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The configuration-space Faddeev equations for the nucleon-deuteron scattering problem are
solved for energies below the three-body breakup threshold. We extract the s-wave scattering
lengths from fits to the calculated eg'ective range functions, and the results are in good agreement
with our previous zero-energy calculations. For the pd-doublet case we find a pole at negative ener-
gies which lies closer to the physical region than that for the nd-doublet case. Our calculated phase
shifts fall within the existing experimental error bars, suggesting that accurate experiments for
scattering energies below 0.3 MeV are necessary in order to obtain a reliable experimental estimate
of the pd-doublet scattering length.

I. INTRODUCTION

Few-body systems such as the trinucleons, for which
the nonrelativistic model Hamiltonian can be solved ex-
actly, provide fundamental tests of our understanding of
nuclear interactions. Direct comparison of model calcu-
lations with experimental data is feasible. In addition,
they can also be used as a testing ground in which one
searches for novel features of physical observables. The
three-body bound-state problem has been solved by
several groups, ' and it is encouraging that these
different groups now agree on the numerical results for
the same model Hamiltonians. However, it has been
discouraging to find that most of the bound-state proper-
ties scale with the trinucleon binding energies. That is,
difFerent phenomenological potentials which yield the
same trinucleon binding energy predict nearly the same
charge radii, asymptotic normalization constants, mag-
netic moments, etc. It is the three-body scattering prob-
lem which offers us a separate opportunity to explore, in
depth, the accuracy of our knowledge of the nuclear in-
teractions.

Nucleon-deuteron scattering at zero energy, which can
be separated into (total) spin doublet and quartet
configurations, is the simplest three-nucleon scattering
system which can be characterized by a single observable,
the scattering length. Experimentally, the neutron-
deuteron (nd) scattering lengths have been reasonably
well determined using 130 eV neutrons. The generally
accepted values are

a„d =6.35+0.02 fm

and

nd 0.65+0.04 fm .

The proton-deuteron (pd) scattering data " are known
less precisely because the Couloumb barrier greatly
suppresses the cross section (much of which is pure

Coulomb in nature), and exist only for energies above 0.4
MeV. The zero-energy pd scattering lengths were ob-
tained by extrapolation from the available low-energy
data. The reported doublet scattering lengths ( a~d) are
l. 3+0.2 fm (Ref. 9), 2.73+0.10 fm (Ref. 10), and
4.00+1.00/ —0.67 fm (Ref. 11). The experimental agree-
ment is much better for the spin-quartet configuration,
and the values of azd cluster around 11.5 fm (Refs.
9—11).

On the theoretical side, the correlation discovered by
Phillips' between a„d and the triton binding energy is
now well established. Most model results fall on the so-
called Phillips line, which passes through the experimen-
tal data. Furthermore, all nucleon-nucleon (NN) interac-
tions reproduce the experimental value of a„d. Because
the Pauli principle makes the (effective) quartet nd in-
teraction repulsive at short distances, a„d is sensitive pri-
marily to the asymptotic properties of the deuteron (the
binding energy) and the tail of the spin-triplet NN in-
teraction. The situation is not as clear in the case of the
pd scattering lengths. Avishai et al. ,

' using an approxi-
mate procedure, Timm et al. ,

' using a Jost function
analysis, and Byre et al. ,

' using a dispersion relation
analysis, all reproduced the quartet difference a~d

—a„d.
Later work by Kvitsinskii, ' using the MT I-III poten-
tial, ' also gave results which agree very well with both
the published doublet and quartet experimental values.
On the other hand, Alt' used an s-wave separable poten-
tial to obtain a d

= 13.3 fm. Our own MT I-III calcula-
tions found a~d to be approximately 14 fm, and a„„ to
be approximately zero. ' Additional calculations by oth-
er groups, which have recently been reported, agree with
our results. The discrepancy between theory and ex-
periment was further explored using more realistic NX
potentials, and with a combination of NN and three-
nucleon potentia1s. From these extensive studies, it was
found that a correlation still exists between a d and the
He binding energy. This pd Phillips line, though far

from being straight, has the same general behavior as the
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original nd Phillips line, and its existence has been
confirmed by other groups. ' The essential question
remains: Why does the experimental datum lie far off our
pd Phillips line?

Much effort has gone into trying to understand the
source of the differences among the various pd calcula-
tions. Of special concern were differences between our
results and those of Kvitsinskii, because in both calcula-
tions the configuration-space Faddeev equations for the
MT I-III potential model were solved. One primary
difference is that our own calculations were done for (ex-
actly) zero energy, while all other groups worked at
nonzero energies and extrapolated their results to zero
energy. This cannot itself be the source of the disagree-
ment if it is possible to perform the extrapolation accu-
rately. Thus, we were motivated to solve the pd scatter-
ing problem for energies ranging from zero to just below
that for (threshold) breakup of the deuteron.

Recently, a concern has been raised about the
Coulomb polarization potential in low-energy pd scatter-
ing. Kvitsinskii and Merkuriev reported that the polar-
ization could affect the doublet effective range
significantly for energies up to about 1 MeV, whereas the
quartet effective range is affected only for energies below
10 keV. However, Berthold and Zankel ' found that the
Coulomb polarization potential was negligible for the en-
tire energy range of their study (down to 0.2 MeV). A
more recent investigation has shown that the effect of
the polarization potential in a two-body model is
significant only for energies less than 5 keV, and that the
scattering length calculated at zero energy without the
polarization potential is a good approximation so long as
the boundary conditions are enforced at distances less
than several hundred fm. Recently, Adhikari and Das
have confirmed these two-body model results using a po-
tential which generates more realistic nd and pd scatter-
ing lengths. For these reasons the polarization potential
is neglected in this work.

One possible source of the disagreement between
theoretical results obtained at zero energy, and theoreti-
cal and experimental results obtained by extrapolating
from higher energies, is a pole in the effective range func-
tion near threshold. Such a pole could lead to significant
curvature in that function at low energies which could
make the extrapolation unreliable. Although the ex-
istence of a pole term in the effective range function for
pd doublet scattering was not supported by the results of
the experimental analysis, "we find the pole to be very
apparent in our numerical results. Moreover, Berthold
and Zankel ' found that including a pole was essential for
a proper understanding of their doublet scattering results.
Our pd doublet effective range function exhibits large
curvature for energies less than a few hundred keV. Such
a large curvature in the calculated effective range func-
tion at low energies was also found in Ref. 22; this is
presumably the effect of just such a pole. This indicates
that caution must be exercised when extrapolating to
zero energy.

In Sec. II of this paper we outline the configuration-
space three-body scattering equations for energies below
the threshold for breakup of the deuteron. We choose to

work in configuration space because the long-range
Coulomb force is easily handled in that space. We
present our numerical results and analyses together with
the experimental numbers in Sec. III. In Sec. IV we sum-
marize our conclusions.

II. CONFIGURATION-SPACE FORMALISM

The Faddeev equations were introduced because the
I.ippmann-Schwinger equation fails to yield a unique
solution. Noyes first outlined the configuration-space
boundary condition problem for nd scattering. In-
clusion of the long-range Coulomb interaction is straight-
forward in configuration space for energies below the
deuteron breakup threshold. For higher energies, both
the nd and pd boundary conditions are much more com-
plicated. Therefore, in this paper we limit our considera-
tion to energies below the three-body breakup threshold.
We base our work on the approach that we previously
employed, both for the zero-energy scattering problem
and for the bound-state problem.

We have modified our zero-energy configuration-space
Faddeev code to treat, scattering energies up to the
deuteron breakup threshold The Hamiltonian of the sys-
tem in the center-of-mass (c.m. ) frame is

H=T+ V(xi )= V(x2)+ V(x3)+ V (xi,x2,x3),

where

e~ [1+ r(j)][1+ r(k)]
V (x„xz,x3)= g 4

(2)

is a sum over two-body Coulomb interactions, and V(x; )

is the NN potential acting between particles j and k. We
use the Jacobi coordinates

and

x.=r —ri j k

g + 3A k
c.m. M

f2 2

M

where M is the nucleon mass, q is the two-body bound-
state wave number, and k is the momentum of the in-
cident nucleon in the c.m. frame. Note that the nucleon
kinetic energy in the lab frame is —, times the correspond-
ing energy in the c.m. frame. The former is usually quot-
ed in experimental papers.

The total wave function 4 is written as the sum of
three Faddeev amplitudes

wxl 3 1)+ P(x2 3 2)+ wx3 3 3) Pl+02+ P3

The Schrodinger equation is then decomposed into three
Faddeev equations

y; =
—,
'

( r~ + rl, ) r;, —

where i, j, and k imply cyclic permutation.
The total energy of the system in the c.m. frame is the

sum of the deuteron binding energy and the kinetic ener-
gy
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[T+V(x;)+ V E—]g;+ V(x;)(g. +QJ, )=0 . (6)

For identical particles -we need to solve only the i =1
equation, because all the functions 1i, have the same func-
tional form. For the partial-wave representation of the
Faddeev amplitudes, we use the j-J coupling scheme and
write g; in the form

1

2

(t', s ) j
(0,0) 0
(0, 1) 1

(L.,S.) J.
(0, —,') —,

'

(0, —,
'

) —,
'

TABLE I. The two channel states for the doublet system
(J=

z ) and the single channel for the quartet system (J=
2 ).

(0, 1) 1 (0, —,') —,
'

where

la&;=l[(l., s )j,(L,S )J ]JM;(t, T )TMr&

labels different channels and i indicates that the order of
coupling is [(j,k), i]. The relative orbital angular momen-
tum of the j-k pair is l, s is the spin of the j-k pair, j
is the total angular momentum of the j-k pair, L is the
orbital angular momentum of particle i relative to the
c.m. of the j-k pair, S is the spin of particle i(S =

—,),
J is the total angular momentum of particle i, J is the
total angular momentum of the system, t is the isospin
of the j-k pair, T is the isospin of particle i (T =

—,), and
T is the total isospin of the system. We neglect the T= —,

'
component, since it has been shown to make a very small
contribution. '

To investigate the validity of the extrapolation from
low energies to zero energy, we use the MT I-III poten-
tial as our model NN interaction. However, the following
formalism is valid for any of the more realistic NN poten-
tials, or NN and three-nucleon potentials together. Phase
shifts for p waves, etc., can be obtained as well. Never-
theless, we concentrate on the s-wave results in this work.
We use the MT I-III model parameters given in Ref. 1,
which are slightly difFerent from the parameters in Ref.
17. With this s-wave potential there is no tensor-force
coupling, only a single channel remains in the description
of the quartet configuration, and the doublet case re-
quires only two channels. The quantum numbers of each
channel are listed in Table I. The first channel of the
doublet state is "closed", because the scattering energy is
insufficient to break up the deuteron. Other channels are
"open. "

We multiply Eq. (6) by x,yi, take the inner product
with, & al, and then transform to the hyperspherical vari-
ables defined by

, i&al V(xi)la'&i

„& lv'( „„,)I '&, ,

g+
y f d8'K.-. (8,8')y. ,(p, 8')=x,y, , &a"l112+1l,&,
a

(10)

l (i~+I)
p cos 0

i) 1 i) 1 82

~p p i)p p 88
L (L +1)

p sin 8

The integration limits are the same as for the bound-state
calculations. '

Following the same procedures as for the zero-energy
scattering problem, we separate the outgoing wave 0
from the known incident wave P:

f (x, ,y, )=P (x„y, )+0 (x„y, ) .

For the closed channels, P =0. For the open channels,

0.(x»yi)=yiIL (yl)~ (xi) (12)

where u~(x, ) is the reduced deuteron bound-state wave
function. With the usual Coulomb parameters g=ky,
and r1=2Me /3' k, IL is related to the regular Coulomb
wave function ' F~ by

IL(yi ) = EL(n k)
(13)

71

where the factors CL are

(L 2+ 2) 1/2

CL(9) L (2L +1) CL —1(9) ~

C2(~)=
e 2'lT'g

(14)

For large values of y&, the outgoing wave Q has the
asymptotic form

and

x& =p cosO

V'3
y&

= psin8 .
2

& (x, ,y, ) = t KL (y, )tr (x, ), —
—+ 00

1

for the open channels, where

KL(y, ) =(2L +1)k CL(ri)GL(ri, g),

(15)

(16)

The resulting equations are

(b, —a )g (p, 8)—g(u ~ +u )P (p, 8)
a'

—g u - g f d8'K .(8,8')g (p, 8')=0,

where x. is defined in Eq. (4), and

and GL is the irregular Coulomb wave function. The
scattering length, a, is defined as the limit of t in Eq. (15)
as k goes to zero. For the closed channels, the outgoing
wave approaches zero in the asymptotic regions.

A useful quantity which can be checked against experi-
mental data is the phase shift, 5L. This can be calculated
easily from the asymptotic wave functions for the open
channels,
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L
t —(2L +1)k CL (q)GL (g, g) u (x))

~co L 7)

[I'I ( r), g)+tan5 I Gl (q, g)]u (x)),1

a

(17)

Thus, the phase shifts are related to the quantity t by

tan5L (k)= (2L—+1)t k CL (g) .

We factor out the deuteron wave function from 0, so that the unknown function to be calculated is smoother. The
auxiliary function 2 is de6ned by

u (x, )0 (x„y, ) = A (p, 8)
X)

for the open channels and

0 (x,y, )=A (p, 8)e

(19)

(20)

for the closed channels. Note that we do not factor out the irregular Coulomb wave function in Eq. (19) for the open
channels, because the nodes of GL imply that it cannot easily be removed. The factor of 1/x, is included to simplify
the boundary conditions at x

&
=0.

Substituting Eq. (11) into Eq. (9) and using Eqs. (19) and (20), one obtains the following differential equations for the
open channels:

u BA 1BA 1 BA
+— + +

+ 1 BP P BP P

u~
u~

X

Ba.
Bx )

+—k2 — A + gv u ~
—g(v ~ +v )A ~

4 y2

where co=Me /fi y &
and u'—:du /dx &. For the closed channels we have

Ba.—2~
P BP

—g(u ~ +u~ ~ )A ~
—gu ., g f d8'E .(8, 8')e'~Q .(p, 8')

I 0

g+= g u - g f d8'K - (8,8')e "~P .(p, 8'} .
0

+ g
f-

—gv g f d8'K «(8, 8')Q, (p, 8')= g(u —co5 )P +gu - g d8'K (8, 8')P (p,
a" a' a' a" a'

(21)

(22)

The boundary conditions for A (p, 8) are

A (0,8)= A (p, 0)= A (p, m/2)=0

for all channels,

A (p 8) - —r xebec (yi)
y —+ oo

1
a

for the open channels, and

(23)

(24)

for the open channels, and

Ba. =0
BP

for the closed channels.
To solve for A (p, 8) we use a spline expansion

A (p, 8)= g a;~S,.(p)S (8),
E7J

(27)

A (p, 8) = const (25)

for the closed channels. These boundary conditions are
implemented by requiring that at P =p,„,

where we choose to use the bicubic Hermite splines.
%'e then solve for the unknown coe%cients a;. by the
technique of orthogonal collocation.

III. RESULTS AND ANALYSES

BA

Bp

A ~3 A ~L,
=cosO + sinO

x& 2 KL By&
(26} The grids for the variables p and O are generated in the

same way as in our previous investigations. The details
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TABLE II. The s-wave phase shifts as a function of the
scattering energies in the center-of-mass system. The energies
are in MeV and the phase shifts are in degrees.

«3
I

I I
I

I I I
I

0.001
0.05
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

—2.09
—14.6
—20.4
—28.3
—34.0
—38.5
—42.4
—45.7
—48.6
—51.2
—53.6
—55.8

—0.230
—1.99
—3.28
—5.68
—7.95

—10.1
—12.1
—14.0
—15.8
—17.5
—19.1
—20.7

0.0
—2.69
—7.46

—15.6
—21.9
—27.0
—31.3
—35.1
—38.4
—41.4
—44. 1
—46.5

0.0
—0.113
—0.537
—1.96
—3.73
—5.62
—7.53
—9.40

—11.2
—13.0
—14.6
—16.2

0
I I I I I I I I

E, (MeV)

FIG. 2. Same as Fig. 1 but for the nd doublet scattering;
'a„„=0.71 fm.

of how to search for optimal values of the parameters can
be found in Ref. 23. In this paper, we present only the
values of the parameters used and the results of our cal-
culations. The parameters that we vary to ensure an ac-
curate numerical solution are: the numbers and distribu-
tions of the p and 0 points, and the value of p,„beyond
which we assume that the wave function has achieved its
asymptotic form. The p points are distributed uniformly
between 0 and 1 fm, scaled by a factor of S =1.3 be-
tween 1 and 12 fm, and equally spaced between 12 fm and

p,„. The 0 points are distributed uniformly between 0
and m/6, while scaled by a factor of S&=1.3 between
~/6 and n /2 in order to ensure that more points are con-
centrated in the region where the wave function has the
most structure. We found p,„=60fm to be satisfactory
throughout the entire study. . The numbers of p points
used were 4, 8, and 10 in the interior, midrange, and exte-
rior regions, respectively. The pd quartet results were
generated using 12 points in the exterior region. The
numbers of 8 points were 17 and 3 in the regions n/6 to.
m. /2, and 0 to m /6, respectively.

The effective range function for nd scattering is defined

IC (E)=k cot50( k) .

For pd scattering, it is given by

K (E)=Co(iI )k cot5O(k)+2k')h (g),
where Co(il) is defined in Eq. (14), and

h (ri) = —In(ri)+Re/( I+i ri),
with g denoting the digamma function. ' The s-wave
phase-shift, 50, defined in Eq. (17), will have diff'erent nu-
merical values for the Coulomb (pd) and non-Coulomb
(nd) cases. Because we match to Coulomb asymptotic
functions in the pd case, 50 vanishes in the absence of a
strong potential, as it does in the nd case. In Table II we
list the s-wave phase-shift results for all four cases. The
corresponding results for the (modified) eff'ective range
functions are separately plotted as a function of E, for
the nd and pd, quartet and doublet cases in Figs. 1 —4.

f I I I
I l I

I

C)
C)

I

0

O &

I

I I I I I I I

C)io
I i I I I I I

E, (MeV)

FIG. 1. The effective range function plotted versus the
scattering energy in the center-of-mass system for the nd quartet
scattering; a„d =6.43 fm.

E, (MeV)

FIG. 3. The effective range function plotted versus the
scattering energy in the center-of-mass system for the pd quartet
scattering. The triangles are the experimental points found
from the phase shifts in Ref. 10, and the squares are those from
Ref. 11. The error bars reQect the experimental uncertainty of
+2' in the experimental phase shifts. a~d = 13.8 fm.
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I ~ I L C) I I ~ ~
I

I ~ I I
I

I I ~ I

0
I

CO

I

I I I I I I l I

E:, (Mev)

0.5 1 1.5 2

E, (MGV)

FIG. 4. The e8'ective range function plotted versus the
scattering energy in the center-of-mass system for the pd dou-
blet scattering; a~d =0.17 fm.

FIG. 5. Expanded plot of Fig. 4 for scattering energies
greater than 0.5 MeV. Also plotted are the data from Ref. 10
(triangles) and Ref. 11 (squares). The error bars reAect the ex-
perimental uncertainty of +3' in the experimental phase shifts.

The solid dots are our numerical results, and the curves
are the fits made by using the effective range formula in-
cluding a pole in the denominator

K(E)=
——+—'r k

1
0

1+k /ko

where a is the extrapolated scattering length at zero ener-
gy.

To check the accuracy of our calculations, we compare
our phase shifts to available calculated and experimental
numbers. In Table III we compare our s-wave nd phase
shifts with two other theoretical calculations ' for the
MT I-III XN potentia1 model. The agreement is very
good considering that the calculational methods are quite
different. Kloet and Tjon used Fade techniques to sum
the scattering series, while a noncompact integral equa-
tion was solved in Ref. 34. The results for the pd s-wave
phase shifts, compared to the experimental values, ' '"
are . illustrated in Table IV. Arvieup' analyzed the
cross-section data available in 1973, while Huttel et aI."
used additional cross-section data, as well as analyzing
power data. The latter work also compares these two
phase-shift analyses with model estimates of Alt and Byre
et al. Our results fall within the experimental uncertain-
ties, which are about 2 for the quartet phases and about
3' for the doublet phases. We also plot values of the

Ours
5„

Ref. 33 Ref. 34
5d

Ours Ref. 33

1.633
2.180

113.3
106.4

114.3
107.6

113.4
106.4

151.4
146.4

151.1
146.4

TABLE III. Comparison of the nd s-wave phase shifts with

other theoretical results. The energies are in MeV and the
phase shifts are in degrees. Note that we have added 180' to the

phases in order to compare directly with those of Refs. 33 and

34.

effective range function calculated from the experimental
phase shifts in Figs. 3 and 5, where the triangles denote
Arvieux's values' and the squares are those of Huttle
et al." Figure 5 is simply part of Fig. 4 plotted using a
different scale in order to show the differences between
our numerical results and the experimental values.

From the fits to our calculated values, we observe no
poles in the E &0 region for either nd or pd quartet
scattering: that is, there is no singularity corresponding,
for example, to the deuteron binding energy. For the
doublet configuration, poles corresponding to three-body
virtual bound states were obtained at

and

a«=6.43 fm,

a„d=0.71 fm,

a d =13.8 fm,

a d=0. 17 fm .

These scattering lengths, extrapolated from the low-
energy results, agree with our previous zero-energy calcu-
lations. It is also clear that one can easily extrapolate to
the wrong value of a d if one is not aware of the enor-
mous curvature in the effective range function K (E) for
E, &300 keV. In other words, taking into account the
pole in the pd doublet effective range function is essential
if one is to extrapolate accurately and extract the correct

E„=—3A ko/4M= —160 keV

in the nd case, and at E„=—25 keV in the pd case. The
presence of the Coulomb force weakens the pd interac-
tion and moves the second sheet pole toward the physical
region. (This observation was tested by multiplying the
Coulomb interaction by a factor of —,

' which resulted in

E„=—85 keV. ) The zero-energy scattering lengths thus
obtained for the MT I-III model are
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TABLE IV. Comparison of the pd s-wave phase shifts with the experimental values. The energies
are in MeV and the phase shifts are in degrees.

0.667
1.333
2.000

Ours

—37.3
—53.5
—63.8

4g

Ref. 10

—36.6
—53.4
—64.3

Ref. 11

—35.1

—52.5
—64.4

Ours

—10.6
—21.1
—28.8

2$

Ref. 10

—12.6
—17.5
—25.8

Ref. 11

—14.1
—20.4
—24. 1

scattering length from the low-energy results, for either
theoretical or experimental phase shifts. We suggest that
experiments be performed at lower energies (if possible)
and with improved accuracy in order to examine this
effect.

Because we confirm our previous zero-energy scatter-
ing lengths, our pd Phillips line remains a valid represen-
tation of the correlation between a~d and the He bind-
ing energy. Although we use the s-wave MT I-III poten-
tial in our model calculation, results corresponding to
more realistic XX potentials, or combinations of NN and
three-nucleon potentials, are easily obtained. We need
only correlate the He binding energies calculated for
these models ' with the scattering lengths specified by
the Phillips line. In particular, the estimates made in
Refs. 23 and 24 for the physical values of a d and a~d
are still valid.

scattering lengths and the trinucleon binding energies.
By using numerical fits to the effective range functions,
we find that a pole on the negative-energy axis exists for
the pd doublet configuration, complementing the well-
known virtual-state singularity for the nd doublet
case. ' The pole term or, equivalently, the large curva-
ture of the effective range function in the E, & 300 keV
region, is almost certainly the source of the disagreement
between our zero-energy pd doublet scattering length cal-
culation and other calculations as well as with the experi-
mental results. This long conjectured pole was identified
in the three-body calculations of Ref. 21, and it was later
observed in the effective two-body model calculations of
Ref. 22. Accurate experiments with E, (300 keV are
necessary in order to extract a valid estimate for the pd
doublet scattering length.
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