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Antisymmetrization correction for nucleon-nucleus elastic scattering
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Microscopic calculations of nucleon-nucleus elastic scattering which are based on multiple
scattering theory usually do not account for the identical nature of the projectile nucleon and &he

nucleon constituents of the target nucleus, except at the two-body level through use of an effective
interaction. In this work the leading three-body antisymmetrization correction is obtained and
evaluated. The effects are very small at intermediate energies and are only significant for incident
nucleon kinetic energies less than the Fermi energy of the nucleus.

It is customary in microscopic calculations of the inter-
mediate energy nucleon-nucleus elastic scattering optical
potential to base the model on multiple scattering formal-
isrns' in which the identical nature of the incident nu-
cleon and the constituent nucleons of the target has been
ignored. The unsyrnmetrized projectile-target nucleon
two-body operators in the final expressions for the optical
potential are, however, replaced with antisyrnmetrized
two-body nucleon-nucleon (NN) effective interaction t
matrices according to the prescription of Takeda and
Watson (TW). Although such procedures are only accu-
rate to the lowest-order, two-body scattering terms in ex-
pansions of the optical potential, the authors of Ref. 3 es-
timate that this lowest-order treatment should be accu-
rate for incident energies greater than 100 MeV.

The importance of antisymmetrization (e.g. , Pauli
blocking effects) in modifying the effective, two-body NN
interaction for low-to-medium energy nucleon-nucleus
scattering has been recognized for many years and a size-
able industry has emerged for incorporating this effect
into microscopic models of the optical potential.
Furthermore, many authors have developed a number of
scattering formalisms in which full ( A+ 1)-body antisym-
metrization is included, A being the baryon number of
the target nucleus. In light of the general importance of
Pauli exclusion effects and the progress in theories which
incorporate full ( A+1)-body antisymmetrization, it is of
interest to actually calculate the leading-order antisyrn-
metrization correction and to determine in a quantitative
manner the range in energy where the TW prescription is
expected to be valid.

In this work the fully antisyrnmetrized, nucleon-
nucleus optical potential formalism of Picklesimer and
Thaler is used and the leading correction to the Takeda
and Watson prescription is obtained. This term is a
three-body exchange potential which is linear in the NX
effective interaction operator. Numerical results are
given for proton scattering from ' O and" Ca.

Picklesirner and Thaler obtained the usual unsym-
metrized and fully antisymmetrized nucleon-nucleus opti-
cal potentials for elastic scattering and represented them
using the spectator expansion method. In their notation
the former is given by

PUP = $ PUP+ $ P(U~ —U; —U))P+ .

where

U, = T(1 GPU; )—,

U,. =T, (1—G PU;J. ),
T; =U;+U;6 T;

(3)

(4)

and

T, =(v;+vj)(1+"G T~)) .

and

T; =(v;+v. )(1 Eo; E+)(1+—6 T—, )

—:(w, +w. +X; )(1+G Ti) .

In these expressions P projects the usual unsyrnmetrized
elastic channel where the target ground state is
represented by an antisymmetrized 3-body state func-
tion. The many-body propagator G is given by

G =(E —ho H~+iE)—
where ho is the projectile kinetic energy operator and H~
is the target nucleus Hamiltonian. The projectile-target
nucleon interaction is given by U, , Eoi is the exchange
operator for the projectile nucleon (0) and target nucleon
(i ), and X, , defined in Eq. (7), is equal to

In usual applications of multiple scattering theory the
unsymmetrized optical potential is employed except that
T, is taken to be the same as T; since U,. is assumed to ex-
ist only for the physical, antisyrnmetric %X states. This

The antisymmetrized optical potential is given by expres-
sions analogous to E s. (1)—(3) where U, U;, U,", T, , and

T; are replaced by, U;, U;1, ?, , and T, , respectively,
and Eqs. (4) and (5) are replaced with

T, =v;(1 Eo, )(1+6—T, )=w, (1+G T, )
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is equivalent in this order of expansion to evaluating POP'
with X," in Eq .(7) replaced with zero. Therefore the
necessary correction to the unsymmetrized optical poten-
tial is just

PUq P =PUP PU—(XJ~0)P, (9a)

Using Eqs. (4) and (7), f;'is expan. ded as

T, =(T,"+T )(1—Eo, Eo )(—1+G T, )"
—( T; G T; + Ti GTJ )(. 1 Eo; —Eo) ) +—.

(10a)

and T;- with X;. set to zero becomes

1;.(X; ~0)=[T,(1 Eo; )+—T (1—Eo )](1+6 T; )

—T, G T;(1—Eo;)—T GT (1 E. o ). —

+ 0 ~ ~ (lob)

From Eqs. (9b), (10a), and (10b) the leading-order an-
tisymmetrization correction is

PU~P= —g PT;Eo P+
l+J

where F(X, ~0) means replace X; with zero in the func-
tion I'. In leading order this becomes

PU~P= g P[f', —T,
&

("X; —.+0)]P .

U, (k, k ) =—(k y„~PU, P~y, ,k), (12)

where P, represents the target nucleus ground state and
~
k ) is the state function of the projectile in a plane-wave

state with wave vector k. Spin and isospin factors have
been suppressed. Since the purpose here is to conduct an
initial, quantitative investigation of this antisymmetriza-
tion e6'ect, corrections were only obtained for the real
part of the central, spin-independent optical potential
which is the dominant component of the optical poten-
tial' in the energy range where Uz is expected to be im-
portant. Extension of this calculation to include the
remaining terms in the NN interaction would be straight-
forward. Assuming, therefore, a local, spin-independent
XK effective interaction for f', yields'~

Note that this is a three-body operator involving the pro-
jectile nucleon (0) and target nucleons (i) and (j). In ap-
plications of the unsymmetrized theory the proper sym-
metry between target nucleons (i) and (j) is included in
the antisymmetrized target wave function while that in-
volving particles (0) and (i) is correctly treated by way of
the TW prescription using NN effective interactions. The
term in Eq. (11) therefore corrects the unsymmetrized op-
tical potential by including the exchange of particles (0)
and (j) while particles (0) and (i) interact. This term is
similar to that discussed in Ref. 3.

In momentum space the correction in Eq. (11)becomes

I

U„(k,k') = —3 ( 2 —1)f f f d rod r, d rze 'p~2~(r„r2, r„ro)t' (lro —r~l)e

where

p(, )(r„r;,r„r.)=f«, «, (y sl r, r2r3 rg &(r,ror3. . . r, lys. &

(13a)

(13b)

is the two-body density matrix. This expression is
Fourier transformed into coordinate space yielding the
nonlocal potential.

U~~(r, r')=(2n) f f d k d k'e'"''Uz (k, k')e

(14)

k'(r) =k,'„, ", V(r), —2
(1Sb)

k;„, is the projectile nucleon incoming wave vector, p is

The nonlocality of U„(r, r') was examined for the
cases considered here. The potential exhibited
Cxaussian-like dependence on the nonlocal coordinate
with range -2 fm, approximately independent of in-
cident energy and target mass. Therefore the standard
method of obtaining the local, equivalent optical poten-
tial was employed here, yielding

Uz &o„&(r)= f d br Uz (r+ br, r)jo[k (r)br], (1Sa)

where

the nucleon-nucleus reduced mass, and V(r) is the real
part of the central, spin-independent empirical optical po-
tential. '

The interaction t' was assumed to be a Gaussian with
strength and range determined by requiring that the
volume and root-mean-square (rms) radius of the folding
model potential given by

U(r)= f d r't' (~r —r'~)p (r'), (16)

equal those of optical model phenomenology. ' The
matter density p was assumed proportional to the
empirical proton point density, ' since only self-conjugate
nuclear targets weqe considered. Reasonable strengths
and ranges were thus obtained in comparison with those
of the density-dependent, 6-matrix efFective interac-
tion. '

The two-body density matrix was computed from a
Slater determinant of single-particle states. These were
assumed to be orthogonal eigenstates of a Woods-Saxon
binding potential where j dependence of the radial wave
functions was neglected for simplicity.

Calculations were performed for p+' G at incident
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TABLE I. Optical potential volumes.

Reaction

p+' O, 20.8 MeV
p+' 0, 30.4 MeV
p+' 0, 39 7 MeV
p+' 0, 49.5 MeV

RE [(U„„,) ]/A
(MeVfm )

—483.4
—449.2
—454.5
—419.7

RE[( U„„„,)]/A
(MeVfm )

11.8
4.7
0.027

—0.29

Absolute value
of ratio {%)

2.4
1.05
0.006
0.07

p+ Ca, 9.86 MeV
p+ Ca, 20.6 MeV
p+ Ca, 303 MeV
p+ Ca, 40 MeV
p+ Ca, 49 MeV
p+ Ca, 76 MeV

—497.5
—388.1
—402.3
—392.5
—302.8
—240.2

19.6
7.65

—1.56
—2.12
—0.94
—0.016

3.9
2.0
0.39
0.54
0.31
0.007

laboratory kinetic energies of 20.8, 30.4, 39.7, 49.5, 76,
and 153 MeV, and for p + Ca at 9.86, 20.6, 30.3, 40.0,
49.0, 76.0, and 153 MeV using empirical potentials from
Ref. 10. Selected results are summarized in Table I
which lists for each case the volume per nucleon of the
empirical real, spin-independent proton+nucleus (pA)
optical potential, ' that of the local equivalent approxi-
mation of the antisymmetrization correction, and the ab-
solute value of the ratio of the two in percent. The
correction diminishes rapidly with increasing energy,
however, below 30 MeV the efFect is several percent. Op-
tical model calculations at energies less than 30 MeV
which include this term display appreciable efFects in the
differential cross sections.

To summarize, the antisymmetrization correction po-
tential evaluated here is a three-body, exchange term
which is linear in the NN t matrix. Due to its exchange
nature this quantity is expected to be small at energies
above the Fermi energy and such is the case found here.
The correction was found to be completely negligible
above 30 MeV incident nucleon energy, thus quantifying
the original estimate of Takeda and Watson. Therefore

for incident energies of several tens to hundreds of MeV
the TW antisymmetrization prescription for the unsym-
metrized multiple scattering formalism is completely ade-
quate. The dominant, residual effect of the Pauli ex-
clusion principle in nucleon-nucleus scattering remains
that due to Pauli blocking in the NN intermediate scatter-
ing states. This effect contributes to the operator f;'

as can be seen by evaluating Eqs. (4) or (6) with a com-
plete set of antisymmetric A-body nuclear states utilized
in the (U, G T; ) term. It is important to remember, how-
ever, that the antisymmetrization correction calculated
here contributes i'n addition to the medium effects one
may include in evaluating T; in Eq. (6) in multiple
scattering theory. Of course at energies less than 30 MeV
where this effect is nonnegligible, extensions of
Brueckner theory' are more often used which account
for the full projectile-nucleus antisymmetry.
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