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Excitation of spin-isospin modes in the quasifree scattering region
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Nuclear spin longitudinal and transverse response functions in the isovector channel are calculat-
ed by the continuum random-phase approximation with the orthogonality condition. This method
treats the nucleus as of finite size and with a continuum single-particle spectrum. It can include an
imaginary potential for the particle states. The corresponding longitudinal and transverse cross sec-
tions for “°Ca(p,p’) at E, =500 MeV are calculated by distorted-wave impulse approximation fully
quantum mechanically which is beyond the previous analyses by the Glauber approximation. The
results are compared with the longitudinal-transverse response ratio extracted from the polarization
transfer observables of the Los Alamos experiment. Large effects of the finiteness of the nucleus are
seen especially in the longitudinal response. Effects of the distortion diminish the softening and har-
dening due to nuclear correlation, but the enhancement and quenching still remain. These effects

cooperatively reduce the ratio.

I. INTRODUCTION

The investigation of the nuclear response to external
spin-isospin fields is one of the central issues in current
nuclear physics. Depending on the transferred energy o
and momentum g to the nucleus, different physics can be
studied, such as giant Gamov-Teller resonances in the
low-q and low-w region, delta-hole excitation for larger w,
etc.

The study of the quasifree scattering region with medi-
um momentum transfer (g~=~1.5-2.5 fm™!) is a newly
developed field. If the incident particle interacts freely
with a nucleon in the nucleus and the motion of the nu-
cleon can be regarded simply as the Fermi motion, one
expects a broad bump in the energy spectrum with a peak
at w=g2/2m (m being the nucleon mass) and a width
determined by the Fermi momentum. We call it the
quasifree bump. Experiments clearly show the bump but
occasionally the peak energy deviates from the simple ex-
pectation.

Alberico et al.! pointed out an interesting contrast be-
tween the isovector spin longitudinal and transverse
modes produced by the operators

A L iq-r. —
O,(q)=i 3 7(c'-qle i,

i=1

(1.1)

A . . iq-r.
Oorl@=i 3 a'xqle " /2, (1.2)

i=1
respectively, where o', 7, and r; are the spin, the isospin,
and the coordinate vector of the ith nucleon. The predic-
tion was based on the random-phase approximation
(RPA) calculation in nuclear matter with one-pion ex-
change (OPE) plus one-rho-meson exchange plus a con-
tact interaction specified by the Landau-Migdal parame-
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ter g’ (m+p—+g’' model). The prediction was that around
g =1.75 fm ™! (the critical momentum for pion condensa-
tion), the response function for the isovector spin longitu-
dinal mode, R;(g,w) is enhanced and softened due to
OPE attraction,? while that for the isovector spin trans-
verse mode, R;(q,w), is quenched and hardened due to
the short-range correlation.! The feature can be seen in
the Fermi gas results of Fig. 4.

Some experimental results are summarized® > in Fig.
1, where the positions of the quasifree peaks seen in the
reactions (e,e’),® (p,p’),7 and (PHe,?) (Ref. 3) are com-
pared with the line w=¢?/2m in the g-o plane. The
peak observed in (d,2p) (Refs. 4 and 8) falls on the same
line as (CHe,?). One of the eminent features seen in the
figure is gradual softening of (*He,) with respect to (e,e’)
as g increases. This feature might be explained in the fol-
lowing way.> > First (e,e’) does not excite the spin lon-
gitudinal modes. Second, spin-dependent forces dom-
inate for charge exchange reactions at intermediate ener-
gy. Third, for ¢ >0.8 fm ™!, the spin longitudinal part of
the forces is getting relatively stronger than the spin
transverse one, as g becomes larger (see Fig. 2). There-
fore, the softening of R;(g,») does not affect (e,e’) but
might have larger effects on the spectrum of (He,?) as ¢
increases. Numerical analysis of Alberico et al.’ sup-
ports this expectation.

Efforts to isolate the spin longitudinal and transverse
response functions are carried out by elaborate measure-
ments of spin observables. The ratio “R; /R;” is es-
timated by the plane-wave impulse approximation
(PWIA) analysis from the complete polarization transfer
measurement of (p,p’) at 500 MeV performed at Clinton
P. Anderson Meson Physics Facility (LAMPF) (Refs. 9
and 10) for various  at ¢ =1.75 fm ™. The obtained ra-
tio is close to unity, which completely contradicts the
prediction.! Preliminary results of the measurement of
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FIG. 1. The quasifree peak positions seen in (e,e’) (dash-
dotted line with open circles), (p,p’) (+), and (*He,?) (solid line
with solid circles) are compared with the @ =¢?/2m line in the
g -w plane.

the tensor analyzing power of “°Ca(d,2p) (Ref. 8) also
support the results of LAMPF. The discrepancy is, at
the moment, considered>!°72! to be ascribed to the dis-
tortion (mainly absorption) of the probes, the finiteness of
the nucleus, and a larger g’ than used in Ref. 1.

Effects of the finiteness appear through the density
dependence of the collectivity and the mixing of the spin
longitudinal and transverse modes. They have been tak-
en into account by various means. The simplest one may
be the Fermi gas model with a local density approxima-
tion (LDA).'>!? The semiclassical approach,?? a sophisti-
cated version of LDA, is applied to the present prob-
lem.!* The method is elaborated by including O (#?) con-
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FIG. 2. The g dependence of the real parts of the NN t-
matrix amplitudes S, 8, and € at E, =515 MeV.

tributions.!” The semi-infinite slab (SIS) model developed
by Esbensen and Bertsch?® has also been applied by Es-
bensen et al.!%1?2 Another approach is the bound-state
approximation in solving RPA in which single-particle
states are represented by bound states truncated in a cer-
tain space.>!*!6 The bound states in a harmonic oscilla-
tor potential are often used. Alberico et al.>'*!> further
employed an additional approximation of Toki and
Weise.?” Shigehara et al.'®!° have utilized the continu-
um RPA method of Shlomo and Bertsch?* which fully
takes into account the continuum nature of the particle
states and hence the escape width. So far this is the most
advanced analysis of the finiteness. However, this tech-
nique is not applicable if the particles and holes are in
different potentials, e.g., the holes are in the bound state
of the real potential but the particles move in the com-
plex optical potential.?® In this paper we adopt the con- -
tinuum RPA with the orthogonality condition (hereafter
called OCRPA) developed by Izumoto,”” which allows
the particles and holes to be in different potentials.

Up to now the effects of the distortion have been treat-
ed poorly. In most analyses of SIS (Refs. 12 and 10) and
LDA,'>16 the effects of the absorption have only been
taken into account in terms of a Glauber approximation
with straight line trajectories. The distortion of the tra-
jectory and the spin reorientation during scattering are
rarely included.?! A surface response approximation in
the angular momentum representation used by Refs. 5,
14, 17, and 18 treats the distortion in a cruder way.
Namely, in the Glauber approximation the damping
effect of the absorption is expressed by a function of the
impact parameter b, F(b). However, in the surface
response approximation the damping function F(b) is
simply replaced by the same function of the radius r,
F(r). This geometrical difference between cylindrical
and spherical shape could be serious. In ordinary
Glauber approximations such as SIS,!? the softening and
the hardening are reduced by the absorption, but not so
in the surface approximation.'*'® This may be due to the
wrong geometry of the latter.

There have been a few full quantum-mechanical calcu-
lations including the distortion.?»?® In this paper we
present results of a calculation in a distorted-wave im-
pulse approximation (DWIA). Significant effects of the
distortion are observed in such an approximation.

In Sec. II we give the formalism for calculating the
response functions by means of OCRPA, and the DWIA
formalism in terms of the response function in r space.
In Sec. III the energy spectra of the response functions,
R, and Ry, for *°Ca are shown for various gq. Effects of
the finiteness of the nucleus are clearly seen. The smear-
ing of the narrow structures at low energies due to the
absence of the spreading width is done by using a com-
plex optical potential for the particle states. A bound-
state approximation is tested. In Sec. IV, we present the
energy spectra of the DWIA cross sections for “°Ca(p,p’)
at E,=500 MeV. The dependence on the transferred
multipolarity is investigated and the contribution from
each hole state is studied. The ratios R; /R obtained by
the LAMPF experiment are compared with our results in
Sec. V. The combined effects of the finiteness and the dis-
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tortion are found to reduce the ratio drastically. Future
problems are discussed in Sec. VI and a summary is given
in Sec. VII.

II. FORMALISM

In this section we present the formalism of the continu-
um RPA with the orthogonality condition (OCRPA) and
apply it to the DWIA calculation of the double
differential cross section d 2o /d Q d w for nucleon-nucleus
inelastic scattering to the continuum states. In Sec. IT A
we explain the significance of the orthogonality condition
and show how to incorporate the condition with the con-
tinuum RPA based on Ref. 27. We then introduce the
spin-isospin polarization propagators and show how to
calculate them in the framework of OCRPA. Then we
derive, following Ref. 30, the formula for the spin-isospin
|

1
fio—(H —Eq)+in

(r,r';0)={0|P T(r)d(r)

where H=Hg,+V is the total Hamiltonian of the nu-
cleus and |0) and E, are the ground state and its energy,
respectively. Hg, is the single-particle Hamiltonian
which represents the mean field and V is the residual in-
teraction. $(r) is the nucleon annihilation operator at the
point r, which can be expressed as

Wo)=3 ¢, 1), , (2.2)

where @, is the annihilation operator for the state a,
whose wave function ¢,(r) satisfies the equation

Hsp¢a= Ea¢a .

To calculate IT of (2.1) by means of RPA, one must
prepare the free (uncorrelated) Green’s function IT°
defined as

(2.3)

Oh(1)$, (1)) (£)¢, (r")
fiw—(€,—€,)+in

ﬂo(r,r';w)zz
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O (X (T)P(1)) (1)
—fiw—(e,—€,)+in
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BL(r)$, (1)} (£ )¢, (1)
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response functions obtained from the corresponding po-
larization propagators.

In Sec. II B we first give the ¢ matrix of the free NN
scattering and discuss the problem of nonlocality. Then
we present the detailed formulas for the DWIA cross sec-
tions based on Ref. 28. The formulas for the response
functions and cross sections are given in angular momen-
tum representation which is convenient for the finite nu-
cleus case.

A. Polarization propagators and response functions
and the orthogonality condition

1. Two-point particle-hole Green’s function
To explain the method of OCRPA in a simple way, we

omit the spin and isospin suffices. First, we define the
two-point particle-hole Green’s function as follows:

1
fiw—(H —E,)+in

#iodmlo) 2.1)

[

where p and 4 denote the particle and the hole state, re-
spectively. Then, a problem is how to treat the sum over
the continuum states,

$,(0)g](r')

— . (2.5)
E —e,t+in

gir, i E)=3,
P

Shlomo and Bertsch?* pointed out that one can replace
the sum over p by that over the complete set a, and wrote
I1° as

Ho(r,r’;w)———z[qﬁ;r,(r)g (r,r';7i0+€,)d, (1)
A

+¢I,(r’)g(r’;r; —fiw+e,)p,(r)],
(2.6)

with the single-particle Green’s function

— L
E—Hg+in

< bunIelr)
- “E —e€,+in ~

g(r,r';E)= (1|

(2.7)

The sum over a is not equivalent to that over p, i.e.,

O (1), (1)) (r)¢, (1)

ph

vz |

fiwo— (€

B (DG, AT)P) (1) (1) N O (X (1)) A1), (1)

p —€x) i —#w—(e,—€,)+in

(2.8)

fio— (€, —e€,)+in —fiwo— (€, —€,)t+in



Since the second term of the right-hand side vanishes ex-
cept for w=¢€, —¢€,, there is no practical problem in
Shlomo-Bertsch’s method. However, if one uses a
different Hg, for g from that for the occupied states ¢,
(e.g., in case of including an imaginary potential to Hg,
for g as is mentioned in Sec. I), this cancellation does not
occur any more and one cannot use this method. Noting
that the particle states must be orthogonal to the occu-
pied states, we assume that g? is expressed by the single-
particle Green’s function in the orthogonality condition
model, g%, introduced by Izumoto and Mori,*! which
satisfies the condition

AE —Hy,+in)Ag®=A ,

(2.9)
rg>=0,
with
A=T,(r)) (s, , ‘
’ (2.10)
F=1-A=31¢,(r)){¢,(r)] . ‘
h
The solution is written as
g=g —g(I'gl’) " 'I'g . (2.11)

Hence, we can rewrite I1° as

85 (r, s E) =gy (1,73 E)

-3 fowdr1 fowdrz g,j(r,rl;E)unh,j(r,)[fo dry fo dr4un':.1j(r3)glj(r3,r4;E)un,:”U(r4) nyn!

’
nh nh

Xun}:lj(rz )g[j(rz,rl;E)

where Up, ij

ponent of the inversed matrix [ 1.
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HO(r’r';m)=2[¢}:(r)g°°(r,r';ﬁco+eh ), (r")
h

+¢I,(r’ )goe(r’,1; —fiwo+ €, ), ()] .

(2.12)
The Green’s functions, g and g °¢, are expressed as
g(r,r;E)=3 ¥}, (?)My,jm ), (.13
iim rr
where
(2.14)

Y m D= mgm | jm )i'Y D)X (120m ) -
m

The radial part gj; is

’, — 1 ’
gii(r,r ,E)*—%f,j(r,e)mfly(r ,€)

=3ﬁ‘;if,,-(r<,E)h,,-(r>,E>/W(f,j,h,,.), (2.15)

where f;;(r,€) and h,j(r,e) are the regular and the ir-
regular solution of Hy, with the energy €, respectively,
and r_ (., denotes the smaller(larger) one of r and r'.
The denominator W denotes the Wronskian, and [
[=(A4 —1)m / A] is the reduced mass between the parti-
cle and the rest nucleus. From (2.11) and (2.15), the radi-
al part of g°° is given by

1

(2.16)

’

(r) is the radial part of the occupied-state wave function with the node n;, and [ ]n_hln,: denotes the n,,n; com-

2. Spin-isospin polarization propagator

We define the spin-isospin current 7”a(r) as

4 R .
JuaD)=i 3 rhoidr—r)=i 3 Im1plIM)] 3 (Di'Y,, @), (2.17)
i=1 M
where u=0,%1 and a =x,y,z. The radial part is given by
~ 4 8r—r) iy
CJumar) =3 o ———[iY(T) X o'y - (2.18)
i=1 i
The polarization propagator for the spin-isospin current is written, in the 7 representation, as
0 rre)— (Olf#a(r)ln)(nlf]‘\:r,b(r')l()) <0|fzb(r’)|n)(n|7,m(r)|0>
pan(BT0V= 2 = T TR +in —#io—(E,—Eo)+in
s 1 At vt 1 )
= + 0
O ) T —E g i T T ) G —E g rin ™) 1)
_I A ._l A
=803 > > H,,llza(r,r';w)(llmllleM)(lzmzlvlJMh Yy @) Y, @), (2.19)

IMIlim lym,
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where |n ) and E, denote the nth state and its energy. Here we assumed the ground state has spin J =0 and isospin
T =0. The radial part H,,llza(r,r’;w) is given by

' A 1 ~ A , 1 ~
HJlllZa(r’r ;0)=1(0| J;rlJMa(") ﬁw_(H_EO)+in112JMa(r )+./12.1Ma(r ) _ﬁw_(H_EO)_Hn]}:JMa(") o) .

(2.20)

For the free polarization propagator, the intermediate states are the particle-hole states, and hence the radial part is
written in a simple form

1a*

M 1,4 (1,75 0) 2¢,, (D% (@) (r') 221)

where the suffices p and & denote the sets of the quantum numbers (lp,jp,ep,tp ) and (1, j,,n,,t,), respectively. The en-
ergy denominator .iDg,, (w) is

1 1

on (@)= + 2.22
Dpn(@) fio—(€,—~€,)+in —Ho—I(€,—¢€,)+in 2.22)
and the radial part of the current expectation value is
()= [, €ty Wb ty) " 1M [ippgg (1)]0)
S (re,)uy, o (1)
Jla~_ PP h hlh
Son e , (2.23)
with the geometrical factor 97
172
0 , (21, +1)(21,+1) I 1
QJ’ (u 13 )ips Ly 2 I DL (L )1; It [t Y CLlo |4 (=) = ) o 0 0 0
(2.24)

Using the method of the previous subsection, the sum over the continuum-state energy €, in Eq. (2.21) can be replaced
by the radial part of the single-particle Green’s function g°¢, and then Eq. (2.21) is rewritten as

’
Jl ax "h’hlh( Jl,a U, 1,5, (7")

Hﬂlarr w)= 29 >
’

[g,, rrifiote,)tey (r'r;—tote,)]S,, (2.25)

Now let us take into account the internucleon interaction in terms of RPA with the ring approximation in which the
exchange term is approximated by a contact interaction. Then the polarization propagator satisfies’”3? the RPA equa-
tion

RPA . y=T170 . ® 2 ® 2 0 . RPA .
5 7a(nre)=Ig (rrie)+ 3 fo ridr, fo radry Iy g o (o) Vi (r )7 (s 00) (2.26)
I

Here we write the particle-hole interaction in the form

y= zf 3[ () R) (07 R) + V(K)o X K)o/ X R) (e T
i<j
=133 f rdr fow r’zdr’VJ,,r(r,r’)}}}JMa<r)f1'JMa(r’) , (2.27)

a JM Il
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with the radial part V;,.(r,7’")

2 ® .9 . . '
Ar,r')=— k*dkj,(kr)V (k)j(kr') (2.28)
Vyurlr,r') vfo Jikr)V (k) jp(kr

and

VJ”f(k)za_” VL(k)aJ,:-*- VT(k)(Sur—a”aﬂr) ’ (229)

where a;=(J010//0) and j,(x) is the Ith spherical
Bessel function. V (k) and V (k) denote the longitudi-
nal and the transverse part of the particle-hole interac-
tion, respectively. To get Eq. (2.29), the relation

(g'-a))=(a"k)(o/k)+ (o' Xk)(0’/XK) is useful.
3. Response functions

The response function for the spin-isospin currents is
defined as

J
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Ruavb(rﬂ";w)gz(O!_’i\ﬂa(r”n )(nvab(r')lO)

X 8(%iw—(E, —E,)) , (2.30)

which can be written by the spin-isospin polarization
propagator as
’ 1 ’
R#avb(r,r;a))=—;ImH,m,,b(r,r ;o) . (2.31)
In order to compare our calculations with previous

works, we define the response function in the momentum
representation:

E#aVb(q’q';w)zf d’r f d3r'eiq.rRuavb(l‘,l";a))
Xe Tl (2.32)

Following the convention of Alberico et al.,* the longi-
tudinal response R;(g,w) and the transverse response
R(g,w) are defined as

R.(g,0)=3(0/0,(q)n ){n|0] (Q)|0)8(#iw—(E, —E,))

=3 3(=r"q_,9* R,...(q,q0)
uv

2J +1

1
=75 II 4 ) (2.33)

Py ImJ%z 4y e (6 q50)ay,

and
R7(g,0)=3010.(q)|n Y{n|0}(q)|0)8(#iw—(E, —E,))
n

=723 3 9uqy(lplplin ) (1v1v'|1n)R ;.. (g, g 0)

n uvp'v

1 2J +1
=———Im 3 HJlllzz(qr‘I;w)(slllz—011[‘1112) ’ (2.34)

4 i, 4

where g, is the spherical tensor component of the momentum transfer q, and the radial part I1 a, Iza(q,q' ;) is given' by

H.”llzﬂ(q’q';w)z(4ﬂ-)2qq, fo r2dr f() rIZdr,j[‘(qr)n-ﬂllza(r’r,;w)jlz(q’r,) '\

Note that both R; and R, are linear combinations of
In Ji 1,z and that the difference only comes from the

geometrical factors ap an, and (8,112 —ayap,).

B. Distorted-wave impulse approximation (DWIA)

1. The nucleon-nucleon (NN) t matrix

In DWIA, the interaction between the nucleon O in the
projectile and the nucleon i in the target is given by the
NN t matrix, the isospin-dependent part of which is writ-
ten in the NN c.m. frame as

(2.35)
[
ti(@=[a—iy{(a®f)+(c"f)}
+B(o%f)(o' 1) +8(0°q)(a"g)
+e(a%P)ai-p)], (2.36)

where q=k'—k, n=k X k', p=q X1, and k and k' are the
momentum of the nucleon 0 in the initial and final chan-
nel, respectively. It is normalized as

do/dQ={u?/2m#*)? /(25 + 1)} |t|?
(u=Vm2>+(x/c)?/2) .
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The amplitudes a through € are functions of ¢ and the in-
cident energy E.

In DWIA we need the ¢ matrix in the c.m. frame of N-
nucleus (N 4), which is approximately given by

(kK2 kg k; ) wa =mt:(q) (2.37)
with the Moller factor i
En(k)EN(—K)EyN(K)y(—x) '
_ N\K )Ly N\KIN , (2.38)

Epn(ko)Ey(K;)E N (Ko)E N (K;)

where k; (kj) is the momentum of the nucleon j in the in-
cident (exit) channel in the NA c.m. system and
Eyn(k)=[(mc?)*+(#ick)*]'/%. In this frame transforma-
tion we neglect spin rotation and use an approximation
q=k;—k, (exact in nonrelativistic limit). Following the
optimum factorization and on-shell approximation of
Picklesimer et al.,>® 7 turns out to be effectively a func-
tion of only g and E.

First we note that the a term does not contribute to
the excitation of the spin modes. Next if we assume

nB=ne=YVr(q) (transverse),
n8=%Y,(q) (longitudinal) , (2.39)
r=0,

the ¢ matrix only depends on q and E and consequently
can be expressed by the two components, the spin longi-
tudinal and transverse, as

t(Q)=V(g)o°q)o"q)+V(g)c®XG)Na'XT) ,
(2.40)

because of the relation
(0%8)(o"0)+ (%P a"P)=(a"XG)a'X]) .

Then the ¢ matrix in the r representation becomes local
and is given by

3 —iq-(r;—r
| ‘V(r,-,r)=f742;c:;t,-(q) e

= 3 VY, (r,1),

a=L,T

(2.41)

TH={x\(k;,r)® (1, . .

where ®y(ry, . .. ,rA) and @, (ry, ..

r,nlz V(r;, D)k, 1)1y, . . .
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and in the spherical tensor representation as

V1, 0)=3 3 V%(r,,ri'Y,(F
T

DOXao'1

X[I"Y () Xa’1y, , (2.42)

wheIC
) (‘ 71} f q aq .]I{q] JICVL( J .] ’
Jil 1 l)a q:a 1 l(ql )

Virtran="2 [ " gdq jitar)V1(q)

X8y —apa;)jiiqr) . (2.44)

Now the DWIA cross section d?0 /dQ dw can be cal-
culated by utilizing the two-point polarization propaga-
tors as will be shown in Sec. II B 2.

Figure 2 shows the g dependence of 3, §, and € given
by Bugg and Wilkin>® from the NN scattering data at the
incident energy E,=515 MeV in laboratory frame. It
shows that the condition =€ does not hold well though
the g dependence of B and € are similar. For technical
reasons, we make the assumption (2.39) in the present
calculation in order to localize the ¢ matrix [i.e., to get
the form (2.40)].

2. DWIA

The inclusive cross section d2?0/dQdw of the
nucleon-nucleus inelastic scattering is expressed by the
scattering matrix T as

d’o pity kg )
d0do ~ an) K, 2s+12 1 |28(#i0—(E, —E,))
=K 2|T,,(’)|28(hw—-(E,, —Ey)), (2.45)
n
where the relativistic reduced mass is defined as
EPLE!!
Hin= ff) Y (2.46)

cAE{f)+E{)

and E; {’f) are E{{), 1) are the initial (final) energy of the pro-
jectile and the target, respectively. The scattering matrix
T/ is given by

,T ), (2.47)

,T 4) are the wave function of the ground and the nth excited state, respectively,

and )(H' )(k,,r) and /! r Nk s»1) the 1nc1dent and the outgoing distorted wave, respectively.

The sum in (2.45) can be rewritten as

S0128( 40 —

1

3I7; (E,—Eo))=——Tm(0|3 8 x

1

i)ﬁa)—

> Str;)

(H—Eq)+in <"

+3 8(r;)—
j

—(H —E,)

zs*u )lo) (2.48)
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where
§(ri)zf d3rx‘f_)*(kf,r)‘\f(r,-,r)x§-+’(k,.,r) . (2.49)

For the optical potential with a spin-orbit force, the distorted wave x:*(k;,r) is expressed by**
+’(k,,r)—2)(‘+) k,,r)lm t)

m
5

kr S 3 (Limsmg |j,m )Y,m (k) L;m/sm! l],m )Y _,'r‘il'eia’u,‘i;-t)(k,r)lm;itﬂ , (2.50)

where o, is Coulomb phase shift and u ,(j“ has the asymptotic behavior

uf;"(k,r)~sin kr—ncankr~lT+a, , (2.51)

with nc=Z,Z e u/fk. Substntutmg (2.42) and (2.50) into (2.49), we obtain the spherical tensor representation of S:

S(r )= 2 2 2 leMa (r )[llYl(f )XO’ ]M'T'a , (2.52)
a= LTIJMam mg
f 5
where
sl (r)—z S e Vs frha (kikpr) (@=L, T) (2.53)
and
funds "(kpkpr= 3 fdn,x : <kf,r><m Y@ X0 T lm, X, (r)
mfm' l
\/ R _ ilo, +a,)
247 \/(2J+1)(21+1)2 S g+l lf 1,7
k,-kfr

Lij; Ifjf

Xui 5 (kp,rhup ) (ki )21+ 10V/(2); + 1021+ 1)(1,010]1,0)

ly sp Js

X losi i <liosimsi|jimsi)<lfmfsfmxf]jfmsi+M)
I 1 J

Xy, IM1j my Mt Y= 72 | = lmg Dt l/zlef[(cose) (2.54)
i, f S; fllalti (lf+|mf|)! lf ’ .

where k; 1s taken to be parallel to the z axis and 6 is the scattering angle.
Usmg Ji JMa(r) of Eq. (2.18), the expression

2§(r =33 3> f s,JM,, (r)],,Ma(r)rdr (2.55)

a UMam m
i
is obtained. Thus we obtain the final expression for the cross section:
dlo. 2 ® 42 g s msi* ’. Bmsfm:i ’
dﬂda) —K— Imzzz 2 2_{ dr fO r drsllJMfa (r)n.ll‘lza(r?r :w)slz.lMa (r )

a JMIl,mg m aB
°f

= 2 O'aB . (2.56)
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Hereafter in this paper, we especially examine the diag-
onal parts

Oy =011y Or=071T, (2.57)

which correspond to the response functions R; and R,
respectively. Hence we call o; and o 1 the isovector spin
longitudinal and transverse cross section, respectively.
The nondiagonal parts, o, and 0., come from the
mixing of the spin longitudinal and transverse modes.
They vanish in the nuclear matter limit, and hence they
are expected not to be large in finite nuclei. Note that o
and o 7 also include effects of the mixing.

In order to see the effect of the distortion, we give the
expression of the PWIA cross section, which is simply
written by R; or Ry as ’

oPVIA=2K|V (¢)|°R (¢,0) (a=L,T) . (2.58)

III. ISOVECTOR SPIN LONGITUDINAL
AND TRANSVERSE RESPONSE FUNCTIONS

Here we give the numerical analysis of the isovector
spin longitudinal and transverse response functions,
R, (g,») and R (q,®) for *°Ca by means of OCRPA in
the ring approximation.

We used the single-particle potential

U(r)=—(V +iW) 1

r—R
1+exp |——
exp 2
, exp | =X
V,
~2| Ak S(1-s)
i r|1+exp r—R
a .
+Veou 3.1

with R =ry 473, ry=1.27 fm, @ =0.67 fm (Ref. 36), and
V,;=10.0 MeV. Vg, is the Coulomb potential of the
uniformly charged sphere with the Coulomb radius pa-
rameter ro set to be ry,. The real potential depth V is
determined to give the observed separation energy of the
most weakly bound states; ¥ =54.8 MeV for the proton
and V=54.5 MeV for the neutron in the present case.
The imaginary potential depth W is set to zero for the
occupied(hole) states. For the particle states W =5.0
MeV is used in most calculations. The reason for the in-
clusion of the imaginary potential will be discussed later.
The value corresponds to the value of the optical poten-
tial at the energy ~50 MeV. We also include the A-hole
configuration. For A, V=30 MeV and W=V, =0.0
MeV are used.

For the effective particle-hole interaction, we adopted
the (7+p-+g’) model,! in which V;(g,) and V;(q,®) of
Eq. (2.27) are given by

2 2
=L g'+ g (3.2)

2 o*—(g*+m?)

VL(q’w) Fzr(qrw) ’
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_fr . q* 2
Vilg,0) g'+C, Ilgo) |, (3.3)
m ,

2 a)z—(qz-i—mlz,)
where m . (=139 MeV) and m, (=770 MeV) are the pion
and p-meson masses, respectively, and C, (=2.18) is the
ratio of the p and 7 coupling, and f?/4m#ic =0.08 is the
7NN coupling constant. The vertex form factors are

given by
AZ_mZ
r(g0)=—"—F", (3.4)
mOTTN ot g?
AZ_mz
I (qo)=—"—7L— (3.5)
P q A/Z)_w2+q2

with A;=1300 MeV and A,=2000 MeV. From Egs.
(3.2) and (3.5) we used the convention #=c =1. The in-
teraction for A is obtained by replacing o, 7, and f by the
standard spin and isospin transition operator S and T and
the mNA coupling constant f*=2.0f for each NAmn(p)
vertex. The constant g’ is chosen to be the same for N
and A couplings, the universality ansatz, though it is
questioned.'>3” We summed up over the total angular
momentum J up to 11 [see Egs. (2.33) and (2.34)].

T T v T r T v T v T

(MeV'fm?)

o
c
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T

00
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40 60 80 100 I120
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FIG. 3. Response functions by OCRPA. The results of
W =0.0 MeV and 5.0 MeV are compared. The results of R;,
Ry, and R, are denoted by the solid (the dotted), the short-
dashed (the long-dashed) and the dash-dot (the dash-dot-dot)
lines for W =5.0 MeV (0.0 MeV), respectively.
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Figures 3 and 4 show the energy spectra of the
response functions at ¢ =1.75 fm ™! with g'=0.6. The
isovector spin longitudinal and transverse response func-
tions with the nuclear correlation (RPA) are denoted by
R; and Ry, respectively, while those without correlation
(free response) R and RY, are both denoted by R,
without distinguishing them because they are extremely
close to each other. In principle the single-particle spin-
orbit force makes R} and R different, but not in the ac-
tual calculation.

In Fig. 3 the results for W =0.0 MeV and W =5.0
MeV are compared. Many sharp resonances are seen at
lower w for W =0.0 MeV. This is because the spreading
width is completely neglected in this case. We know of
no reasonable way to incorporate the spreading width in
the framework of the continuum RPA. A prescription
sometimes used is to introduce the imaginary potential
for the particle state.?® This forces us to use OCRPA.
By setting W =5.0 MeV, the sharp structures are well
smeared out but it also affects the strength of the
responses, i.e., the strength is reduced in the peak region.
Structures still remain in the low-energy region with
about 10 MeV width. One must note that the energy in-
tegrated response depends on W in the present prescrip-
tion.

The results are very close to those of the continuum
RPA calculation by Shigehara et al.,'® who did not use g’
but used 7+p exchange potential with the short range
cutoff at »,=0.7 fm as the effective p -4 interaction. This
implies our choice g'=0.6 corresponds to their interac-
tion. Considering that the phenomenological analyses
suggest g’ ~0.6-0.7, we keep g'=0.6 for all calculations
in this paper except when a different g’ is explicitly men-

00

20 40 60 80 100 120
w(MeV)
FIG. 4. Response functions in the Fermi gas model with

kr=1.2 fm ™! (dashed lines) are compared with those of OCR-
PA (the solid lines).
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40 60 80 100 120 40 60 80 100 120
wW(MeV)

FIG. 5. The energy spectra of the response functions R; and
R (the solid lines) and R? and RY (the dashed lines) for fixed
transferred momenta g =1.75, 2.00, and 2.25 fm~! are shown.
Note that in Figs. 3 and 4 the uncorrelated response functions
R? and R are denoted by R, without distinction (see the text).

tioned.

In Fig. 4 we compare the results of W =5.0 MeV with
those of the Fermi gas model with the Fermi momentum
kr=1.20 fm~!. We see that the Fermi gas model overes-
timates the enhancement of R; at lower @ very much,
and find that the original prediction of the large enhance-
ment of R; is simply an artifact of the Fermi gas model.

The transferred momentum g dependence of the energy
spectra is shown in Fig. 5. We clearly see the softening

T v T T T - T T

(MeV'fm?)

0S5

ool

"20 40 60 80 100 120
w(MeV)

FIG. 6. Response functions of the bound-state approxima-

tion (Ref. 14) are compared with those of OCRPA at g =330

MeV/c=1.67 fm~'. The solid, the long-dashed, and the dashed
lines denote R;, R, and R, respectively.
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(hardening) and the enhancement (quenching) of R; (Ry)
over a range of g. It is found that the trajectory of the
peak of R, lies on the quasifree peak line @ =g?2/2m, be-
cause the single-particle potential we used is velocity in-
dependent except for the spin-orbit force whose effects
were seen to be very small. However, we note that the
peaks of the response functions are so broad that the
peak position is sensitive to models employed.

In Fig. 6 the response functions at ¢ =330 MeV calcu-
lated in the bound-state approximation by Alberico
et al.'* are compared with our OCRPA results. Alberico
et al. used g'=0.7 with the form factor I' (q,w). It cor-
responds to g'=0.61 in our calculation which does not
have I',. Thus we compare their results with ours for
g'=0.61. Those approximations seem to work only qual-
itatively. Getting more quantitative results in these ap-
proximations could become rather elaborate®® especially
in the quasifree region.

1IV. DWIA CALCULATION

In this section we give the spin longitudinal and trans-
verse cross sections, o; and o, defined in Eq. (2.57) cal-
culated in terms of DWIA for the reaction “°Ca(p,p’) at
E, =500 MeV and compare the results with the polariza-
tion transfer experiment at LAMPF (Ref. 10) in the next
section. We also discuss the dependence on the trans-
ferred multipolarity and on the hole states.

The optical potential used both for the incident and the
exit channel is the set 4 of the Dirac phenomenological
potential obtained by Clark et al.>® We used the NN ¢
matrix obtained by Bugg and Wilkin>’ at E,=515MeV.

For the calculation of o, we equate [Eq. (2.39)]

Vi (g)=nd(q) . 4.1

To calculate o, however, we need the condition S=¢
which is not fully satisfied. So we used the following
prescription. First we calculate the two cross sections by
setting

YV r(g)=np(q) and nelq) , 4.2)

respectively. Then, their average is presented as o,. We
approximate the Jacobian 7 to be constant (9?=0.75)
since it varies only very slightly in the whole region of ¢
and w in our analysis.

In Fig. 7 we show the energy spectra of the cross sec-
tions, o; and o, at the scattering angles 6, , =19.2°,
21.7°, and 24.2°, which approximately correspond to the
momentum transfer ¢ =1.75, 1.96, and 2.18 fm~!. The
angle of the center-of-mass system, 6, =19.2°, corre-
sponds to that of the laboratory frame, 6,,,=18.5°, the
angle of the LAMPF experiment. The full lines denote
the cross sections with the RPA correlation, UEPA,
(a=L,T), and the dashed lines represent those without
the nuclear correlation, ag, (a=L,T). For a fixed angle
one sees all the peaks of o®PA and 0% (a=L,T) lie at al-
most the same energy which is about 10 MeV below the
quasifree peak w=g?/2m. However, the enhancement in
o; and the quenching in o ; can still be seen.

In Fig. 8 the energy spectra of the cross sections calcu-
lated by PWIA and DWIA at 6., =21.7° are compared
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FIG. 7. The energy spectra of the cross sections, o, and o,
at the scattering angles 6, , =19.2°, 21.7°, and 24.2°. The solid
and the dashed lines represent the RPA and uncorrelated cross
sections, respectively.
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FIG. 8. The energy spectra of the cross sections, o, and o,
obtained by PWIA and DWIA at 6., =21.7° are compared
with the response functions at ¢ =1.96 fm~!. The DWIA cross
sections are multiplied by a factor 2. The solid and the dashed
lines represent the RPA and the uncorrelated results.
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FIG. 9. The contribution of each J to R; and Ry at ¢ =1.75
fm™! and to o, and o at 6,,, =19.2° for =60 MeV are
shown. R; (dashed) and o (solid) [R; (dash-dot) and o ; (dot-
ted)] are normalized to be 1.00 (0.768) at J = 10, respectively.

with those of the response functions at ¢ =1.96 fm ™.
The reduction of the cross sections due to the absorption
(a factor 5—7 in the present case) is clearly seen. In the
PWIA expression (2.58), the kinematical factor K shifts
the peak of the energy spectra downwards about 10 MeV
in going from the response functions to the cross section.
For the RPA case, an extra downwards shift in the trans-
verse mode and an upward shift in the longitudinal mode
are seen. They are ascribed to the effect of distortion
which almost diminishes the softening and hardening due
to the nuclear correlation. Previous Glauber approxima-
tion calculations have also shown qualitatively similar re-
sults. Note that the peak positions of cross sections are
lower than those of the surface response functions partly
due to the o dependence of the factor K of (2.45).

The surface response calculations of Alberico et al.’

oa% GT OL
181,
0ds),
Oop1,
Op3,
081,
00 0.2 00 0.2
(mb/sr-MeV)

FIG. 10. The cross sections o (h) and 0%(h), the contribu-
tions from the different hole states, at 6., =19.2° for ©=60
MeV are compared.
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TABLE 1. The attenuation factor 0% h)/Ry(h) (a=L,T).
They are normalized for the 1s, ,, state.

Holes Transverse Longitudinal
0d; ), 0.688 0.858
1sy,, 1.000 1.000
0ds 0.701 0.823
0171/2 0.415 0.584
0pi,z 0.413 0.542
0sy,, 0.238 0.345

and Shigehara et al.'® did not show the shift of the peak
position, but only an attenuation of the strength. We do
not know the reason for this difference but it may be due
to the replacement of the impact parameter b by the ra-
dius 7 to get the damping function F(b) in the Glauber
theory.

In order to see the effects of the distortion in more de-
tail, we investigated the dependence on the transferred
angular momentum, J, both of the response functions and
the cross sections. Figure 9 shows the contributions of
each Jto R; and Ry at ¢ =1.75fm ' and to o, and o
at 0, ,, =19.2° for the excitation energy ® =60 MeV. In
the figure R, (J =10) and o, (J =10) are normalized to
unity while R,;(J =10) and o;(J =10) are set to be
0.768, the value of R+(10)/R,;(10). As is expected, the
smaller J are more attenuated. Hence, the dominant
multipolarities become larger for the cross sections than
for the response functions. The most important multipo-
larity is J =3 (5) for R; (R7), but J =5 (6) for o, (o)
at this ® and ¢(60). For larger g with the same o, it
moves to the higher J. These features are consistent with
the expectation for a surface reaction.

We also investigated the contribution from the
different hole states. Since one cannot separate the con-
tributions from the individual hole state in RPA, we car-
ried out this analysis only for the uncorrelated case,
namely for R, and 09 (7). The histogram of the cross sec-
tions, 0%(7)(h), the contribution from the hole state h at
©=60 MeV and 6=19.2°, are shown in Fig. 10, and the
attenuation factors due to the absorption

a%h)/Ry(h) (@=L,T) (4.3)

are presented in Table I (normalized for the 1s, ,, state).
One sees that the absorption reduces the contribution
from the deeper states very much. The gap of the at-
tenuation between the major shells is also seen. However,
the contributions from the deeper shells are still apprecia-
ble in spite of the surface natures of the reaction.

V. COLLECTIVITY RATIO

Now let us compare our results with the LAMPF
data.>!® For this purpose, we introduce the collectivity
ratio in the isovector channel as

_R,/R} R,

=—= 5.1
R;/RY 6.1

r
1 ’
Rr

where for the second equality we used the fact that the
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spin longitudinal and transverse free response functions,
R? and RY, are well approximated by R =R9=R, as
was mentioned in Sec. III. Assuming that the isoscalar
responses are noncollective and can be approximated by
R,, Rees et al.!® introduced the ratio which includes
both the isoscalar and the isovector contributions as

_ (3.62R, +R,)/4.62
"+0 T (T 15R; + Ry) /2.15

(3.62r,+1)/4.62
= . (5.2)

1.15r,+1)/2.15

Here |8|2/180|=3.62 and |e|*/|eol>=1.15 at ¢ =1.75
fm~!and E » =500 MeV are used where §; and ¢, are the
isoscalar correspondents of & and €, respectively. If
PWIA were valid, |, could be compared with the ex-
perimental data. However, this is not the case. To evalu-
ate the effects of the distortion, the best we can do at the
moment is to replace the ratios r; and 7, ¢, by the ratios

oR®PA /09

o¥FA /0%

rP= , (5.3)

and
(3.62rP+1)/4.62

rPio= . (5.4)
O (11572 +1) /2,15

In Fig. 11 the collectivity ratios 7, ;4q, 77, and P,
at ¢ =1.75 fm~! (9, ,, =19.2°) are compared with the
“experimental” results of LAMPF. Due to the effects of
the finiteness the ratio r; is very much smaller than the
original Fermi gas prediction, but still larger than the ex-
perimental results. The ratio r?, ; is similar to those pre-
viously obtained.> 72! Comparing with the results of the
SIS analysis'>!® of LDA (Ref. 13) and of the surface
response treatment of Alberico et al.!>® and Shigehara
et al.,'® our advanced treatment of the distortion reduces
the ratio »” more. Based on the SIS analysis, Rees
et al.'° claimed that a much larger g’ was needed (e.g.,
g'=0.9), but a more elaborate treatment of the distortion
may not require such a larger value.

20 40 60 80 100 120
W MeV)

FIG. 11. The collectivity ratios r, (dotted) and r,;, (dash-
dot) at ¢ =1.75 fm~', and r{ (dashed) and r?P, (solid) at
6., =19.2° are compared with the “experimental” results of
LAMPF (Ref. 10).
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VI. DISCUSSIONS

The present approach is not the final one. There
remain many problems to be solved both on the nuclear
structure and the reaction sides. We adopted the RPA
approach. Effects of the 2p-2h components not included
in RPA should be examined since their importance has
long been known.!**® The validity of the ring approxi-
mation must be checked. Recently Shigehara!® carried
out RPA calculations which fully include the exchange
effect and showed that the ring approximation is reason-
able for the isovector spin modes, if one chooses suitable
values of g’. The choice of the p -k effective interaction is
also an open question, especially the results are sensitive
to the value of g’. Just for technical reasons the univer-
sality ansatz, gyy =8wa =&aAa, has been used in the
present analysis, but the ansatz has been challenged'**’
and must be taken out.

The single-particle potential should, in principle, be the
Hartree-Fock field obtained from the same interaction
used in RPA. Such a totally self-consistent treatment is
rather involved. The nonlocal Hartree-Fock field is often
approximated by a local potential with the effective mass,
m*. As the expression for the energy of the quasifree
peak ¢2/2m* suggests, the energy spectrum of the
response function may be affected very much by m*.
However, one must note that m* itself depends on the
energy and the density (hence the radius).* It is not easy
to take into account these facts in the framework of
OCRPA. In the present analysis, we simply used the
Woods-Saxon potential as the mean field and did not in-
troduce the effective mass.

In OCRPA the escape width is properly treated but the
spreading width is not. It is well known that in the p-h
modes the spreading widths of the particle states, of the
hole states, and of the interference term mutually inter-
fere and that this problem is a subtle and mode-
dependent issue for the resonances.*” The situation
around the quasifree peak has not been investigated. Un-
fortunately, no good way is known to include the spread-
ing width in the framework of the continuum RPA.
What we did is only to simulate the spreading width
effect in terms of the imaginary potential for the particle
states as is sometimes done.?®

In the present DWIA calculation, we imposed the con-
dition B=c¢ on the ¢ matrix, which must be relaxed espe-
cially for the analysis of the spin observables. Once the
condition is taken out, the ¢ matrix becomes velocity
dependent (essentially nonlocal). Then, one must prepare
the response functions, one or both of whose vertices are
associated with the velocity-dependent operators such as
[0 X[Y,(£)X Y.(P)]-14,. This makes the problem very
complicated. Anyway one must compare the experimen-
tal and the theoretical D;; directly instead of the ratio
R, /R since an unjustified theory is involved to reduce
the ratio.

For the analysis of the (p,p’) reaction, more realistic
treatment of the isoscalar contribution seems needed,>**
which may make the collectivity ratio smaller than unity.

The choice of the reference frame?""** and the treat-
ment of the off-shell of the ¢ matrix are common prob-
lems of DWIA. The relativistic effects, the choice of the
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optical potential, etc. are other subjects to be studied. Fi-

nally the validity of DWIA itself should also be ques-
tioned.

VII. SUMMARY

In this paper we presented the detailed formalism of
the continuum RPA with the orthogonality condition
(OCRPA). 1t is then possible to take into account the
finite size of the nucleus, the continuum nature of the
single-particle states and the damping of the particle
states. We also gave the detailed formula for the DWIA
cross sections in terms of the response functions obtained
by OCRPA. Using these methods we went much beyond
the previous analysis on the spin-isospin modes in the
quasifree scattering region.

By means of OCRPA we calculated the isovector spin
longitudinal and transverse response functions, R; and
R, in a wide range of the energy w=~30-120 MeV and
momentum g~1.5-2.5 fm™! for “*Ca. We confirmed
the results of the previous works that the large enhance-
ment and softening of R; in the Fermi gas model are sim-
ply artifacts of the model.

The bound-state approximation for RPA is found to
work reasonably well (at least qualitatively). The
response functions are calculated in the angular momen-
tum representation and it is found that the contribution
from the modes with the angular momentum J must be
summed up to about J=10 in the present energy-
momentum region. As g increases, the higher J becomes
relatively more important.

Our major advance from the previous works is that a
fully quantum-mechanical DWIA calculation was carried
out for the response functions solved in the r space by
OCRPA. We calculated the spin longitudinal and trans-
verse cross sections, o; and oy, for ‘“’Ca(p,p’) at
E, =500 MeV for various angles.

The energy spectra of o and o, for fixed angles ob-
tained by DWIA and PWIA are compared with R; and

1459

R ;. First we note that the kinematical factor shifts the
peak drastically. It is found that not only the magnitude
but also the shape of the spectra are appreciably affected
by the distortion.

Because of the absorption, the contributions from the
lower J modes are attenuated more strongly and thus the

" important J’s are shifted upwards relative to those of the

response functions. We found that the collectivity due to
the nuclear correlation is much reduced by the absorp-
tion but the enhancement in the spin longitudinal mode
and the quenching in the spin transverse mode still
remain. In spite of the surface character of the reaction,
we found that the contributions from the deeper hole
states such as the Os,,, hole in *°Ca are still non-
negligible.

We compared the ratio R; /Ry of LAMPF experimen-
tal results with our collectivity ratio (o§FA/
09)/(0%PA/09%). The combined effects of the finiteness
and of the distortion reduced the ratio from the original
Fermi gas prediction but it is still slightly larger than uni-
ty, contrary to the experimental ratio (<1). Comparing
to the previous analysis by means of SIS and the surface
response approaches, the reduction due to the distortion
seems a little larger. To estimate the value of g’ through
such experiments, a fully quantum DWIA calculation is
needed. Many remaining problems are pointed out for
future investigation.
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