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Relativistic calculation of the deuteron quadrupole and magnetic moments
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The deuteron quadrupole and magnetic moments are calculated assuming light-front dynamics.

The advantage of this approach is that conventional pound-state wave functions and empirical nu-

cleon form factors can be used to construct eigenfunctions of the four-momentum and the spin, to-

gether with a representation of the electromagnetic current, in such a way that the current-density

operator and the wave functions transform consistently under a unitary representation of the Poin-

care group. The sensitivity of our model to the choice of the deuteron bound-state wave functions is

tested by using Reid soft core, Argonne v&&, Paris, and Nijmegen nucleon-nucleon interactions, as
well as three Bonn potentials. The exact results increase both quadrupole and magnetic moments

by small amounts compared to the nonrelativistic values. Expansions in powers of the nucleon ve-

locity are found to be unreliable.

I. INTRODUCTION

The quadrupole and magnetic moments of the deute-
ron have had a long history of study from many points of
view. The experimental values of the quadrupole' and
magnetic moments are 0.2860+0.0015 fm and 0.857 406
+0.000001 p&, respectively. These experimental values
differ from the results of nonrelativistic calculations by a
few percent.

The quadrupole and magnetic moments are charac-
teristic quantities derived from the deuteron current ma-
trix elements in the limit of vanishing momentum
transfer. Current conservation and the requirement that
the current transform as a four vector impose consistency
conditions on the current operators and state vectors.
Thus, the central features of a consistent relativistic cal-
culation are the construction of a Poincare invariant ma-
trix representation of a conserved current and the con-
struction of a model interaction. Going beyond the stan-
dard nonrelativistic description, one encounters both the
effects of special relativity and of non-nucleonic degrees
of freedom. These effects are intertwined in approaches
that rely on instant-form Fock-space perturbation expan-
sions of meson-nucleon field theory. These calcula-
tions involve expansions in inverse powers of the nucleon
mass, m, which are justified by the questionable assump-
tion that all relevant momenta and energies are small
compared to the nucleon mass. Covariant-wave-function
models, ' on the other hand, give exact relativistic re-
sults, which feature P-wave components in the deuteron
wave function. For these models the validity of p/m ex-
pansions of the quadrupole and magnetic moments could
be tested numerically. To our knowledge this has not
been done.

Deuteron models for which the light-front components
of the four-momentum transform kinematically' '" yield
exact results, which can be compared to expansions in in-

verse powers of the nucleon mass. These models can de-
scribe the available data for the deuteron structure func-
tions A(Q ) and 8(Q ) within the uncertainty of the
empirical nucleon form factors. ' '

Because nonrelativistic nucleon-nucleon wave func-
tions are eigenfunctions of the rest energy and spin opera-
tors, j and j„they can be interpreted as eigenfunctions
of a Poincare invariant mass operator. Eigenfunctions of
the total four momentum can always be constructed as
eigenfunctions of the mass and three independent com-
ponents of the momentum. The choice of these indepen-
dent components determines the "form" of the relativis-
tic dynamics. ' With light-front dynamics it is possible
to construct covariant conserved current operators for
which all two-body matrix elements are generated from
one-body currents by dynamic Lorentz transformations,
and an explicit knowledge of these two-body currents is
not needed for the calculation of deuteron form factors,
which are then unambiguously determined by the nu-
cleon form factors and the deuteron wave function. ' Im-
plicit effects of subnucleon degrees of freedom, mesons,
and/or quarks, must show up in additional two-body
currents, which make contributions to the deuteron form
factors that are separately Lorentz invariant.

In this paper we examine the deuteron quadrupole and
magnetic moments, obtained within this framework for
difterent nucleon-nucleon interactions, and compare the
exact results with approximations obtained by expansion
in powers of the nucleon velocity to second order. For
the magnetic moments our results are in agreement with
earlier results. '
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In Sec. II, we present a brief overview of the exact rela-
tions of the moments to the deuteron wave function. Ex-
pansions in inverse powers of the nucleon mass are given
in Sec. III. Numerical results and conclusions are
presented in Sec. IV.

II. RELATION OF QUADRUPOLE
AND MAGNETIC MQMKNTS

TG THK DEUTERON WAVE FUNCTION

For the consideration of relativistic effects in magnetic
and quadrupole moments, it is important to verify the
correspondence of the calculated and measured quanti-
ties. Experimentally the quadrupole and magnetic mo-
ments are determined by measuring energy differences in
an external field given by the Hamiltonian'

H'= f d'xI "(x)2:"'(x), (2.1)

in terms of the invariant form factors. It follows that the
quadrupole and magnetic moments of the deuteron are
related to the usual quadrupole and magnetic form fac-
tors 62 and 6& by

—G2(Q')
Qd = 11m 3V 2 ', pd —— Gi (Q)

Q —+P Q' (2.4)

Q~0 Q
2

According to Ref. 10 it follows that the moments can be
obtained from the matrix elements, (A,dII+(0)IAd), of
the plus component of the current operator, where the
unit vector n specifying the light front is chosen such
that Q+=Q +n.Q=Q. Thus the quadrupole moment
and the magnetic moment are given by

where A'"'(x) is the vector potential of the external field
and I (x) is the current operator. The measured quadru-
pole and magnetic moments are expectation values of
components of the quadrupole tensor and magnetic-
moment vector,

f d x(3x;x& —5;kIxI )I (x), and ,' f d—xxXI( x) .

(2.2)

and

[1 hm +2/i) ~ 1II+(0)I» ],
Md g-p

pd = [2—lim &2/Ti(1II+(0)IQ)],
Md g p

(2.5)

(2.6)

For any function f(x), the Poincare covariance of the
current operators I (x) completely determines the matrix
elements

lim fd'x f(x)(k,', P+-,'QII (x)IP—
—,'Q, ~d ) (2.3)

P~O
g—+p

where m and Md are the nucleon and deuteron masses,
respectively, and i)—:Q /4M„.

The matrix elements, (A.d II+(0)IA,d ), are unambigu-
ously determined by the nucleon form factors and the
deuteron wave functions,

(X'dII (0)IA,„)= g f d k'T f d kT f dg5[k'T —kT —(1—g)QT]y~ (k'T, g, ki, Ai)
7 A 7 A

X[F,1v(Q )5, v'wI'2~(Q )(—X, Iicr2IA, , )]pi (kT, g, A, „Aq), (2.7)

where F&z and F2& are the Dirac and Pauli isoscalar nucleon form factors, and the deuteron wave function
gz (kT, J, A, „Az) is related to the conventional deuteron wave function yz (k) by the variable transformation

d d

m +kTk.n=Mo(k —
—,'» kT n=o Mo'= (2.8)

and by Melosh rotations, %M ( g, kz, m ), of the spins,

m +gMo —io"(n X kT )
%11 (,kT, m )=

[(m+gMo) +kT]'
(2.9)

The wave function yz (kT, g, A, „A,2) is thus specified by

Mp
X /(A4& Tk& ~1&~2)

4g( I g }

' 1/2

[+M(g kT m )Xi. (k)+M(1 0 kT m )li, i., (2.10)

where Mo/4$(1 f ) is the Jacobi—an of the variable transformation from [ g, kT j ~k.
The conventional wave function yz (k) has the standard form'
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l0 2
gz (k)= cr ez. Uo(k) — —(3cr kez k —cr ez k )Uz(k)

4~ ~ ' v'2 « ' v'2 (2.11)

The polarization vector ez has components eo=(00, 1) and e+=+(1,+i,O)/&2. The functions UI (k) are related to
d

the conventional deuteron S- and D-state wave functions uL (k) by

uL (k)
I. +tkL. +&

and normalized according to

fdk[u,'(k)+uz(k)]=1 .

They are related to the radial wave functions uo(r) and uz(r) via
' 1/2

uI (k) =i k — f dr uI (r)j I (kr)r .
2

(2.12)

(2.13)

(2.14)

Without loss of generality, we choose axes such that n= I0,0, 1I and Q = IO, ~Q~, O, OI. The leading powers of ~Q~ in
the current matrix elements (2.7) can be obtained by expanding the Fourier transform of the delta function,

5[k'T —kz- —(1—g)Q]= z f d xTexp[i(kT kT—) xT][1 i(1——g)~Q~x, —
—,'(1 —g) Q x, + ] .1

(2.15)

We note that x, = —iB/Bk„with the other independent variables kept constant. This expansion yields the following
expressions for the two matrix elements.

lim&2/re&1~I+(0)~0) = —&8M«z y f d kT f dg F,~(0)y+(kT, /, A, „Az)(1—g) yo(kT, /, A, „Az)
lyA2 1

Fzx(0)+ yx+(kT, g, xI ~z)&~II~o, l~ &y,(k„g,~„x,)2m

(2.16)

lim
z

= g f d kz- f dg F,~(0)y+(kT, J,A, „Az)—,'(1 —g) g (kT, g, k„lz)

yy'(k, g, A, '„A,,)(1—g)&A, I~icrz~k, , ) „y (kT, g, i, A,, )

1

(2.17)

All the spin summations can be done algebraically, after rearranging Eqs. (2.16) and (2.17) as follows:

Q~Q
lim&2/ri& 1~I+(0)~0)= v'8M« f d—kT f d g F,~(0)(1—g) ITr[Tzy+(k)T)yo(k')]QMO(k')Mo(k)I«T 4g(1 g)

1N

+ Tr[Tzy+(k)T3yo(k')]QMO(k')Mo(k)
Fzn«O)

2fPl k=k'

and

&1II+(0)i—»
Q ~0 Q

1= —fd'k, fdic
F»(0) z 8

Bk, k',
(1—g) [Tr[Tzy+(k)T, y' (k')]QMO(k')Mo(k)]

a
(1 —g) ITr[Tzy+(k)T3y' (k')]QMO(k')Mo(k) I2m ak', k=k'

(2.18)

(2.19)
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where

T2=—%3r(1—g, —k'T, m )AM(1 —g, —kr, m ) (2.20)

describes the Melosh rotations of the spectator nucleon,
and

T1=&M(g kT m)&M(g kT m),

T3:RM(g kT m )io 2AM(g, k'T, m )
(2.21)

describe the Melosh rotations of the initial and final
struck nucleons. The expressions (2.18) and (2.19) do not
involve approximations. The right-hand sides could be
evaluated to obtain exact expressions for the quadrupole
moment and the magnetic moment. It is easier, however,
to obtain the exact result from the matrix elements evalu-
ated for very small nonzero values of Q . Equations
(2.18) and (2.19) are useful as the starting point for expan-
sions in inverse powers of the nucleon mass.

gapp gNR+gNR+gc +gc gNR+. 5gapp

where

QsD =&2f dk k Uo(k)U2(k)

+ f dk k Uo(k)U2(k),

QDNDR= —
—,
' f dk k'U,"(k),

QsD= 2 ( —,', + —,'F2N) f dk k Uo(k)U2(k)

(3.3)

(3.4)

+ —,', fdk k'Uo(k)U, '(k)

c 1 6 3
I

QDD 2 [( g+ 2o 2N)FD gg f dk k 2 (k)J

In the same manner Eqs. (2.18), (2.19), and (2.5), yield
four terms for the approximate quadrupole moment.

III. EXPANSION IN PO%KRS
OF THE NUCLEON VELOCITY

We now turn to calculating the quadrupole and mag-
netic moments by expansion in powers of the nucleon ve-
locity to second order beyond the nonrelativistic result.
The expressions for the moments are reduced to one-
dimensional integrals in four steps: (i) expansion of the
integrand of Eqs. (2.18) and (2.19) in powers of 1/m; (ii)
summation over all spin variables; (iii) ditt'erentiation
with respect to k, and k', at kT=k'r', and (iv) integration
over angles after change of integration variables
IkT RI

The result is a sum of terms characterized by products
of the wave functions, UI (k), and/or their derivatives,
UL(k) =OUI (k)/Bk . The individual terms exhibit the
sensitivity of the relativistic corrections to the conven-
tional S- and D-wave functions.

From Eqs. (2.6) and (2.18), it follows that the approxi-
mate magnetic moment Pgp consists of five terms,

It is easy to verify by a Fourier transform that the first
two terms are the SD-interference and D-wave contribu-
tions to the nonrelativistic quadrupole moment.

and

QsD = — dr r u11(r)u2(r)&so

QDD
= —

—,', fdr r u 2(r) .

(3.5)

IV. NUMERICAL RESULTS AND CONCLUSIONS

We have computed the deuteron quadrupole and mag-
netic moments of the deuteron wave functions due to the
Reid soft core, ' Argonne U &4,

' Paris, ' Nijmegen, and

The remaining terms, QsD and QDD, are the relativistic
corrections to the SD-interference and D-wave contribu-
tions.

PZ =Pd +Pd+Ps—s+PsD+PDD= Pd +~PI—
where

NR NR —3 1

Pd PDD Pp+Pn 2 D Pp+Pn 2 )

2m —Md

(3.1)
0.008—

0.007—

App
d

x )0xgo

X
X

1Pss= (F,N F2N) f dk k Uo—(k),
6m

PsD 2 (F1N 4F2N) f dk k Uo(k)U2(k)
v'2 6

60m

1
PDD — ( —,'„'+ —,', F2N )f dk k U2(k) .

(3.2) 0.006—

0.005—
I

4

X ~
X

00

The leading term in Eq. (3.1) is the nonrelativistic mag-
netic moment. The second term is due to the binding en-
ergy of the deuteron. The remaining three terms are, re-
spectively, S-wave, SD-interference, and D-wave contri-
butions. These expressions for the magnetic moment are
in agreement with those of Ref. 14.

FIG. 1. The relativistic effects in the magnetic moment and
the quadrupole moment for different potentials listed in the
tables. Besides the exact relativistic corrections 5pd and 5Qq,
we show the approximate corrections 5'dpp obtained by expan-
sion in powers of k /m.
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TABLE I. The quadrupole moment Qd for diff'erent wave functions arranged in order of decreasing
D-state probability.

Potential

Reid soft core
Argonne v14
Paris
Nijmegen
Bonn R
Bonn Q
Bonn E

I'D {%)

6.47
6.08
5.77
5.39
4.81
4.38
4.25

0.2804
0.2866
0.2795
0.2781
0.2742
0.2739
0.2812

0.2796
0.2859
0.2789
0.2775
0.2736
0.2734
0.2806

0.2762
0.2827
0.2758
0.2747
0.2711
0.2711
0.2784

—3.4
—3.2
—3.0
—2.8
—2.5
—2.3

2.2

Experimental value Qd =0.2860+0.001S
gNR gapp 5appg (10—3) 5gg(10 )

7.2
6.8
6.7
6.6
5.8
5a2

5.3

TABLE II. The magnetic moment pd for different wave functions arranged in order of decreasing
D-state probability.

Potential
Experimental value pd=0. 857406+0.000001

~D (%) pd Pd paIp (iapppd ( 10 3
) 5pd(10 )

Reid soft core
Argonne v14
Paris
Nijmegen
Bonn R
Bonn Q
Bonn E

6.47
6.08
5.77
5.39
4.81
4.38
4.25

0.8500
0.8516
0.8531
0.8549
0.8577
0.8597
0.8603

0.8429
0.8451
0.8469
0.8491
0.8524
0.8548
0.8556

0.8513
0.8526
0.8541
0.8556
0.8582
0.8601
0.8610

8.4
7.5
7.2
6.5
5.9
5.3
5.4

7.1

6.5
6.2
5.8
5.3
4.8
4.7

TABLE III. Contributions to'the k/m expansion of the quadrupole moment. See Eqs. (3.3) and
(3.4).

Potential

Reid soft core
Argonne v14
Paris
Nijmegen
Bonn R
Bonn Q
Bonn E

~D (%)

6.47
6.08
5.77
5.39
4.81
4.38
4.25

gNR

0.2986
0.3048
0.2970
0.2951
0.2907
0.2902
0.2974

gNR( 10
—2)

—1.893
—1.896
—1.815
—1.756
—1.703
—1,582
—1.678

QsD(10 )

9.02
8.16
8.10
7.85
6.86
6.12
6.26

Qc ( 10
—3)

—4.31
—4.04
—3.84
—3.59
—3.21
—2.93
—2.83

TABLE IV. Contributions to the k/m expansion of the magnetic moment. See Eqs. (3.1) and (3.2).
The numerical value of the term pz is 1.185 X 10

Potential

Reid soft core
Argonne v14
Paris
Nijmegen
Bonn R
Bonn Q
Bonn E

I'D (%)

6.47
6.08
5.77
5.39
4.81
4.38
4.25

p,»(10-')
2.505
2.093
2.202
1.996
2.097
2.031
2.117

pqD(10 )

+5.329
+6.292
—0.687
—2.243
—6.849

—10.84
—6.307

pDD{ 10 )

4.626
4.214
3.809
3.332
2.655
2.161
2.178
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three Bonn potentials. ' In Tables I and II we list the
exact relativistic results, the nonrelativistic values, and
the approximate values obtained in Sec. III. The relativ-
istic effects increase the quadrupole moment by 0.19/o to
0.26% and the magnetic moment by 0.55% to 0.84%.
The relativistic corrections to the quadrupole moments
are smaller than the experimental errors and do not
significantly improve any disagreement of the nonrela-
tivistic values with the data. The relativistic corrections
to the magnetic moments decrease the discrepancy with
the experiment, but are not sufficient to achieve agree-
ment with the data. The sensitivity of the corrections to
variations in the wave functions is shown in Fig. 1. These
results clearly indicate that additional exchange-current
effects are needed to achieve agreement of both moments
with experiment.

The expansion in powers of k /m yields reasonable ap-
proximations for corrections to the magnetic moment.
The approximate corrections have the right sign and are
between 10% and 20% too large. For the quadrupole
moment, however, the expansion yields corrections of the
wrong sign and the wrong order of magnitude. The S-
wave, D-wave, and SD-interference contributions are
shown in Tables III and IV.

The unreliability of the expansion in powers of the nu-

cleon velocity k/m should not be surprising. Not only
does the power series diverge, but the expectation values
of individual integrals will diverge for sufficiently large
powers. When low-order terms give already bad approxi-
mations, the addition of higher-order terms is likely to
make things worse. In general, relativistic corrections
calculated by expansion to order (k /m ) should be
considered spurious unless justified by a detailed error
analysis of the specific case.

In summary, we found relativistic results that are
larger than the nonrelativistic limits by about 0.2% for
the quadrupole moment and 0.7% for the magnetic mo-
ment. Corrections calculated by expansion in powers of
1/I represent unreliable approximations to the relativis-
tic corrections. The remaining discrepancy between the
theoretical and experimental results indicates the need to
consider the effects of non-nucleonic degrees of freedom,
which generate two-body charge-current operators.
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