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Nonmesonic photonuclear reactions in the three-nucleon system
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We derive sets of equations which describe y+ H, ~'H„p +d, and 2p +n, where the photon is

either real or virtual, by requiring four-body unitarity. The initial and final wave functions and the
final-state interactions {in the case of p +d and 2p + n) are the solutions of the three-body (Faddeev)

equation in the bound and continuum states, respectively. The driving terms in the sets of equations

for the reactions consist of two parts: the impulse one-baryon current [the nucleon, b(1232), and

N (1440),. . . ] and an amplitude which satisfies a four-body equation and which includes the

meson-exchange currents in lowest order.

I. INTRODUCTION

There has been increasing interest in the study of elec-
tromagnetic interactions with nuclei, among which the
trinucleon (i.e., H, or H, which we will not distinguish
between in this paper) has had special attention. ' This is
because it is the lightest nucleus whose nucleon density is
high enough to be compared with those of heavier nuclei,
and because it is the heaviest nucleus from which one can
derive the wave function both in the bound and continu-
um states exactly, at least from the present computation-
al point of view.

The charge form factor of the trinucleon for
Q ~ 10fm is known to be well reproduced in the im-
pulse approximation, using the realistic wave function for
the trinucleon. However, for Q ~ 10 fm, the impulse
approximation fails to reproduce the first minimum and
second maximum. ' Several different reasons have been
given to explain this discrepancy: the meson exchange
current (MEC), the b (1232) component in the trinucleon
wave function, multiquark components (especially, slx-
quark states), " and quark exchanges. The common
feature among these effects is that they all change the
high-momentum component of the trinucleon wave func-
tion. For the magnetic form factor, the discrepancy be-
tween theory and the theoretical prediction in the im-
pulse approximation is more severe and can be observed
even for Q 510 fm . It is well known that the MEC
contribution to the isovector magnetic current is in the
same order as the contribution from the impulse magnet-
ic current, which almost explains this discrepancy. How-
ever, the study of the other three effects has not yet been
exhausted.

It should be noted here that the electromagnetic form
factors of the trinucleon have so far been calculated in-
dependently of the related two reactions, i.e.,
y+ H, ~p +d, 2p +n. This is mainly because the
discrepancy of the electromagnetic form factors between
theory and experiment has been one of the major topics
in the field of electromagnetic interactions in few-nucleon
systems. ' However, in order to see the details of the in-
teractions between the baryons, either at the meson-
baryon level or the quark level, we need to gather togeth-

er more relevant information, for example, the polariza-
tion quantities of the reactions where the continuum
states of the trinucleon are involved.

Two-body photodisintegration of the H„y+ H
—+p+d, has previously been studied at low energies
(Tr 5100 MeV). ' Two groups have obtained the
cross section by solving the Faddeev equation both in the
bound and continuum states, respectively, for the He
wave function and the final state interaction. Recently,
the inverse reaction, p +d ~@+ H„was measured' at
T & 500 MeV (which is equivalent to T 5 300 MeV) and
compared with the theoretical prediction of Laget, "who
included a certain number of diagrams in addition to the
impulse diagram. Agreement between these is relatively
good at lower energies (T (350 MeV); however, some

disagreement becomes evident at higher energies. More
surprisingly, however, is that a similar calculation' for
p+d —+m. + H, at the same incident energies, shows a
significant disagreement with the experimental results.
More recently, however, Ueda' calculated the cross sec-
tions of the reaction for p+d~m + H, by taking into
account the NNA and NAA reactions, and found them to
be remarkably in good agreement with the data. He also
claimed in this same reaction, a possible signature of the
NNA resonance, based on his microscopic calculation, '

where the dynamics of the coupled NNN-NNh-mdN sys-
tem is treated with a Faddeev-type-equation. The success
of these calculations implies that, for the reactions where
three-nucleon continuum states are involved, one must (a)
take into account the 5 and (b) include all orders of the
rescattering diagrams, at higher energies. This important
message should be kept in mind when calculating
y+ H, —+p +d at higher energies.

At present, a number of intermediate energy and high
duty-factor electron facilities are planned, typically at
Continuous Electron Beam Accelerator Facility
(CEBAF), which is believed will provide an electron
beam up to 4 GeV. Therefore, it is reasonable to require
that at such energies, the theories dealing with the reac-
tions under consideration should take into account (1)
Lorentz invariance, (2) the effects of one- and multiple-
pion production as well as isobars (at least the 5), (3) ex-
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malized masses and vertices, which are one-particle irre-
ducible. This guarantees that the full amplitude has a
pole at its physical mass and also shows its correct
threshold behavior. Similarly, from t " in Eq. (1), the
term which has a two-particle unitarity cut can be isolat-
ed. This is diagrammatically shown in Fig. 2, and can be
written in the following two forms:

otic channels such as the six- and nine-quark states, and
(4) gauge invariance.

In this paper, we will present a unified theory of
y+ H, (or H) ~ H, (or H), p+d ( or n+0), and
n +2p (or p + 2n ), where the photon can be real or virtu-
al. (Recent reviews of the electromagnetic form factors
and electrodisintegration of the trinucleon can be found
in Refs. 1 and 15, respectively. ) For these reactions, we
require four-body unitarity and derive sets of equations
for the reasons which will be explained in Sec. II. The
sets of equations for the reactions with the final states
p+d and n +2p, are similar to those in Refs. 8 and 16
except that (1) we have, apart from the impulse nucleon
current term, a term which obeys a (Mitra-Yakubovski'
type) four-body equation which includes the usual one-
pion exchange current term in lowest order, (2) we will al-
low inclusion of isobars as well as the explicit quark de-
grees of freedom, into our Hilbert space, in addition to
the nucleon, and (3) our equation is basically relativistic.

We will now outline the remaining sections of this pa-
per. In Sec. II, we will give derivations of the sets of
equations. In Sec. III, we will try to answer the following
question: How should we modify the conventional Fad-
deev com.puter codes available for low-energy calcula-
tions ' ' so that we can adapt them to the need at
higher energies above one-pion threshold? Our con-
clusion is given in Sec. IV.

&) g&+ t(2) (1)eg &) (2a)

2)+ t (1)g (1)et 2) (2b)

where t is the t matrix for the nBsc.-attering (where B is a
baryon) and g'" is the dressed propagator for the nB.-

system. Equation (2) is the result of both the last-cut
lernrna and the "complete unitarity" in the theory by
Taylor. The last-cut lemma states that one can uniquely
expose an n-particle unitarity cut in the n-particie irre-
ducible amplitude, closest either to the final state [corre-
sponding to Eq. (2a)] or to the initial state [correspond-
ing to Eq. (2b)]. The "complete unitarity" means that in
the above procedure of exposing an n-particle unitarity
cut, the two amplitudes which have the same irreducibili-
ty and the same number of external lines in the initial and
final states, are identical. This leads to, for example, Eq.
(2a), an integral equation. We refer the reader to Refs.
18—24 for further details of Taylor's method.

In Refs. 21 —23, the photonuclear and electronuclear
reactions in one- and two-nucleon systems are discussed.
Their derivations, in principle, do not depend on the de-
tails of the interaction. However, they have used a chiral
bag model Lagrangian in order to justify the omission of
the highly irreducible amplitudes. They attribute this
omission to the truncation of the pion-quark coupling at
a low order as is usually exercised in the model. In this
paper, we do not specify any particular Lagrangian or
Hamiltonian in order to allow a comparison between our
present theory and the conventional theories ' in
which realistic (or phenomenological) N Ninteraction-s
are used. This can be achieved when constructing the
N-X interactions, either by including all types of rnesons
as well as the pion, or by using the potentials which are
parametrized so as to fit to the experimental data. In a
practical sense, however, this generalization does not
alter any of the results obtained in Refs. 21—23 since one
can interpret the pion, in the intermediate states, as being
one of the other mesons as well. However, the following
should be kept in mind: (i) If we want to introduce the b,
or the explicit quark degrees of freedom such as the six-
and nine-quark states and the q-q pair contributions
without ambiguity (as will be discussed in Sec. III), then

II. THEORY

%to) Ht 1)+f(1)d f(1)8

where the superscript in the parentheses refers to the ir-
reducibility of the diagrams that contribute to the corre-
sponding amplitude. The important point here is that the
s-channel pole terms are only constructed with the renor-

In this section we derive sets of equations for the reac-
tions under consideration. For this purpose, we will use a
similar technique applied to the n N N(Refs-. 1-8 and 19),
rr n-N (Ref. 20-),.y rr N(Refs. 21 a-nd-22), and y-N N(Ref. -

23) systems, all of which are based on the classification
method first theorized by Taylor. In order to demon-
strate his method, let us take an example of the yX~m.X
amplitude. ' The diagrams which contribute to the full
(or physical) amplitude for this reaction, are classified as
zero-particle irreducible, and can be decomposed (as
shown in Fig. 1) into two parts: (i) those which are one-
particle irreducible and which we denote by t " and (ii)
those which are not included in (i) and which turn out to
be the s-channel pole diagrams. Therefore, we can now
write the yX —++X amplitude as

FICx. 1. Diagrammatic representation of Eq. (1), where the
number in the circle denotes irreducibility. Time goes from
right to left as the arrows indicate. Solid lines represent
baryons, broken lines pions, and wiggly lines photons. FICx. 2. Diagrammatic representation of Eqs. (2a} and (2b}.
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one should employ a specific interaction Hamiltonian in
order to construct the input amplitudes. (ii) The basic La-
grangian has to be renormalizable when we are to deal
with the Feynman diagrams which include all types of
the meson-baryon interactions. It should be noted here
that at the present time there do not exist any chiral bag
models which contain types of mesons other than pions.
However, we can easily imagine such a chiral bag model
that involves any type of meson. It is expected that we
cari achieve renormalization in such a model. This is be-
cause we have in our theory the vertex functions (which
may be related to the bag size) and also because the
higher-order pion-baryon coupling terms would be
suppressed if other mesons were incorporated. This is
conjectured from our experience in the semiclassical cal-
culation of the static properties of nucleons in the chiral
potential model. We will relegate further comments on
this topic to Sec. III C.

The notation of the amplitudes that we deal with in
this paper are summarized in Fig. 3. It should be noted
here that the figures throughout this paper (as in Refs.
21 —23) are drawn as time goes from right to left, as the
arrows indicate.

In order to derive sets of equations to describe the re-
actions under consideration, we require four-body unitar-
ity for the following two reasons: (1) We need to expose
the triton pole of the amplitude in the initial state. This
is because we rely on the generalized Lehmann-
Symanzik-Zimmermann (LSZ) reduction technique for
composite particles, which is described in Ref. 29 for the
three-particle systems, in order to extract the physical
amplitudes from the corresponding o8'-shell Green's
functions. (2) Taylor's method' will provide us with
equations with specified potentials whose forms are given
consistently with renormalization and four-body unitari-
ty. In other words, the form. of the potentials can be
specified by application of his method, and each vertex
function satisfies a certain equation (to guarantee unitari-

—M~~ —M~~

FIG. 3. Diagrammatic representation of all of the amplitudes
which are dealt with in this paper. Their corresponding sym-
bols are also shown.

ty). Consequently, our final equations are valid even
above the four-body breakup threshold.

We will now turn to the exposure of unitarity in the
amplitude F4 cf.or BBB~yBBB[where 8 =N, h(1232),
[N'(1440), . . .], we can expose the three-particle unitari-
ty] cut by separating the amplitude into two parts in the
following ways:

p(2) p(3) +(T(3)g(2)p(2) ) (3a)

=P,".'+( T"'G"'P'" )

Here, the subscript c means that we collect only the con-
nected parts of the Feynman diagrams that contribute to
the amplitude. 6' ' is the three-baryon propagator and
can be written as

(3b)

G' ) =di)( 1 ) di)(2) (8)di)(3),
in which di) (i), i = 1,2, 3, are the baryon propagators, and
where denotes the direct product as explained in Ref.
18 and which is important only when antisymmetry of
the amplitudes are discussed. We will not discuss the an-
tisymmetry of the amplitudes under consideration in this
paper. Therefore, we will use a simpler notation,
G' '=diidi)di), in the following discussions. From Eq.
(3b), we derive

P (2) (1+T(1)g(1)+T( ) g(»)P (4)
7

where G'"=dBdB, and where we have dropped the
disconnected, part of F4 ' because it does not contain the
trinucleon pole in the initial state.

We shall now examine F4, We can write this three-(3)

particle irreducible amplitude for BBB~yBBB,accord-
ing to the last-cut lemma, as

P(3) P(4) + (F(4)g (3)M(3)
)4c 4c 4 4A c

+(p(4)g(3)~(3) )4B c (5a)

—P (4) + (F(3)g(3)~(4) )4;c 4 4A c

+(p(3)g(3)M(4) )4 4B c (5b)

where 6' '=dBdBdBd and G' '=dBdBdBd~, and where
d and dz are the propagators of the pion and the pho-
ton, respectively. To derive Eq. (5), we have chosen
F4.,'=0 as it involves at least five-particle intermediate
states, and we expect the inelastic channel [i.e., n.m.NNN]
to be dominated by the Eh', n.EN', or X XN states,
which contribute to three- or four-body unitarity. In
Figs. 4(a) —(c), we show some examples of the diagrams
that contribute to F3.,', which is contained in the third
term in Eq. (Sa). In the paper by Araki and Afnan (Ref.
23) for the study of photonuclear reactions in two-
nucleon systems, F3., was set to be zero. This is because(3)

the diagrams that contribute to F3., involve the interac-(3) ~

tion (8 ~H ~)Bnm). In a practica. l. sense, the consistent in-
clusion of this interaction term makes the computation of
the final equations dificult. In this paper we include the
diagrams both by modifying the m.BB coupling constant
in the corresponding diagrams, Figs. 4(a') and (b'), and by
parametrizing the two-pion contribution with the o. and
p exchanges [Fig. 4(c')j. Note that the diagrams in Figs.
4 (a') —(c') belong to F3.,'. Therefore, we can put F3 ,'=0. .
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(a)

FIG. 4. Some examples of the diagrams that contribute to-(3)I'3.c are sho~n in (a)—(c). Furthermore, -their approximate dia-
grams, due to the modifications which are discussed in the text,
are also shown in (a')-(c'). The two thin solid lines in parallel
represent the p or o. meson.

A similar argument holds for F3.,'', thus, we can put
F(3.,' =0 as well. Equation (5a) now reads

p(3) (y(4) G(3)M(3) ) +(p(4) G(3)M(3))4c 4d 4A c 4d 4B c (6)

d& '(~ )8 d& '(j)f''"'(k), (g)
i&j ~k&i

where f'"' and f'"' are the n-particle irreducible ampli-
tudes (or vertex functions) for B~mB and B~y8, re-
spectively. In Refs. 20—23, these vertex functions corre-
spond to the bare couplings which were calculated direct-
ly from the chiral bag model Lagrangian because the
(B)H ~Bn.ir ) interaction was neglected. In this paper we
include (B~H )Bmr/) by adjusting the bare coupling con-
stants, as is done for F3.,' and F3.,'. This adjustment is
reasonable since we neglect the five-particle unitarity cuts
and thus f' ' has no energy dependence. Since we in-
clude the electromagnetic coupling to first order only, we
can write M4s. d in Eq. (6), as(3)

(9)

where the subscript d indicates that only the disconnect-
ed part of the Feynman diagrams is taken into account.
Since F3.,' =F3.,' =0, we can write

E'" '= g d '(i)d '(j)f'"'(k)
i &j ~k&i

y [T',"(od (j)5 T"'(k)
i&j,k

+ T(2" (Od&( j)ds(k) T,".,'], (12)

where Tz"'(i) denotes the B Binteraction -between the
pair (j,k), and where 5;& =1—5;k. By writing the ampli-
tude T3.,' as the sum,

3
T(2) —y T (13)

tribute to this residue, while at first glance the contribu-
tion of the second term on the rhs is not obvious. How-
ever, the second term does indeed contribute to the resi-
due as will be shown later. Before turning to this point,
however, let us consider T3.,' in the last term. By apply-
ing the last-cut lemma to it, we can write

T(2) = T(3) +(T(3)G(2)T(&))
3;c 3jc 3 C

If the total energy of the three-nucleon system is less than
the one-pion threshold (i.e., &s (3m)v+m~), we can ig-
nore the diagrams that contain the four-body cuts, which
are included in T3.,'. Furthermore, if we ignore both the
three-nucleon forces and the nine-quark interactions,
which are also included in T3.,', we can write T3 ~ 0.
Above the one-pion threshold, we have to include T3.,'.
This means that we are required to solve a four-body
problem for the +AN system, provided that we restrict
ourselves to include only the nucleon in the Hilbert
space. If we now decide to include the isobars (at least
the b, ) in the Hilbert space (and we should note here that
such calculations have been done for the trinucleon
bound states as well as the NNA continuum state, ' then
we can incorporate the inelastic effect. Therefore it
seems reasonable to choose T3.,' =0.

This idea is also supported by the recent studies of
N Nscatteri-ng above threshold, using the Bethe-Salpeter
equation. Kloet has pointed out that. the Bethe-Salpeter
approach for the X-6 system and the three-body ap-
proach for the mNN system have many similarities.
There are differences, too, though: the 6 in the Faddeev
approach for the mNN system has a width, while the 5 in
the Bethe-Salpeter approach does not; the two thresholds
for the N-6 and mNN systems are different, although it is
usually claimed that the effect is small.

If we, therefore, assume that the inelastic channel
through the (zero-width) 6 is dominant, and incorporate
the b into our Hilbert space, then we can choose T3.,' =0.
In this case, we can write Eq. (11)as

By taking into account all of these considerations, Eq. (6)
now becomes

(10)

then T, satisfies the equation,

3

T, =U;G' ' g (5,"t +T, ), .
j=l

(14)

In order to derive physical amplitudes for the reactions
under consideration, we need to take the pole residue of
the amplitude in Eq. (10) at the trinucleon-bound-state
energy in the initial state. In Eq. (10), it is obvious that
the first term on the right-hand side (rhs) does not con-

~here

U;
= T2 '(i)ds '(k) and t/= T'"(j )d '(k)

By using the familiar technique of Faddeev, ' we can
solve Eq. (14) and obtain the result
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T, =t, g' ) +5,)(t~+T ),

where use has been made of the fact that' ' '

t, =U, +v, dt)(j)dtt(k)t, .

If we introduce the amplitude U; as

T =gT'"(i)g")(i)U"G(')(j)T(')(j)

where

(15)

(16)

(17)

We now find that M4„'., has a trinucleon pole, due to the
first term on the rhs of Eq. (23). To express this explicit-
ly, we shall write M4A'. , as

(24)

where

T(3) = y I+t2)( )G(1) 1(

+ [t(2)(1)d g(1)—
1(1)

G'"(i)=d2)(j)dz(k), i&j&k&i, +T' '(i)d '(i)]g' 'T' 'I (25)

and insert Eq. (17) into Eq. (15), we find that U,, obeys

UJ=5~G' ' '+ g U},G( )T3 d(k)5.kj. ,
k

(19)

which is found to be the Alt-Grassberger-Sandhas (AGS)
equation. ' In Eq. (19),

T,".' (i)= T',"(i)d '(i) . (20)

It is obvious now that T(3.,' in Eqs. (11) and (12) has a
trinucleon pole and thus can be expanded around the
pole, using the eigen functions, or wave functions, as

g(2)7 (2) g(2)
E+ ls3„, l

The trinucleon wave function l4( He)) is related to the
AGS amplitude ' [without the inhomogeneous term in
Eq. (19)] in the bound state.

In order to see that the second term on the rhs of Eq.
(10) has a trinucleon pole and to derive its pole residue,
we will now examine M4A. , Due to the last-cut lemma,(3)

we can write the three-particle irreducible amplitude in
two ways:

6
y'. =b( )(i)+c( )(i)g( ) y y.

j=l
where

(27)

To derive Eq. (25), we have dropped the term involving
M3„'., in Eq. (23) as this term does not acquire the trinu-
cleon pole in the initial state.

Equation (25) is a four-body equation, which contains a
disconnected part in the kernel. We shall now rewrite
Eq. (25) in order to have a connected kernel equation
and, at the same time, to dress the input amplitudes,
which are two-particle irreducible in Eq. (25). First, we
shall label the three baryons with the numbers 1, 2, and 3,
respectively, and the pion with number 4. We will then
label the m.-B pairs with numbers 1, 2, and 3, which corre-
spond to the pairs (4, 1), (4,2), and (4,3). We will also then
label the 8-8 pairs with the numbers 4, 5, and 6, which
correspond to the pairs (1,2), (2,3), and (3,1). We can
thus write T-y as a sum of the six terms,(3)

(26)
i=1

where Y; obeys the following quasi-two-body equation,

+(M,"„'g")M,",'), (22a)
t '(i)G'" '(i) for i =1,2, 3,

b (2)(1)
0 for i =4, 5, 6,

—M(4) +(M(3)g(3)M(4) )4A;c 4 4A c

+(M(3) g(3)M(4)) (22b)

We neglect five-body unitarity in the ~888 and yBBB
systems and four-body unitarity in the ~BB and y88 sys-
tems, which means that we have

m"'.,=m(".,' =m".,'=m",'.,= T(,'.,' =O .4A;c 4;c 3;c 3A;c

and

t' '(i)d G"' '(i) for i =1,2, 3

T2 '(i)dt) '(i) for i =4, 5, 6 . (29)

We first move the term that involves Y,. on the rhs of Eq.
(27), to the left-hand side, and then use Eq. (16) and the
following equations: '

If we were to include the three-body force type interac-
tions in the EBB system as well as the nine-quark states
or three-body force type interactions in the BBBsystem,
we would have M3.,'+0 and T'3 ,'&0. These effect.s can
be included in perturbation theory within the present
scheme. Therefore, we can write Eq. (22a) as

t"'(1)=t' '(i)+t"'(1)d dz(i)t' '(i)',

t "(i)=t '(i)+t'"(i)d dz(i)t '(i),

7""'(i)= 7 '(i)+ 7'2'(i)g' "(1')T'" (i) .

(30)

(31)

(32)

M4A;c g 3;c

(23)

Equation (32) is equivalent to Eq. (14) if T2' '=U, We
then finally arrive at the desired equation,

6
y b(1)( )+c(1)( )g(2) y 5 y (33)

j=1
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Y = + +
q Y

FIG. 5. Diagrammatic representation of Eq. (33).

This is a Mitra-Yakubovsky' type four-body equation
whose kernel is connected, and the input amplitudes are
renormalized, i.e., one-particle irreducible. Equation (30)
is diagrammatically shown in Fig. 5. At this stage, we
shall not go any further into the details of solving Eq.
(33) 33

We will now return to Eq. (10). By inserting Eqs. (24),
(25), (18), and (33) into Eq. (10), we obtain f'"(i)=f' '(i)+f' '(i)di)(i)d +r "(i), (35)

where we have dropped the first term on the rhs of Eq.
(10) because of the lack of the trinucleon pole in the ini-
tial state. Above, T' r' (or Y, ) is a solution of the integral
equation [i.e., Eq. (25) or Fq. (33)], whose input is dressed
(or one-particle irreducible, while Eq. (34) contains
"bare" couplings, i.e., f ' ' and f ' '. Since our aim is to
compare the final equations with the conventional calcu-
lations, in which all of the input into the two-body
amplitudes is phenomenological (or dressed), it is ideal to
rewrite Eq. (34) so as to have the input amplitudes which
are one-particle irreducible. To accomplish this, we in-
sert Eq. (33) into Eq. (34) and then use the equality ' for
B~yB, i.e.,

6
p'. '+y'. ) G' ' ~~ y. G' 'T'2'

4;c 4;d 4;d ~ i 3;c
i=1

(34)
in order to dress the first term on the rhs of Eq. (34),
which then yields

3 6 6
f"'(~ )di)(i)+'f' '(i)dz(i)d g 5; b" (j)+c'' (j)G g p.„Y„G( ) T(, ) .

i=1 j=1 k=1
(36)

f ' "(~')=f '"(i}+f '"(i)d&(~')d~t'"(i), (37)

we finally arrive at the following simple expression for
(3).

/(3) g (3)6{2)T(2)
4;c 3;c (3g)

where

We then pick up the i' component from the last term
and combine it with the second term on the rhs of Eq.
(36). By using Eq. (33) and then the equalities ' ' for
B+-mB, i.e.,

%'e are now in a position to write the physical ampli-
tudes for the reaction processes under consideration. To
derive the physical amplitude, we must firstly take the
pole residue of Fz ,' [Eq. (4}]at. the trinucleon-bound-state
energy in the initial state. We then take the pole residue
at the trinucleon pole or deuteron pole in the final state
which corresponds to the He or p +d final states, respec-
tively. The two-body t matrix can be expanded around
the deuteron-bound-state energy as' '

G(i)T(i)G(i) I +(d) & (q (d) I +~+ I., I

3 6
R' '= g F4 d(i)+F~ d(i}G. ' ' g 5,."Y- (39)

where I+(d) & is the deuteron wave function. Assuming
that the two-body interaction can be approximated in a
separable form, then the t matrix can be written as

Equation (39}and its decomposition are diagrammatical-
ly shown in Fig. 6.

T,'"= y I((}„&.„(y„l,

where IP„& and r„are the form factor and propagators
for the quasiparticle, respectively. ' We could use ei-
ther Eq. (40) or Eq. (41) to derive the amplitude for
p+d~y+ He. However, in the following derivation,
we will only use Eq. (41) in order to take into account the
effects of the rescattering process before reaching the
final state, p+d or Zp+n The rescatt. ering effect (usual-
ly referred to as the final state interaction) is taken into
account through T(3.,' in Eq. (4), which can be written, by
inserting Eq. (41) into Eq. (17), as

T,",'= y ly„(()&r„(i)x„.,r.(j)((t.(j)l, (42)
fJ

pv

where
—(3)FIG. 6. Decomposition of R as given in Eq. (39). &„;.=

& 4 (() I
G("U;,G")lp.(J) & (43)
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and

X„;.„J=Z„;.J+ QZ„, kr. (k)X k
pk

(44)

X(p+d~y He)=(pd, X iT(p+d~y He)i+( He)),
(45b)

We use Eq. (21) exclusively in order to obtain the pole
residue at the trinucleon-bound-state energy. The result-
ing physical amplitudes are as follows:

X( He~y He) = (4( He)i T( He~y He)i+( He) ),

and

X(2p+n~y He)

=(X&,X,X„iT(2p+n~y He)i+( He)), (45c)

(45a) where

T( He~y He)=R' ', (46a)

T(p+d y He)= 1+ QXd; „r (j )(. P,(j)i O'"R' ', (46b)

and

T(2p+n~y He)= g iP„(i))r„(i)[(P„(i)i+X„;., &,(j)(P„(j)i]G"'R' ' . (46c)

In Eq. (45), X and X„are the asymptotic wave functions
for the proton and the.neutron, respectively. Equations
(45a) —(45c) are diagrammatically shown in Fig. 7. The
amplitudes in Eqs. (45b) and (45c) with the help of Eqs.
(46b) and (46c) are the same as those of Refs. 9 and 15,
except that (1) our equations include the four-body corre-
lation term, which is given in the second term on the rhs
of Eq. (39), as a result of the requirement of four-body
unitarity, (2) our equations are Lorentz invariant, (3) the
X and other higher-mass isobars can be included in the
intermediate states, and (4) we can include both of the
three-body type forces in the ~BB and BBB systems as
well as the exotic channels, in the context of the six- and
nine-quark states. A more detailed discussion on points
(2)—(4) is the subject of the next section.

If'lA Yl l% lgXX

+

(c)

FIG. 7. Diagrammatic representation of the amplitudes for
y+ He~3He, p+d, and 2p+n, which are given in Eqs. (45)
and (46).

III. DISCUSSION

As mentioned in Sec. I, the equations that describe the
reactions under consideration at energies above pion
threshold, are desirable to satisy (1) Lorentz invariance,
(2) multiparticle unitarity and isobars [at least the b„pos-
sibly N*(1440), and some others] (3) gauge invariance,
and (4) the exotic channels, or explicit quark degrees of
freedom, such as the six- and nine-quark states. %e will
now describe how these requirements can be fulfilled in
our present approach and implemented into the conven-
tional Faddeev codes. ' ' '

A. Lorentz invariance

Our derivation of the equations in Sec. II is based on a
(nonspecified but) relativistic equation. At present, a
number of Lorentz invariant two- and three-body equa-
tions are known: the Bethe-Salpeter, one-particle on-
shell, , and light-front equations as well as the
Blankenbeclar-Sugar (BbS) and Aaron-Amado- Young
(AAY) equations as approximations for the Bethe-
Salpeter equation in the two- and three-body systems.
[For example, see Ref. 38 for a current review. ] For
three-body systems, the only method which is ready for
numerical computation is the AAY equation, which is a
generalization of the BbS technique (for two-body sys-
tems) to three-body systems. The BbS and AAY equa-
tions require the removal of the antibaryon states because
of the minimal implementation of the unitarity con-
straint. This removal breaks gauge invariance. One
can relate the BbS and AAY equations to the two-body
Lippman-Schwinger and three-body ACxS (Ref. 31) equa-
tions by keeping Lorentz invariance; this requires a factor
which arises from Lorentz invariance of the two-body t
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matrices, in the translation from the two-body center-of-
mass (c.m. ) frame to the three-body c.m. frame. This
factor becomes unity in the nonrelativistic limit, meaning
that the AAY equation is reduced to the nonrelativistic
Faddeev (or the AGS) equation in this limit. In our
theory, no particular relativistic equation is meant to be
used. However, the AAY equation is found to be the
most convenient for computation at the present time.
The use of this equation requires minimal modification of
the presently available nonrelativistic Faddeev codes for
the three-nucleon system, with respect to the implemen-
tation of Lorentz invariance.

—30% for the bag radius, R —1 fm. Therefore, if one
solves a coupled two-channel problem for the X-6 sys-
tems, using real and symmetric separable potentials, and
drops the ~-B-B intermediate states that appear in the
four-body equation [Eq. (33)], then we can avoid the dou-
ble counting problem to the extent that we ignore the
mass shift. It should be noted here that the m B B-in-ter-
mediate states are not included in the AGS equation, '

Eq. (19), for the BBBsystem.

C. Gauge invariance

B. Multiyarticle unitarity and isobars

Because of the energy available in electron machines of
the future, we need to take into account the production
of the multipions and isobars. In this paper we only ex-
pose the four-body unitarity cuts, and neglect the five- (or
more) particle unitarity cuts. This is because we expect
that the inelastic channels are dominated by the mNXN
state and the states which contain the isobars, i.e.,
mbNN, DION, Aha„and N*(1440)bN, etc. , all of which
contribute to three- or four-body unitarity.

Below one-pion threshold, our equation has made one
correction to the method of Refs. 8 and 16, which is the
four-body correlation term [the second term on the rhs of
Eq. (39)]. Above threshold, one has to consider the cou-
pling of the 6 state. There are such Faddeev computer
codes available for bound states, and for continuum
states. ' In most conventional Faddeev computer
codes, ' ' the two-body (N N) input am-plitudes are
parametrized in separable forms. The simple inclusion of
the N-6 and 6-6 states, by parametrizing them in a simi-
lar way, causes a double counting problem, as the
N-b, (in the input) may include the mN Ncontinu. -um-

states as well. Therefore, unless one knows the exact
method to separate the X-6 state from the ~-X-N state,
then one should not apply the method blindly.

Not the easiest, but the least unambiguous solution for
this double counting problem, is to construct the input
amplitudes (in the two-body systems) from a Lagrangian.
One could start from the chiral bag model Lagrangian as
we did for the photonuclear reactions in the one- and
two-baryon systems. ' However, problems with this
are that there have been no chiral bag models which con-
tain mesons other than the pion, and also that the chiral
soliton models ' and the Skyrme model (as alternative
to the chiral bag model) are not developed or ready for
our method to be applied to them, with respect to quanti-
zation.

It is conceivable then that one could use an alternative
method, as an extension of the conventional Faddeev
codes, by sacrificing uniqueness to a certain extent. For
example, one could construct the N-6 and 5-6 potentials
in the one-boson-exchange (OBE) model. (It should be
noted here that the b, has no width. ) The zero width b, is
considered to be a bare particle (e.g. , the b, in the bag
model, in the context of three quarks, without dressing
due to the chiral pion). We also know that the mass shift
in the real axis, due to the pion self energy, is the order of

In the photonuclear reactions for one-, ' two-, "
and three-baryon ' '" systems, the electromagnetic U(1)
gauge invariance is violated for several different reasons.
For example, certain diagrams are omitted for the sake of
computational simplicity, ' ' ' and a double counting

problem occurs due to the misidentification of t " with
t ' [see Eq. (1)] in some of the theories. " It is conceiv-
able that, as in Ref. 46, the application of the Ward-
Takahashi identity to the present theory guarantees
gauge invariance. However, this requires that we lump
to ether t "and the pole term in Eq. (1) in order to make
t . This is not attempted in our present theory. Recent-
ly, we proposed a theory in order to maintain gauge in-
variance in a coupled channel (nB yB) appro-ach. This
will give us a gauge invariant t ' amplitude, both on and
off the energy shell. Therefore, if I;

' is the only in-
gredient in a theory for photonuclear reactions, then we
can guarantee gauge invariance. However, in our present
formulations, both the t "and f"' are separate and nei-
ther of them is gauge invariant by itself, except for the
isobars. In the case of the isobars, the presence of the
derivative couplings make it possible to write 7"' in
terms of the gauge invariant tensor, F„; thus, t " can
also be made gauge invariant because its only ingredients
are f ' " and f ' ". As a result, gauge invariance is not
guaranteed in our present approach.

However, it may be worth noting here that it is con-
ceivable that by taking advantage of Eq. (1), our final
equations can be split into two: a manifestly gauge invari-
ant piece and the rest. We expect that the gauge nonin-
variant part is suppressed considerably at all of the ener-

gy ranges because (i) the gauge noninvariant part is zero
in the soft photon limit, and this factor is expected to car-
ry over to the low-energy regime, (ii) near the resonance
energies [5(1232),N*(1470), . . .], the isobar pole contri-
butions (which are gauge invariant) dominate, and (iii)
the MEC contribution (or the four-body correlation term
in our present theory) and the higher multipole ampli-
tudes are expected to be more important at higher ener-
gies. Both of these are automatically included in our
present theory, therefore contributing to the compensa-
tion for the loss of gauge invariance.

The quark-antiquark (q-q) pair contribution may also
be incorporated, either within the chiral bag model, '
or in a more phenomenological way by parametrizing the
input amplitudes, in order to compensate for the loss of
gauge invariance caused by the neglect of the B-B pair
terms, as mentioned in point (1).
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Before closing this subsection, we will mention the fact
that there is a minimal way to guarantee gauge invari-
ance for the amplitudes which are derived within a uni-
tary theory. For this purpose, we will introduce an
operator and define a new electromagnetic current (J)
from its old current (J) which is gauge noninvariant:

J„=H„J
where

p„kH„=g„„—P'

It is obvious that the new current J"satisfies both the un-
itarity and gauge condition. A drawback of this method,
however, is its nonuniqueness. This method, therefore,
should be compared to the K-matrix method, which is
commonly used to recover unitarity, but which is not
unique in the choice of the K matrix as an input in order
to compute the t matrix.

D. Quark degrees of freedom

It is believed that there exists duality between quarks
and mesons. This means that one might be able to de-
scribe the strong interactions between baryons, using ei-
ther quarks or mesons. In one case the quark description
may be simpler, and in another, the meson description
may be more so. ' In our formulation, however, both
the six-quark states and the four- (or more) meson inter-
mediate states can be incorporated through T'2 ', which is
contained in T'2 ' of Eq. (16). Furthermore, both the
nine-quark states and three-body forces are incorporated

through T~3.,' which is found in Eq. (11) and which was
dropped in order to derive Eq. (19).

IV. CONCLUSION

In this paper, we have presented a unified theory of
y+ He~ He, p +d, and 2p +n. We have required
four-body unitarity and derived sets of equations to de-
scribe these three reactions. The trinucleon wave func-
tions in the initial or final states satisfy a three-body (Fad-
deev) equation. The final state interaction was taken into
account by solving the three-body equation in the contin-
uum state. The interaction term consists of two parts:
the impulse one-baryon current and a few-body correla-
tion term which satisfies a (Mitra-Yakubovski —type' )

four-body equation. Our equations are convenient for
implementation, into the conventional nonrelativistic
Faddeev codes (Refs. 3, 6—8, 16, and 25), of the follow-
ing: (1) relativistic invariance, (2) isobar degrees of free-
dom, and (3) the exotic channels due to the manifestation
of the explicit quark degrees of freedom. In fact, our
equations for the p +d and 2p +n final states are identi-
cal to those of Gibson and Lehman, ' ' apart from the
above three points and the four-body correlation term.

In this paper, we have not attempted to reduce the
four-body equation to a computationally viable form.
This may be done, however, by introducing the quasipar-
ticle states or by approximating the four-body amplitudes
with effective two-body amplitudes. Our present ap-
proach can be extended to unify the electromagnetic and
~nonelectromagnetic interactions in the three-nucleon sys-
tem involving nonmesonic and mesonic final states, e.g. ,
p +d ~p +d, m + He, y+ He~p +d, and m + He.
This will be discussed elsewhere.
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