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Inversion of elastic scattering phase shifts calculated with algebraic scattering theory
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The elastic phase shifts for the 'O+ 28Si scattering obtained by the algebraic approach to
scattering theory are used in an inversion procedure at fixed energy. The resulting local optical
potential shows oscillations and a dependence on energy. These effects point to an underlying

nonlocal interaction.

INTRODUCTION

Recently, an algebraic approach to scattering (AAS)
has been developed!? which is based on the special
features of noncompact Lie groups. In particular, it was
shown by Alhassid and co-workers!? that scattering by a
modified Coulomb interaction, e.g., heavy-ion scattering,
can be treated in three dimensions with a dynamical sym-
metry SO(3,2) DSO(3)®S0O(2), where SO(3) and
SO(2) describe angular momentum and interaction
strength, respectively. In this case the S matrix for elastic
scattering at energy E.m = h 2k ?/2u and angular momen-
tum quantum number / can be written as

rl+w+2+in)2ITIU —w+1+in)/2] W)
rl+w+2—in)2ITII —w+1—in)/2]

xexpli(21n2)7].

S[(k) =

Here, n is the Sommerfield parameter, n=2,Ze Z,u/
(h%k), and w is defined as

w=v— 1. 2)

The complex number v labels the SO(2) part of the
scattering states involved and, therefore, is related to the
interaction. For an actual application, v has to be
specified as a function of / and k.

The crucial point for a better understanding of the AAS
is its connection with the traditional description of scatter-
ing by a local or nonlocal potential. Up to now this con-
nection is not known except for the case of v= 1 e,
w=0, which corresponds to pure Coulomb scattering.'-?
A first attempt to obtain a potential has been performed
by Amado and Sparrow,3 who assumed a local interaction
and applied an inversion procedure for the case of peri-
pheral scattering (i.e., w, n <) using the eikonal approxi-
mation. The necessary conditions for the high-energy
eikonal approximation and peripheral scattering are-not
fulfilled in the particular case of low-energy heavy-ion
scattering, which is of special interest in this publication.
Very recently, an approach comparable to Ref. 3 has been
performed by Hussein, Pato, and Iachello,* who semiclas-
sically analyzed an absorption-free S matrix based on the
dynamical symmetry SO(3,1) and obtained the underly-
ing potential for large internuclear separations. SO(3,1)
scattering amplitudes also can be used in the framework
of the AAS to describe elastic heavy-ion collisions. >
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In this paper we show the result of an inversion of the
AAS phases resulting from the SO(3,2) S matrix (1) for
the elastic scattering of 10 on 28Si at E. . =20.12 and
22.30 MeV. This scattering system was described by
Alhassid? with the AAS theory. The following parametri-
zation was used: >

w=wo/{1+expl(l —1¢)/Al} . 3)

The values of the parameters wo, /o, and A were deter-
mined by fitting the angular distribution calculated from
Eq. (1) to the measured elastic angular distribution,®
which yielded the following parameters:2

wo=6—17i, A=1, [4(20.12MeV) =89,
4)
10(22.30 Mev) =11.7.

The real phase shifts and reflection coefficients resulting
from these parameters and Eq. (1) are shown for
E.m. =20.12 MeV by the solid curve in Fig. 1.

INVERSION METHOD

The inversion is performed at fixed energy with the
modified Newton method’ which is an exact inversion
scheme for an infinite number of given phase shifts. The
method assumes a local spherical potential which is equal
to the Coulomb potential for » = R., where R, is larger
than the sum of the nuclear radii of both nuclei. In this
limited class of potentials we get a unique and model-
independent result from the phase shifts. The potential is,
in general, contingent upon the scattering energy but not
on angular momentum.

We start with a Povzner-Levitan-like representation of
the solutions ¢/ (r) of the Schrodinger equation with the
unknown potential U(r) =V (r) +iW(r) in terms of the
known solutions ¢/°(r) of a given reference potential
Uo(r):

oF (r) =¢/°(r) —I%::OCI'LU'(r)w‘/ (r) (5)
with known coefficients

L) = [ dr'e/° oo /r'? ©)
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1.0 T T stitute the technical parameters of the inversion scheme.
s They have, in principle, no influence, at least on the phys-
08| - ics of the resulting optical potential.’
0.6~ . DISCUSSION OF RESULTS
© 04k i The real and imaginary parts of the optical potential
obtained with the AAS phases and the inversion scheme
i are shown in Figs. 2 and 3 for E.n, =20.12 and 22.30
0.2 7] MeV, respectively. The different potentials in each figure
- ] result from different sets of the parameters r; and /ax,
0.0 — given in the figure captions. The solid and dashed curves
L ] in Fig. 2 show the result of the inversion with three radii 7;
~0.2 —r and a quantum nu‘mber Imax=2.4 and. 28, respect'ively.
10 | The potentials in Fig. 3 are obtained with four radii and
: Imax=24 (solid curve), 26 (dashed curve), and 28
(dashed-dotted curve). These figures and further calcula-
tions reveal the independence of the calculated optical po-
0.5 B tential of the special choice of the parameters at least for
] radii =3 fm. The special structure of the oscillations in
I~ the potential is stable, the exact position of the extrema
o - T = 1 deviates by not more than 0.3 fm for different values of
| Imax. For an increasing number of contributing phase
-0.5 -
" 1 N 1 " 1 " 1 N
10 5 10 15 20 25
l

FIG. 1. The AAS real phase shifts and reflection coefficients
for the elastic scattering of '°O on 2Si at E.n, =20.12 MeV are
shown by the solid curves. The dashed curves represent the real
phases and reflection coefficients of the dashed potential in Fig.
2. The differences of the solid and dashed curves multiplied by a
factor of 50 are given by the dashed-dotted curves.

Then we end up with the following expansion of the poten-
tial:

Imu
U =Us) =243 oMol | . @
r dr |i=o

The coefficients ¢; are determined in the asymptotic region
rZ R. by using the analytical representation of ¢/ in
terms of Coulomb functions and the given phase shifts.
The evaluation is done by solving the system of Eq. (5) at
certain radii =R, (i=1,2,...22) via a least-squares
fit to obtain a best mean solution in the asymptotic region.
The same Eq. (5) with the known coefficients ¢; serves to
calculate ¢f for r < R.. Finally, we obtain the potential
in the expansion (7).

For simplicity we chose the radii r; to be equidistant
with r;+1—r;=X and r; =R, where X is the wavelength
X=h2m(Ecm — Vo)l ~V2. Here, V, is the constant
reference potential Uog(r) =Vy=2Z,Z2¢*/R,. The number
and values of the radii r;, which are connected to R, and X
and therefore to the incident energy E. . in the given sim-
ple way, and the quantum number /,,x of the phase shift
with highest angular momentum taken into account con-

V (MeV)

r(fm)

FIG. 2. The real and imaginary parts of the potential, " and
W, calculated with the AAS phases of Fig. 1 for Ecm =20.12
MeV. The parameters of the inversion procedure are r, =10 fm,
r2=10.717 fm, r3=11.434 fm, and /max =24 (solid curves) and
28 (dashed curves).
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FIG. 3. The real and imaginary parts of the potential, ¥ and
W, for Ecm =22.30 MeV. The parameters of the inversion pro-
cedure are r;=10.5 fm, r»=11.044 fm, r3;=11.588 fm, r4
=12.132 fm, and /max =24 (solid curves), 26 (dashed curves),
and 28 (dashed-dotted curves).

shifts (/ > 35) the calculations suffer from the larger nu-
merical error and the results become poor.” For radii
r=9.5 fm the inverted potential is a pure Coulomb poten-
tial with a vanishing imaginary part, even if the radius R,
is pushed out as far as 12 fm.

In Fig. 1 (dashed curves) we show the phases deter-
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mined with an optical model code using the dashed poten-
tial given in Fig. 2. The dashed-dotted curves in Fig. 1 de-
pict the differences of the analytical AAS phases and the
calculated real phases and reflection coefficients multi-
plied by a factor of 50. An error of less than 2% is a very
satisfactory result. For small angular momenta (/ =9)
the real parts of the phase shifts become arbitrary because
the corresponding reflection coefficients tend to zero.

The applicability and uniqueness of the modified
Newton method for nuclear heavy-ion potentials was ex-
haustively proven and demonstrated in Ref. 7. Conse-
quently, the oscillations in the potentials are of physical
nature and not of numerical origin. This is also revealed
by a comparison of the phases of these potentials and of
smoothed potentials in which the oscillations are averaged
out. Whereas the true oscillating potentials exactly yield
the phases used for the inversion method (cf. Fig. 1), the
averaged smooth potentials show very different phases
and, therefore, wrong differential cross sections.

Comparing Figs. 2 and 3 we find an energy dependence
of the optical potential. This fact and the oscillations of
the potential give rise to the supposition that the potential
is of nonlocal nature.® A transformation of a local poten-
tial to a nonlocal one has been carried out recently by
Fiedeldey et al.® by assuming a nonlocal potential of the
Frahn-Lemmer-type. This method could be applied to
the present problem.

SUMMARY

To summarize, for the first time we have given a con-
nection between an AAS interaction and a potential by in-
verting AAS elastic phase shifts for two different energies.
The potentials obtained are local for a given energy due to
the inversion procedure applied, but in the context of
different energies they show the special features of an un-
derlying nonlocal interaction.
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