattering.

What then is the cause of scattering? Consider the
magnetic term H,, which (Fig. 8 and Ref. 12) generates a
flux-tube rearrangement. There is a nonzero matrix ele-
ment connecting |¢,(p)) to the state |$,(p)).

The relevant matrix element for scattering is obtained
by inserting H,, [recall Eq. (2.16)] between |¢,(p)) and
|¢,(p)). Define

V(p,p')=(d,(p)|Hyld(p")) . (5.7

For this problem, the interaction between mesons may
be represented as elements of an off-diagonal matrix P,

oV

=1y o

) (5.8)

where, for example, the (1,2) element of the matrix
represents the term of Eq. (5.7). The transition matrix 7'
is given by the Lippmann-Schwinger (LS) equation

T=V+9G,T, (5.9)

where G, is the usual nonrelativistic propagator
Gy '=E +ie—k,—k, where k; are the mesonic kinetic
energy operators and E is the total kinetic energy.

It is not my purpose here to estimate 7. It is sufficient
to point out that H,, as represented in Eq. (5.7) by V
causes the scattering. The scattering phase shifts depend
onV.

B. Relationship with the string flip-flop model

Let’s recover the string flip-flop model (SFFM). Sim-
ply neglect the quark kinetic energy T. Then the energy
of a system formed by connecting quark 1 with antiquark
T and connecting (quark) 2 with (antiquark) 2 is
o(r;;+r,3). If 1 and 2 are connected we have an energy
o(r;z+r,;). These are two possible eigenenergies. If one
assumes that nature chooses the lowest energy
configuration the energy is given by

o min(rﬁ+rﬁ,r15+r2§) .
Equating this energy with a scattering potential leads to
the string flip-flop potential energy.

In the simplest case,” there are two potential energy
surfaces, one given by o(r;;+r,) and the other by
o(r;z+r,;). These levels would cross, but the Hy, term
causes transitions between the two states and flux-tube
configurations of Figs. 7(a) and (b) push the levels apart.

Yy

RN

FIG. 8. Magnetic (Hp) contribution to meson-meson interac-
tion (Hg =H),).
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(The idea is that H,, is small, but important compared to
the vanishing energy gap.) Then a typical SFFM assump-
tion is that one may use

o min(r;;+7,5,75+7,7)

as a potential energy. Assuming an initial boundary con-
dition allows the computation of phase shifts. However,
these do not depend on H,,, in contrast with the results
of Sec. VI A above.

The problem with the arguments for the string flip-flop
model is that the kinetic energy 7 is neglected. As shown
in Eq. (5.4), T combined with the linear potential pro-
duces a constant. Thus the eigenenergy is neither
o(rg+ry)nor o(rz+r,;).

The net result is that if one treats the quark kinetic en-
ergy and confining potential on the same footing, the
string flip-flop model does not emerge from SCQCD.

C. Two-dimensional gauge theory

Another example of the difference between the string
flip-flop model and QCD can be seen by comparing two
calculations made in 1 space and 1 time dimension. In
the work of Nambu and Bambah,* the interaction Ham-
iltonian for SU(3) gauge theory (QCD) is

2 — —
H=—%2Kk-k’|xk——x,| . (5.10)
k1
In the string flip-flop model of Horowitz et al.,
N
H=min“>] 2 U(lxp(zn_l)_xP(zn)|) ’ (511)

n=1

in which the minimum is taken over all permutations P of
quark labels pairing the N quarks into N /2 pairs. Sup-
pose

v(|xe—x,D=|x, —x;1 .

Even then, the contrast between the QCD result (5.8) of
Nambu and Bamba and the string flip-flop model (5.11) is
quite clear. The two interactions have a very different
form because of the influence of color contained in the
A*-A! term.

D. Flux-tube rearrangement in baryon-baryon scattering

Begin by recalling the earlier estimate for s-wave
meson-meson scattering.!> The FTR contribution to the
potential ¥V (p,p’) acts as a nonlocal potential between
mesons. However, the results can be parametrized
roughly by a typical local Yukawa potential Y (r) of
range 1/m:

—mr
Y(r)=—Y,%

(5.12)
mr

where Y,~10"! MeV with m =2m . This is very small

indeed, since typical strong interaction potentials are of

the order of tens of MeV at least. Thus the flux-tube

rearrangement term seems to be negligible in meson-

meson scattering.

1573

FIG. 9. Typical contribution to flux-tube rearrangement
effects in baryon-baryon scattering.

Turn now to baryons. A typical contribution due to
flux-tube rearrangement is shown in Fig. 9. These terms
are of order 1/g® or higher. This is because the FTR
leads to color electric field configurations that are wave
function admixtures of order 1/g2. There is one such fac-
tor for each of the two-baryon wave functions and anoth-
er for the interaction V. The perturbation series for V'
seems to converge rapidly!?> when expanded in powers of
1/g2. Thus flux-tube rearrangement seems even smaller
for baryons than for mesons.

The preceding result is that flux-tube rearrangement
terms are very much smaller than typical strong interac-
tions. It is then necessary to determine the origin of
hadron-hadron scattering. Terms most like the conven-
tional mesonic exchange description arise from string
breaking.!> See Fig. 10, for examples. In general, many

(a)

o

:

)
J

—_

—

o e

(b)
(c)
FIG. 10. Emission of pairs by the string-breaking mecha-
nism.
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different links can be broken. This enhances the likeli-
hood for string breaks to occur.

VI. STRING-BREAKING TREATMENT OF MESON
DECAY AND MESON EMISSION FROM BARYONS

It seems (from Sec. V) that string-breaking quark-pair
creation (QPC) is an important ingredient in the interac-
tions between hadrons. Here I estimate the QPC contri-
bution to the meson-nucleon coupling constant using the
QPC operator of Kokoski and Isgur (KI).!3 Those au-
thors found that the QPC operator can be well approxi-
mated by one of the form of the *P, model.*” This is dis-
cussed next.

A. Effective pair production operator

KI use the locally gauge invariant “naive” quark kinet-
ic energy term K, with
1
K=;2quUﬁajiqi ) (6.1)
Ej’«

where g, is the quark field operator at lattice site n, U
creates a unit of color SU(3) flux on the link from j to i
and a; is the component of the Dirac matrix in the direc-
tion of the link from j to i. When a meson flux tube is
broken by quark-pair creation on a link from x to x+a®,
the resulting quark pair is created with an effective opera-
tor

Hopc=3 g(x)agq (x+a’é)—91~(3§19—) .

x,e

(6.2)
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The function 9y(x,€) is the overlap between the initial
color flux state of the initial meson and that of the final
two-meson state. KI assume that y(x,€) is independent
of the direction €; treat a as small; and, take € to point in
random directions. Then,

HQPC“EQT(x)a-Vq(x)y(x). 6.3)

KI start with Eq. (6.3) and make numerical studies of
different models of y(x). They show that it is a good ap-
proximation to treat ¥ as a constant. The use of the re-
sulting QPC operator then leads to a very good descrip-
tion of all the decays M —m m,.

The assumption that € is randomly oriented contrasts
with the notion of linear flux tubes. However, QPC de-
pends on short distance effects, while the linear flux tube
is thought to be more valid at larger separations. Phe-
nomenology of meson decay supports the random nature
of €. If one takes € to be parallel to the flux line, one ob-
tains the so-called >S; model which disagrees'> with the
decay rate for B—w. See, however, Ref. 14.

It is useful to incorporate a correct description of the
mesonic decays in a treatment of the meson-nucleon cou-
pling constants, so we use the KI operator Hgpc in this
first evaluation of meson-baryon coupling constants.

The effective Hamiltonian (with ¥ constant) is

Hopc=7 [ d*xq"(x)a-Vq(x), (6.4)

which is the 3P, model.?”>3® I proceed by using the ¥ ob-
tained from the decay p— 7 in computing some meson-
baryon coupling constants.

The first step is to rewrite Eq. (6.4) in second quantized
notation,

Hope= [ d*kd*k’8(k"+K')y 3, (1m 1—m|00) Y (k" —k’)
m

1
X ) b,f,l,(k”)a,t,z_,(k’)<%m,%mzll—m Y{LtL—1]00) ,
tml

in which the operator bT(a’) creates antiquarks (quarks).
Factors arising from counting of colors are the same for
the terms p—>7m and N-—>Nm, and are therefore ab-
sorbed into the constant y.

B. The decay p— 7w

We first compute the amplitude /M

p—> T
M, =k (k) [Hopelp) - (6.6)
The application of Hqpc of Eq. (6.5) yields
78(k;+k,) P
Mp—ﬂm:—;}“ '4377_' k]‘PF(kl) , (6.7a)
=6(k,+k,)4 (6.7b)

(6.5)

r

in which p is the spin direction of the p meson in its rest
frame, and

Fio=[d%p [1- 22K\ (p+k/2) . (68

The momentum arguments appearing in (6.8) are the usu-
al canonical momenta.
It is convenient to relate /M

p—nn t0 the constant f
of the covariant notation

P, T

B

H=f pprwXT)p (6.9)
Then
M= [ d3r{p|#|mky)miky))

_ (27)°8(k, +k,)278(E; — Ef)f 2Ky P (6.10)

VM,V 20,V 20)(27)" ’
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in which M is the covariant amplitude. This leads to a
transition rate

k3 fr 2
. (6.11)

4qrM}, 3

The experimental value of W is 154t5 MeV, giving

Sfonn=6.1. To relate f,., to M,_,,,, simply remove the

factor 2m8(E; — E;) from the right-hand side of Eq. (6.10)

and equate the remainder with Eq. (6.7). This gives

V3
fp,m:ny,/zF(kl )17—6— .

(6.12)

The use of the relativistic formulae of (6.10) and (6.11)
is the same as using relativistic phase space factors “gold-
en rule” expression

k,E2(k,)| A|*

M,

Indeed, the use of (6.7b) in (6.13) leads to the result (6.11),
if the identification (6.12) is made.

The use of a relativistic phase space along with a non-
relativistic calculation has been questioned.'>»!* If the
nonrelativistic phase space is used, the factor EZ(k,) is
replaced by m2. Thus, using the nonrelativistic phase
space is the same as reducmg the right-hand side of (6.18)
by a factor of m /(m /4). Kokoski and Isgur use a
prescription in whlch the factor E%(k, )/M, is replaced
by mi,m /i, where m =f,=0. 72 GeV 1s the calcu-
lated meson mass in the spin independent potential. This
factor is meant to incorporate recoil in the weak binding
limit. The use of m,m,/m, in Eq. (6.13) instead of
E2(k, )/M, is equivalent to multiplying Eq. (6.13) by a
factor 0.72/0.19~=3.7. There is a factor of 5.1 difference
between the y obtained via the KI prescription and the
use of nonrelativistic phase space advocated by Kumano
and Pandharipande'* (KP). Note that the ambiguities are
worse for the case p— 77 than for the other meson de-

w =2 [ |(or|Hopelp) 12 dQ,. (6.13)

0,= [dgdk dk’' Al(q)a),

iy (k")a,y, ,(k)<17(q)k |[Hopclk ),

k

FIG. 11. Matrix element for a quark of momentum k to emit
a pion and become a quark of momentum k’'.

cays. We return to the question of relativistic problems.

C. wNN coupling constant

The calculation is simplified by first using Hgpc [Eq.
(6.5)] to evaluate the matrix element for pionic emission
by a quark, (Om see Fig. 11, Then the matrix element of
the single quark operator (9 is evaluated between initial
and final nucleon states. Th1s can be done because Pauli
exchange terms between the 7 and N are suppressed, and
gluonic overlaps are incorporated in the constant y.

The operator @, which describes the emission of a
pion of momentum and isospin g by a nucleon of momen-
tum, spin and isospin P; is defined by

(m(@N (Pp)|O,IN(P,))=(m(q)N(P;)|Hapc|N(P)) ,
(6.14)

where

(6.15)

in which g, k, k' stand for momentum, flavor, and spin indices. In partlcular (k=km;t;).
To proceed, we need a model of the pion creation operator Al ~(q). The ones of Refs 10 (GI) and 9 (CKP) are used

here. Thus, I write

Al(@= 3 al.,.(K+qb!.

m'm't't"

(=K (IK—q/2D{tm"2m"|00) (1e'2e" |12, ) .

(6.16)

Note that the use of the chirally symmetric staggered-Fermion Hamiltonian of Eq. (2.27) indicates that the Nambu-
Jona Lasinio mechanism is present. A more complicated BCS-type pion wave function would then emerge. The appli-

cation of Eq. (2.27) is left for the future.
Next evaluate

(m(q@k’| Hgpelk )
using Eq. (6.5) and the standard relations
|kY=a], (k)0
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and
l7(q))=Al(g)0) .

The result is

(m(@)k'| Hopclk )= —o(k' —k+ )7/( im,Lt,lo-(q—Kk)T-@lim,t, >¢,[ . (6.17)

4V 3

-9
2

The main difference between (6.17) and treatments in which the pion is treated as an elementary object is the magnitude
of the term proportional to the quark’s initial momentum [k, not kw(g)/m] and the appearance of the pion wave func-
tion.

Turn next to the computation of the #NN coupling constant. This requires evaluation of (6.14) with the specific ma-
trix elements (6.15) and (6.17). To begin, note that the nucleon state vector of total momentum P can be written
(suppressing indices) as

3 3
IN(P)=8|P— 3 P, |¢y(P,,P,)a’(P))a’(P)a’(Py)l0) =8 [P— 3 P (6.18)
j=1 j=1
with
p=11
Py
(6.19)
P,+P,—2P,
A, ‘/6 N |
The use of (6.18), (6.17), and (6.19) in (6.23) yields
(m(q)N(P;)|Hopc|N (P, )>——Z/K—5(P —q—P, XN 3 ¢ g, -(q—P,)7;-$¢, IN) . (6.20)
j=13
In evaluating (6.20), the momentum operators P; are to be expressed in terms of P, and P, with 3; P;=0. Next use

symmetry considerations to simplify (6.20). The matrix element appearing on the rlght-hand side of (6.20) is a function
of |q| =g times the matrix element of o y-q7y- ¢ with N denoting an operator acting on the nucleon coordinates. We
may thus define a quantity F(g) such that

(m(g)N (P;)|Hopc|N(P;)) =8(P,—q—P;)F(q) |f |o

i] , (6.21)

where
li ()= 3m; p3ticp) -

The term F(q) is defined by comparing (6.20) and (6.21) which are equivalent statements of the same quantity.
The result (6.21) is the one we seek. However to evaluate the mNN coupling constant Gy, one must compare Eq.
(6.21) with standard forms. In conventional pseudoscalar (or pseudovector) theory one has

q)
\/2(

in which ¥ (q) is the vertex function with V(g =0)=1, o, =(g2+M?)'"2, and the measured value of G_y is 13.4. It is
convenient to compare (6.20) and (6.22) in the frame in which P, =0. Then,
on"g

2M

with u'u as unity and taking (q/2M)?<<1. The factors ¥ (gq) and G are determined by comparing (6.2) (with P, =0)
and (6.20). The results are

(m(@)N (P/)|H®™|N(P,)) =G,y (Ps)ysu (P;) )3,2 (flry-@lD8(q+P,—P,), (6.22)

u(P;)ysu(P;)~

(6.23)

G vy =2M (2m )V*(27)¥?F (0) (6.24)
and
( ) wq 172
V(q)——q—F(O) — . (6.25)
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The use of KI kinematics modifies Eqgs. (6.24) and (6.25) by the replacement m!/2 > 1/2. (Recall m,=0.72 GeV.)
"This is required to obtain the same treatment of pion kinematics for meson and baryon emission of pions.

The result (6.24) depends on the frame of reference. For example, using P, =q/2 would lead to a version of (6.24) in
which F(0) would be replaced by 2F(0).

The mNN coupling constant G,y and form factor ¥ (g) are each given in terms of known constants and the function
F(q). To proceed, I display formulae for F(g) with different models of the nucleon wave function.

First consider the work of Carlson et al. in which the wave function is a spatially symmetric wave function times the
SU(4) spin-isospin wave function, times the color antisymmetric term. Defining the corresponding function version of
F(q) [from (6.20) and (6.22)] as F*(q), leads to

.|

Capstick and Isgur!! use a different representation for computing baryon wave functions. Their calculations are
simplified by taking states to be exphcltly antisymmetric only under interchange of quarks one and two. For the pro-
ton, the components la) are

la)=C,luud)®e 3, (LM SM;|IM)|LM,,n,l,,n,1,)|5,SM,,) , (6.27)

M Mg

172 172

q-P,

172

a4 P,

qu'“(q)=—:L'ifd3de3P;ﬂl)* )

2 2 2
i3 PP+ 3 q |{W(P,P,) |g°+ 3

(6.26)

where C , is the color antisymmetric wave function. The index a is shorthand,

a={Lén,l,n,1,} .
The spatial wave function for the component |a ) is

(P PALMy,n L, Ny =, 1 (P, (P Y,p(f’p)g Y, (P)lea, » (6.28)
in which ¢,; are harmonic oscillator wave functions. The index § defines the spin wave functions, e.g.,

1
233) =z 2111 =11 =111 (6.29)

The proton wave function is then given by

INYer=3 Cla)la) . (6.30)

CI determine C(a) from a variational calculation.
The matrix element of (6.20) can be expressed as

()N (P/)|Hopc|N (P,)) = —4—‘/13;7;5<P,.—q—1>f)

i

X cr{N| | 2e ""‘"Zaz-(q—Pz)fz-$¢,, [

d_p
2 3

+e Vg (q—P)Ty B, | ] IN Y (6.31a)

= 4‘/_8(P —q—P, (P (T, +T,)|P,) . (6.31b)

The expression (6.31b) introduces terms T, and T'; representing the matrix element in (6.31a) that involves either the
second or third quark. Next evaluate T, and T;. A useful approximation is to keep only terms with L =0 and §=2.
(This accounts for more than 98% of the wave function.) Then evaluating the diagonal matrix element of T'; for a spin
up proton (|p 1)) leads to

(ptIT5lp1Y=13 C(a)8(n,,n})8(1,,1,)8(5,2)8(L,0)8(8',8)8(L,L")

172 172

21 p,

+
a 3

3 2 1 5 %
x [ d*p, 3 2P, (BLP (6.32)

' q
Py O¢nAIA(P7L 1,11, (Pa)s ‘ > T

where P} =P, +V'2/3q and the direction of the proton’s spin is 0.
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Evaluation of T, seems more complicated because r=—p/ V24 A/V'6 and all of the quarks are involved. However,
we may define new spatial coordinates p’ and A’ such that

p’=%p+3/2—37h

_ (6.33)
A':-—ﬁ +A

2 P

With these, r,= +A’'V'2/3. This provides an important simplification because one can rewrite
(P, P, |LMy,n,l,n,1;)

in terms of p’ and A’ using the Gal transformation.*® Simply use Eq. (3.14) of Ref. 39 with the angle 8= —27/3. The
nucleon can be rewritten

INY=3 C(a)|la)=3 D(B)IB) , (6.34)
a B

in which the coordinate representation of the component |3) is {p’,A’|8). One finds
(p1T,lp1)Y=% 3 D(BD(B)8(n,,n,)8(ny,n})8(8,2)8(L,0)8(L",0)8(8',2)
BB

12
P

172

2 P,

9
3 +

X [d°P, |q+ > % (6.35)

’ 1 AI S
bn, 1, (P )¢"'AI'A(P)‘)_477 P (Py-Py)é, [
0

These matrix elements of T, and T; can be used to compute the coupling constant and form factor [Egs.
(6.30)-(6.36)]

qOFC,<q>=Z§—3%<pHT2+Tglm> . (6.36)

D. The o NN coupling constant

The quark-pair creation operator of Eq. (6.10) can also be used to compute the coupling constant between an w
meson (w) and the nucleon. The procedure is essentially the same as in the preceding section.
First write the creation operator for an w meson of spin projection M, :

Al@M)= 3 al.(k+q@b). (=K, (k—q/2)){im'tm"|IM,){L1t'Lt"[00) . (6.37)
m't'm"t"

Only three components of the vector meson’s polarization vector are included. Next compute the ggw vertex function.
I find

(0(q,M, )k'|HQPC|k)=¢w(|k—q/2|)8(k'+q—k)%%§<gmflv-eMU+i(a><V)-€MU|%mi) , (6.38)

where the initial (final) quark of momentum k(k’) has a spin m;(m,) and V=q—k. The matrix element of (6.38) can be
rewritten as

P;
q——

+i(floyli)X 3

P;
9773

((q,M,)N (P)|Hapc| N (P,)) =8(P,—q—P )&, - [3

le( lql) . (6.39)

The quantity F(|q|) may be computed using (6.38). The factor 3 in (6.39) enters from the sum over three quarks.
To evaluate the o NN coupling constant, compare Eq. (6.39) with the standard form

V,(q) .

) fot8ao) .
2V 2(g +m? )72 €

M ioyXq

(w(q,Mv )N(Pf)chonv|N(P,))=8(Pl _q_Pf

8w
W(Pf+Pi)+

(6.40)

This is the nonrelativistic reduction of standard expressions for vector coupling g, and tensor coupling f,.

One would like to compare Egs. (6.40) and (6.39) to obtain g, and f,. However, the two equations have different
forms, so a simple comparison is not possible. Our 3P, treatment does not reproduce the covariant omega-nucleon ver-
tex. A less ambitious goal is to obtain f, and g, in the rest frame of the initial nucleon, P; =0. This is meaningful only
if g /M << 1. The results obtained by setting P, =0 are
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8ot o=V 2m (27 2MF ,(0) ,

fol8o™ "5, (6.41)
1/4

F, (q) q2+m3,

F,(0) 2 .

[}

V,(q)=
m

This computed value of f /g, disagrees with experiments which give ~0. However, an equally likely choice P,=0
would modify the first line of (6.41) only by a multiplicative factor of 2 on the right-hand side. The ratio f /g, would,
however change to +3%. Averaging the results would yield f, /g, =0 and f,+g, < F (0) [instead of F(0) as in (6.41)].
(It is reasonable to consider some kind of spread in P; since nucleons in the centers of nuclei move isotropically.) In any
case these examples show that f, /g, is more sensitive to P; than f,+g,. In the following, I ignore the ratio and ex-
amine the sum as given (6.41).

An explicit evaluation of g, + f,, is made herein. It is useful to get a rough idea about (g,+f,)/G yn. With the

standard proton spin-isospin wave function one finds

(€o+fu) 3 F 0 [m, |'?

[ 5 F(0) |m, ’
or

8ot fo 3 F,0) [m, ]

Goww 5 FO) | m, ’

(6.42a)

(6.42b)

if KI kinematics is used. In any case, substantial @ NN coupling is obtained, assuming that the evaluation of G,y leads

to a value reasonably close to that of the experiments.

E. The pNN coupling constant

The procedure is the same as for the @ meson, with only the isospin factors changing. The relevant matrix element is

’ —_ ’ 1
(p(@)k’|Hapelk ) =¢,(Ik—q/2))8(k +q—k){—737

One may determine p-nucleon coupling constants and
form factors by using Eq. (6.40), replacing o by p. All
quark models provide essentially identical wave functions
for the w and p mesons. The p and o nucleon form fac-
tors are then identical, so I examine only sums of vector
and tensor coupling constants. I find

Py £P
_g_if__z_s_ , (6.44)
gotfe 3

in reasonable accord with measured values.

F. Delta-nucleon coupling

The form of the pion-quark coupling term of Egs.
(6.15) and (6.17) requires Gy /G yy to have the SU(6)
quark model value of V2, if the A and nucleon wave
functions are identical.

The effect of any A-N size difference on computed cou-
pling constants can be easily estimated by evaluating in-
tegrals like (6.37) and a Gaussian parametrization of the
wave functions. The latter approximation should be
reasonable at low g. Straightforward evaluation gives

1+8R2 /9R? |*”

G, _
M _Syp |l N (6.45)
1+8R%/9R}

G‘rrNN 5

(Lmy|7-8,(V+i(o X V)& )lim;) .

(6.43)

for which the pion, nucleon and delta mean square radii
are denoted R2, R3, and R3. In Ref. 9 Carlson et al.
find R ,=0.29 fm and Ry =R, =.36 fm. In that case the
bracketed factor is unity. Including the effects of the
hyperfine interaction on the wave functions’ leads to
R_.=0.16 fm, Ry=0.32 fm, and R,=0.39 fm. Then
G ,.na /G,y is increased by a modest factor of 1.1.

Consider also the ratio G ys/G,yy. This is the same
as in standard quark models if hadronic size differences
are ignored. A numerical estimate is given herein.

G. Numerical results

I apply a theory that yields a good description of the
meson decays to the computation of the baryon-nucleon
coupling constants. There are two recent extensive treat-
ments, one due to Kokoski and Isgur (KI), the other is
that of Kumano and Pandharipande (KP). KI and KP
adopt different phase space factors that are not the stan-
dard relativistic ones, shown in Eq. (6.13). Moreover,
there are other differences. In the following I refer only
to the 3P, versions of each. KI employ the meson wave
functions of Godfrey and Isgur which include the effects
of the gluonic hyperfine interaction and achieve a good
description of the energy levels and transition rates. On



1580

the other hand, KP find a satisfactory description of the
meson decays by using wave functions in which the
hyperfine interaction is ignored (and the mass difference
between the p meson and pion vanishes). For this reason,
the results obtained with the KI treatment are presented
first and discussed in more detail. A comparison is made
herein.

Start with the pion-nucleon coupling constant. The
quantity ¥ is to be obtained and Eqgs. (6.24) and (6.25) are
to be evaluated. As noted previously, using the KI
modification of these is required in order to maintain con-
sistency with their calculation of meson decay. This is to
use the pion mass i, =0.72 GeV instead of E_(k;) in
Eq. (6.13) and to use 7, instead of m, in Egs. (6.24) and
(6.25). Once these kinematic features are established, the
necessary numerics are straightforward. The resulting
pion-nucleon coupling constant G, yy =13.2 which is in
remarkable agreement with the experimental value of
13.4. For values of the momentum transfer (g) less than
5 fm~!, the computed form factor V(g), is well
parametrized by a dipole form

V(g)=1/[1+(q/A)?)?, (6.46)

with A,=11.4 fm~!. This value of A, corresponds to a
cloudy bag model*® form factor

[V(g)=3j,(gR)/qR]

of radius 0.39 fm. This small size, and the consequent
“hardness” of ¥ (q) is a consequence of the small intrinsic
sizes of the nucleon and pion in the treatments of Refs. 9
and 10. Values of computed coupling constants and form
factors are summarized in Table I.

The possibility that the pion cannot be represented by
a single gg wave function is mentioned previously. One
can examine the dependence of the computed value of
G ,ny On the pion root-mean-square (rms) radius to deter-
mine the sensitivity to the pion wave function. This is
done with the KP observation that the mesonic wave
functions of flux-tube models are well represented by hy-
drogenlike wave functions, Eq. (3.2), as long as the rms
radius (R ) is the same. (The computed value of G yx
changes by less than one percent if such a substitution is
made.) These hydrogenic wave functions can be em-
ployed to display the R, dependence of Gy, Fig. 12(a).
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FIG. 12. (a) Dependence of computed value of G,y on R,
(b) Dependence of computed value of ¥ on R .

There is less than a 40% change in Gy With a variation
of R, by a factor of more than 2.5. This is less depen-
dence than one might expect, and is due to the feature
that for each value of R the value of y is readjusted to
reproduce the experimental value of f,,,. Thus, con-
straining the computation of G yy to the value of f,,,
reduces the sensitivity to the pion wave function.

A final comment about Gy, concerns the observation
that it is an unrenormalized coupling constant. As a fur-
ther elaboration, one could as)oply the cloudy bag model
renormalization prescription.”” That would go beyond
the concern of this paper, which is to address qualitative
issues.

Next turn to the w-nucleon coupling. Recalls Egs.
(6.41) and (6.42). Numerical integration yields '

TABLE 1. Summary of computed coupling constants (meson three momentum is 0) and vertex func-

tions (dipole parameter A).

Quantity Calculated Experiment (Ref. 41)
G.nN 13.2 13.4
(g°+f*) 9.9 11-15
(gP+fP)/(g°+f°) 1.67 1.7-2.4
G.ona/Gann 1.87 1.02-1.7
G,nva/Gana 1.25 quark model and

nucleon-nucleon
potential model fits
to phase shifts
A, 2250 MeV/c
A 2250 MeV/c

@,p




8,1t f,=9.9. Thisis 0.75 times G yy. This factor, 0.75,
can be understood as coming from these sources: the
SU(6) nature of the dominant part of the nucleon wave
function gives 0.6; a kinematic factor (m, /i ,)'/? gives
1.03 and the increased size of the omega meson (the rms
radius is 0.32 fm vs 0.194 fm for the pion) of 1.21. The
increase associated with an increased meson size arises
from an increase in the volume of overlap. The use of
harmonic oscillator wave functions would give computed
meson-baryon (B) coupling constants a meson radius
(R,) dependence of the form

Ry’ [1+ 4Ry /Rp)*] .

The experimental determinations of the omega-nucleon
coupling constant are shown in Table I. Our value 9.9 is
in good agreement. It is unfortunate that the nonrela-
tivistic approach employed does not yield a value of
f./8.,- However, the significant feature is that there is a
strong omega-nucleon coupling. This is necessary to
reproduce the nucleon-nucleon short-distance repulsion.

The computed form factor ¥V, (g) is essentially the
same as V' (g) except at large values of g. Computed form
factors have a weaker dependence on the meson radius
than the coupling constant. This can be seen using oscil-
lator parametrizations of the wave functions in the equa-
tions of Sec. VI.

Knowledge of the p-meson coupling constants is
achieved without further computation. The ratio Eq.
(6.44) may be compared with the range of experimental
values, Table I. The agreement with experiment is quite
good.

The mN A and pN A coupling constants are discussed in
Sec. VIF. Numerical results are tabulated in Table I.
Qualitative agreement is obtained.

Now turn to the application of the KP theory of meson
decays. These authors do not use the i, of KI. Instead
they replace the factor E,_ of Eq. (6.13) by m_. As a re-
sult, their description of the p—mm decay requires a
larger pion radius and a smaller value of y, see Fig. 12(b).
(The value of ¥ must be decreased because y goes as the
inverse of the smaller phase space factor.) Thus the KP
use of a pion of rms radius 0.32 fm (vs 0.19 fm of KI)
gives a good description of the meson decays. They make
no kinematic modification to Egs. (6.24)-(6.25). This
would make the KP value of Gy a factor of

(m_/m_)?=2.23

bigger than that of KI. However, the KP favor a larger
pion radius of 0.32 fm which gives a reduction factor of
1.22. (The baryon wave functions of the two approaches
are fairly similar, so I used the ones of Capstick and Isgur
in all computations.) The net result is the KP coupling
constant is 1.82 times that of KI. This difference indi-
cates the sensitivity to different treatments of relativistic
effects.

The results are summarized in Table I. SCQCD does
yield substantial meson nucleon coupling constants in

qualitative agreement with experiment. The numerical -

agreement with the pion-nucleon coupling constant is im-
pressive, but perhaps accidental. More effort is needed to
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understand relativistic effects, especially to learn about
f v / gu'
VII. DISCUSSION

The central features of the meson-baryon dynamics of
conventional nuclear physics are that baryons in nuclei
obey the Pauli principle (quark-exchange effects of Sec.
IV are small), gluonic effects in nucleon-nucleon interac-
tions are very small, and, that meson-baryon coupling
constants are large enough to describe nucleon-nucleon
scattering. The present manuscript is devoted to examin-
ing the question of whether QCD yields these features.
The results indicate that the strong coupling version of
QCD (SCQCD as defined earlier) does reproduce the un-
derlying dynamical aspects of the conventional treat-
ment.

Many assumptions are required to reach the preceding
conclusion. Perhaps the most significant is that SCQCD
is valid at all in any regime of momentum transfer.
Reaching the stated results required further detailed as-
sumptions. That nucleons in nuclei obey the Pauli princi-
ple requires the narrowness of flux tubes and, that the
influence of the gluon condensate is estimable in SCQCD.
The computation of meson-baryon coupling constants
could be improved in several ways. The derivation of the
basic string-breaking operator should start with a chirally
symmetric fermion Hamiltonian. Perhaps gluonic ex-
chang effects should be included. A more complete treat-
ment of the pion, including a correct calculation of the
pion decay constant f_, would be desirable. The use of
relativistic kinematics and dynamics seems to be neces-
sary.

Reducing the number of assumptions will require
much effort. However, speaking qualitatively, one can
say that SCQCD does reproduce the central meson-
baryon dynamics that serve as the theoretical underpin-
ning of the theory of nuclei.

For the moment, I ignore the assumptions and
qualifications discussed earlier and briefly examine the
implications of this ‘“‘derivation of nuclei”. The lack of
significant quark-exchange (QE) effects due to Pauli ex-
change is an important feature. Any experiment provid-
ing definitive evidence for the existence or lack of QE
would be very significant. Another implication is that,
for ordinary nuclei, wave function components in which
the quarks are partially deconfined are essentially absent.
For example, the nuclear formation of six quark bags
seems to be smaller than previous estimates.*? The
SCQCD derivation of nuclear physics indicates that
quark aspects of ordinary nuclei are hidden in the ha-
dronic degrees of freedom. Other consequences are for
nucleon-antinucleon annihilation into mesons. In the
SCQCD picture such processes proceed via a locally
gauge invariant two quark-two antiquark intermediate
state.*3

On the other hand, for large enough values of the
momentum transfer, this derivation has no validity. The
quarks and gluons need not be confined to hadronic pack-
ages. The heavy-ion experiments aimed at observing
deconfinement have been discussed heavily.
Deconfinement effects should also be observable with
high energy leptonic and hadronic probes of nuclei.
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