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Particle-hole excitations are studied in terms of a single-particle representation consisting of
bound states and resonant solutions (Gamow resonances) of a “realistic’” Woods-Saxon potential.
Within this representation a particle-hole resonant random phase approximation is developed. Us-
ing the resonant random phase approximation the escape widths of the multipole giant resonances
in 2%8Pb are calculated and reasonable agreement with available experimental data is obtained.

I. INTRODUCTION

Many observed nuclear properties have features which
cannot be described without a proper inclusion of excita-
tions in the continuum. Although methods like continu-
um shell model,! continuum random phase approxima-
tion (RPA),>™* coupled channels,” and time-dependent
Hartree-Fock calculations® have proved to be successful
in treating the continuum, they involved rather cumber-
some and extremely time-consuming calculations. Be-
sides, many details of the underlying microscopic struc-
ture remain hidden within these approaches due to a
treatment of the continuum which is not able to
differentiate background from resonant features.” Only
recently did calculations done within the continuum
RPA seem to disentangle these two processes.®

One so far open question strongly connected with this
problem concerns the particle decay of giant resonances
(GR’s). GR’s show up as broad bumps in the nuclear
spectra above the neutron emission threshold and their
width is composed of two important parts: the “escape
width” T'T, which represents the coupling to the continu-
um, and the spreading width I'* measuring the coupling
to two-particle—two-hole and more complex configur-
ations. The GR’s can decay by particle emission or by ¥
radiation. Though their electromagnetic decay has been
thoroughly studied, it was only recently that new experi-
mental setups allowed us to investigate particle emission
in the decay of giant monopole and quadrupole reso-
nances.” ! One is thus confronted with the task of de-
veloping microscopic theories which would provide a
suitable description of the particle emission decay of the
GR’s. Our aim in undertaking this task has been to ac-
count for the most apparent effects of the continuum in
an economical and feasible manner which at the same
time yields some insight into how GR’s are built out of
particle-hole excitations. In order to achieve these goals,
proposed in Ref. 14 was a fast approximate method that
we called resonant RPA (RRPA). In that reference the
accuracy of the RRPA was tested by comparing its result
to that of “exact” methods [the continuum RPA (Ref. 3)
and coupled channels calculations’] for the dipole GR in
180. A brief summary of the method was also given there
and the power of the RRPA was shown for heavy nuclei
(the isoscalar quadrupole GR in 2°Pb).

In the RRPA the single-particle basis is composed of
bound single-particle states and single-particle resonant
(Gamow) states. We will denote this set of states by GS.
With the GS the completeness relation of Berggren'® is
used together with regularization methods for calculating
the divergent integrals. The use of Gamow states au-
tomatically takes care of the possibility of particle emis-
sion from the unbound particle states. An advantage of
the RRPA method is that after neglecting the effect of a
complex continuum we deal only with discrete eigen-
states of the single-particle Hamiltonian; therefore
methods well known from nuclear structure calculations
can still be used. The price we pay for this convenience is
that our method is an approximate one. The continuum
itself has a structure since it contains a background and
several single-particle resonances. Through the resonant
basis states the RRPA includes the effect of the narrow
resonances in the region of the giant resonance but not
the effect of the slowly varying background. In this way
the RRPA is able to describe a major part of the escape
width and the fragmentation of the multipole strength
(Landau damping), and at the same time it opens certain
insight into the building up and the decay of the GR’s.

The use of GS’s as a single-particle representation is a
novel and important ingredient in this paper. Yet,
Gamow resonances were introduced in nuclear physics
long ago in connection with spontaneous alpha decay.'®
However, their use was hindered by the lack of a regular-
ization procedure to calculate their norm. Even after this
problem was solved there was some reluctance to use
GS’s to describe spectroscopic properties connected with
the continuum. The main reason for this was that GS’s
are orthogonal to any real continuum state.'> But recent-
ly it was shown that Gamow resonances have the peculiar
property that although they are orthogonal to any real
state, they are not orthogonal to 'wave packets formed
from a superposition of continuum states.!” Another
peculiar property which is important for our purposes is
that Gamow resonances have a large overlap with wave
packets that are peaked at the resonance energy.!’
Therefore, the inclusion of GS’s would be equivalent to
the use of bound states and of a set of wave packets cen-
tered in the resonant energies corresponding to the realis-
tic potential used to obtain the GS’s. In other words, it
makes sense to describe observable states using wave
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packets connected with the same main field which in-
duces those states.

In Sec. II of this paper we review the definition and
basic properties of Gamow functions, the generalization
of the scalar product that should be applied when hand-
ling them, and the completeness relation of Berggren.'®
In Sec. IIT we show how the use of these complex states
modifies the standard RPA equations and discuss the
solution of the RRPA equations. We apply the RRPA
method in Sec. IV for the calculation of GR’s of different
multipolarities in 2°°Pb. In the last section a summary of
the results and the conclusions are given.

II. GAMOW RESONANCES:
REVIEW OF BASIC CONCEPTS

This section will be devoted to summarizing the basic
definitions and establishing the notations which we will
adopt when referring to our single-particle representa-
tion.

For simplicity we consider as our system a spinless par-
ticle moving in a spherically symmetric potential V (r)
which is the sum of a short-range nuclear and an infinite
range Coulomb term, i.e., V(r)=Vy(r)+V(r), which
satisfies Vy(r)=0if r >a and V(r)=Z,Z,e?/r for r 2 a.
The solution of the Schrodinger equation HY=EWY can
be expanded in partial waves u; that will be solutions of
the radial equation

u i+ |k2=ED _yo) =0,
r
where ¢ =2u/#%, U(r)=cV(r), k*=cE, and u is the re-
duced mass.
The solution must be regular at the origin,

u,(0,k)=0, 2)

and for r = a it can be expressed by the two linearly in-
dependent Jost solutions or the O; and I, outgoing and
incoming Coulomb waves and the S matrix as follows:

u,(r,k)=x,;(k)O;(kr)+y,(K)I,(kr) , (3)
u,(r,k)=y, (k) I, (kr)—S,;(k)O,(kr)], (4)
where S;=—x;/y, and for large distances 0,—e'?,

I,—e % with
O0=kr—nIn2kr—Iw/2+o0, .

All the parameters appearing in the definition of 6 are the
usual ones in scattering theory: 7 is Sommerfeld parame-
ter and o, the Coulomb phase shift.

Imposing the Siegert boundary condition'® of having
only outgoing waves at infinity [i.e., y,(k)=0], which is
satisfied for only those points k, of the complex k plane
where S; has a pole, three types of solutions are obtained
corresponding to bound states (k,=iy,), antibound
states (k, = —iy,), and resonances (k, ==k, —iy,). In
all cases v, is greater than O. Since the asymptotical be-
havior is governed by O,(kr)—e™™, it is clear that only
the bound states are square integrable since they behave

as e '"’, while the antibound states behave like e
The Gamow resonances which are lying on the lower half
of the &k plane in pairs, k,=k,—iy, and
k,=—«k,—iy,=—k,;, also diverge for increasing values
v,r ik, r - ~ LYt —ik,r

of ras u;(r,k,)—e "e " and #)(r,k,)—e""

The function u; with Im(k?) <0 represents a decaying
state because the time dependence of the solution with

the complex energy
E, =%k,f=e,, —il', /2

becomes
—iE, t/#i+ik, r =L, t/2% y, r ilk, r—e,t/#%)

e " "T=e " e"e " " . (5)
The decay in the wave function is exponential with a re-
laxation time r=2#/T",. The increase of the amplitude
with r is due to the fact that the outgoing particle has a
finite velocity so that a particle which is observed now at
a position r left the origin a time AtAb/ggore, when the
source was stronger by a factor of e " ! =e""’, as first

realized by Gamow.°
The time behavior of the mirror state u@,(r,k,)

:ul’fk" (r), k,=—k,

En=%~f=e,,+il‘,,/2

is just the opposite
—iE t/fi+ik r L, t/2% y,r —ilk,r+e,t/h)
e n n :e n e n e n n (6)
and therefore it represents a “capturing state” growing
exponentially in time.

Since the complex energy eigenvalues can have only
discrete values, resonance states resemble bound states
rather than scattering states having continuous spectra.
Resonances can be considered as generalizations of the
bound states since they satisfy the same equation and the
same boundary conditions as the bound states, namely
they are regular at » =0 and behave as outgoing spherical
waves beyond the range of the nuclear potential. For
I', <<€, Gamow functions are very similar to bound
state wave functions inside the nuclear potential apart
from a small imaginary component. However, at large
distances they oscillate with exponentially growing am-
plitude, as we can see in Egs. (5) and (6), and therefore
they are not square integrable.

With the traditional definition of scalar or inner prod-
uct

<u2|u1>=fo°°u;(r)u1(r)dr , Y)

only the bound states can be normalized in an infinite in-
terval. Therefore the definition of the scalar product
should be generalized. The generalization of the scalar
product can only be done if we use a biorthogonal basis
and apply some regularization method for calculating the
resulting integrals, which often diverge without regulari-
zation. Several prescriptions have been proposed for reg-
ularization (e.g., the use of convergence factors,'>!”
analytical continuation,?® complex rotation techniques,*'
etc.). These methods differ from each other in the
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mathematical techniques used and in how suitable they
are when the numerical calculation of a given integral
arises. They have different ranges of applicability, but
practically all of them lead to the same result when they
can be applied. In this work we use the method of com-
plex rotation suggested in Ref. 21 which became later
known as exterior complex scaling.?? It is extremely
powerful for the potentials used in nuclear physics where
nuclear interactions die out beyond a finite distance a and
only the long-range Coulomb potential survives. The
regularization method rotates the radial distance r with a
suitable angle @ only beyond this distance q, i.e., it uses
the transformation

r for r<a

a +|r —alexplig) for r>a , 8)

¥ —

where @ <7/2. Due to the dilation analyticity of the
Coulomb potential V(r)=Z,Z,e?/r, this transforma-
tion is equivalent to the exterior complex scaling of the
Hamiltonian valid in the asymptotic region. In this way
the results do not depend on the analytical properties of
the short-range part of the potential and we can use the
fact that the resonant poles k, uncovered by the complex
rotation will not change their position, as it should be ac-
cording to the Aguilar, Balslev, and Combes (ABC)
theorem.?* The transformed radial wave functions will be
square integrable if ¢ > —arg(k, ). Since the complex ro-
tation gives the same result for the norm as the use of a
convergence factor of the form?! e " we can use the
completeness relation of Berggren. He formed a
biorthogonal set from bound states and two types of reso-
nances (decaying and capturing ones) by using a regulari-
zation method!® with a Gaussian convergence factor.
The resonances included in his set were selected by
defining a curve L =Lt +L~ of the complex k plane
like the one shown in Fig. 1. The L contour is sym-
metric with respect to the origin, i.e., if kL™ then
—k€&€L™ and its slope is limited by the condition
arg(k)> —m /4. The completeness relation of Berggren
states that

S(r—r')zzﬁ:(i‘,/zn )un(r,’k")

15

+ [, a3 kulr,kdk 9)

acts as a unit operator in the space of all states whose ra-
dial component goes asymptotically to zero faster than
any exponential or behaves as e’*” with k values lying
above the contour L. The summation in Eq. (9) refers to
all bound states and the selected set of decaying reso-
nances with k, between L * and the real axis. The intro-
duction of the contour L suits our purpose of neglecting
the integral of the scattering states u (r,k) in Eq. (9) and
using only the finite sum of the first term. We have a
great flexibility in choosing the contour L, i.e., in decid-
ing which are the resonances we include into the basis.
We have to select those resonances which are relevant for
the physical problem under consideration. The inclusion
of Gamow resonances to some extent is equivalent to the
use of a set of wave packets centered in the resonant ener-

Im (k)

FIG. 1. Integration contour L for the completeness relation
of Eq. (9). Crosses denote the poles of the scattering function
S;(k). Pole solutions falling into the shadowed area are square
integrable if we apply the complex rotation of Eq. (8).

gies. Romo showed!” that though a Gamow resonance is
orthogonal to any real continuum state, it has a large
overlap with a wave packet which is formed from a su-
perposition of continuum states and is peaked at the reso-
nant energy.

III. RESONANT RPA

A. Formalism

Since in Sec. II we introduced a generalized scalar
product which differs from the standard one, we will give
here some details of the particle-hole RRPA formalism
that will be applied in the next section.

As in the calculation of bound states, we define within
our GS representation the Fermi level and the hole and
the particle states according to the number of particles
that our system contains. We then linearize the particle-
hole equation of motion to obtain the RPA equations.
The corresponding particle-hole (forward) amplitudes X,
and hole-particle (backward) amplitudes Y, are obtained
from the RRPA equations

X

n

Yn

A B
—B —4 =W,

n

’ (10)

n

which has a form which is similar to the standard RPA
equations.?* The difference is that no complex conjuga-
tion operation appears in Eq. (10) and the matrix ele-
ments of the matrices 4 and B should now be calculated
using the complex rotation technique according to the
definition of the generalized scalar product as we have
discussed before. This also applies to the RPA normali-
zation condition that now is

Xx,—Yly, =1 (11)

and not X7*X,—YI*Y,=1, as it would be in a standard
representation. In the biorthogonal basis the spin and
angular parts of the matrices 4 and B are the same as in
the bound single-particle representation, and the
difference only appears in the radial integrals, which now
read
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Ipqrszregfowr%drl fowr%drsz(rl )Rq(rz)
X V(ry,ry)R,(r)R,(ry), (12)

where reg means that the regularization procedure is ap-
plied if needed. The angle ¢ of the complex rotation is
chosen so that all kinds of radial wave functions (bound
states and resonances) go to zero along the complex path
of Eq. (8), i.e.,

cp=%max|arg(k,,)|+% . (13)

The radial part of the single-particle wave function is, as
usual,

u;(r,k;)
Ri(r)=-—7—— . (14)

Using the condition (13) the calculation of the interac-
tion matrix elements (12) can be performed without ma-
jor difficulties. Explicit expressions for the particle-hole
Migdal interaction were given in Ref. 25. In the applica-
tions below we use the multipole-multipole interaction,
ie.,

Vi=—rk0,0x > (15)

where k, is the strength of the force and Q, is the mul-
tipole operator

03, = (NY,,(7) . (16)
For the radial dependence we use

fA(r)=raI;ir) , 17
where

Vo

Vir)= Thev-R7a (18)
or

frr=rt. (19)

Within the separable interaction (15) the radial integral
can be written as

Tpgrs =My My (20)
where
Mp,=regfo°°r2dr R,(rf1(PR,(r), 1)

and the RPA eigenvalue problem (10) reduces to the
well-known dispersion relation?%2’

20, —€, ) k|Q,li)?
F (W)=
A( ) % WZ—(ek—e,- )2
1

Fy(W,)=—;
}L( n) K}»’

s (22a)

(22b)

where W, is the complex energy of the state n. It is clear
that Re(W,) is the position of the resonance and Im(W,,)
is half of its escape width. The solution of the complex
dispersion relation will be discussed in detail in the next

section.

Since Q, is also the transition operator of relevance in
the decay of particle-hole states, the energy-weighted sum
rule?®

S(Q)=1(0|[Q,[H,Q11l0)=3 W,(n|Ql0)*  (23)

can be calculated by using Eq. (21). In the applications
below we have checked that this sum rule is independent
of the isospin character of the operator as well as of any
local interaction.?*

While the real part of the strength function measures
the concentration of the multipole strength on the state
concerned, it is not completely clear what interpretation
should be assigned to the imaginary part of the strength
function and, in general, to the imaginary part of any
transition probability. A reasonable interpretation of this
quantity is that it is related to the uncertainty of the in-
terference between the resonance and the background of
the process being studied.?’ Within this interpretation,
the larger the imaginary part of the quantity, the larger
the uncertainty of the value given by the real part.

B. Complex dispersion relation

In the standard case of real representations the solu-
tion of Eq. (22) can be conveniently performed graphical-
ly as the intersection of the curve F, (W) with the hor-
izontal line 1/k,. In our case, however, all quantities in
Eq. (22) are complex and those curves become surfaces in
the complex space. The real and the imaginary parts of
F, are surfaces with singularities at the unperturbed
particle-hole energies W =x=(¢,—¢€;). An example of
this is shown in Fig. 2. The RRPA solutions are provid-
ed by the complex values W, which simultaneously solve
the equations

Re(F, (W,))=Re(l/k;) ,
Im(F,(W,))=Im(1/k,) .

(24a)
(24b)

Due to the complicated structure of the dispersion rela-
tion we could not find all its roots in realistic cases by us-
ing root finding methods of transcendental equations.
We then decided to diagonalize the RRPA matrix direct-
ly using standard complex diagonalization routines.’!
However, it is interesting to analyze how collectivity is
built up in the case of a complex dispersion relation.
Therefore here we will make a qualitative analysis.

The W, values satisfying Eq. (24a) lie on the intersec-
tion of the surface Re(F;(W)) and the plane Re(1/k,).
Let us call this intersection Cp. Then C; is defined
analogously by Eq. (24b). The curves Cr and C; are
shown as dotted and full lines, respectively, in Fig. 3.
The roots of Eq. (24) are the points lying both on Cr and
C;: W,eCgq, W,EC;. With weak interaction «, the
planes Re(1/k;) and Im(1/k,) cut the surfaces
Re(F,(W)) and Im(F,(W)) at large values where, as it
can be seen from Fig. 2, Cy and -C; are closed loops
around the wunperturbed energies. Increasing the
strength, the planes corresponding to 1/k, approach the
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FIG. 2. Real (a) and imaginary (b) part of the function
F;, (W), Eq. (22a). The strong peaks in this figure correspond to
the singularities at the unperturbed particle-hole energies.

“ground level” where, according to Eq. (24), F, (W)=0.
If the plane cuts hills standing alone (Fig. 2), the roots
remain close to the particle-hole energy and the solutions
are noncollective. On the other hand, we see in Fig. 2
that a large mountain is formed from many of the indivi-
dual peaks. If we cut this mountain at its foot (that is,
large values of k), the intersection occurs far from the
poles. The root corresponding to this situation has a col-
lective feature since many particle-hole states contribute
to its formation. The roots corresponding to the steep
peaks are weakly dependent upon changes in the strength
of the interaction because the walls of the peak are prac-
tically perpendicular to the complex plane. The root cor-
responding to the mountain is strongly dependent upon
changes in the strength because it lies on the smooth
slope of the mountain. The larger the strength, the far-
ther the collective root is from the noncollective ones.
Within a harmonic oscillator basis, the energy of the
collective state is always the lowest state within the har-
monic oscillator AN excitation?®?” considered (for iso-
scalar excitations, while for isovector excitations the col-
lective state is the most excited one®®). In our case, how-
ever, the collective state usually lies among noncollective

Imiw)

Re(W)

FIG. 3. Graphical solution of the dispersion relation Eq. (24).
The intersection Cy of the surface Re(F,(W)) with the horizon-
tal plane Re(1/k;,), Eq. (24a), is the dashed line, while the full
line is the intersection C; corresponding to the imaginary parts
Im(F,(W)) and Im(1/k,), Eq. (24b). The points where Cy and
C; crisscross (denoted by dots) are the W, values, i.e., the solu-
tions of the dispersion relation.

states, as seen, e.g., in Table III. This is a rather remark-
able difference between the two cases.

IV. APPLICATIONS

A. Choice of the basis

We present in this section applications of the RRPA
that we performed in the experimentally well-explored
case of 2%%Pb, where “exact” treatments would be difficult
to carry out. We have also applied our method to light
nuclei, where calculations are easier to perform. In par-
ticular, good agreement with experimental data was ob-
tained'* in 1°0.

To obtain the Gamow states we solved the one-particle
Schrodinger equation using a Woods-Saxon potential
with parameters shown in Table I. This calculation was
done with the computer code GAMOW.** The calculated
states are shown in Table II. One sees in this table that
the bound state energies are approximately the same as in
a previous calculation.>* But from the point of view of
our method, the important states are those lying in the
continuum. As expected, states with high orbital angular
momentum have small width due to the centrifugal bar-
rier. The same effect is produced by the Coulomb bar-
rier, as is also seen in Table II.

As suggested by the adequacy of the shell model to de-
scribe nuclear properties, we choose as basis states those
GS which are closest to the Fermi level. In other words,
we order our GS according to increasing values of the
real parts of the energies (€;). States with values of €,
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TABLE 1. Woods-Saxon parameters for the potential used to
generate the GS in 2°Pb. The notation and the units, i.e., MeV
for energies and fm for distances, are standard.

Particle Vo 7o a Ve .
Neutron 44.40 1.27 0.70 16.5
Proton 66.04 1.19 0.75 19.0 1.19

differing enough from the energy of the Fermi level are
assumed to be irrelevant. This criterion, which is a natu-
ral extension of the shell-model criterion, leaves the imag-
inary part of the single-particle energies (€;) untouched.
However, there may appear GS which are so wide that
they would belong rather to the proper continuum. The
inclusion of these states in the single-particle representa-
tion would be against our intention of disentangling ob-
servable processes from the continuum background. Be-
sides, we strive to use a set of GS as small as possible be-
cause we thereby expect to gain physical insight into the
structure of observable states.

The adoption of a criterion to select GS with adequate
values of €; is not as straightforward as it is for €.
There are several possibilities to make this selection. Ob-
servable resonances are usually narrower than the corre-
sponding energy centroids, and only a fraction of the
width corresponds to the escape width. Therefore, a
reasonable criterion may be to include in the set of GS
only those states that fulfill the condition |¢;| <ez. But
there might exist GS lying very close to the continuum
threshold (i.e., with very small positive values of €5 ) but
such that |€;| > eg. These states would be neglected even
if they are very narrow. This shortcoming is serious
enough to invalidate the criterion above, although it is
otherwise appealingly simple.

Another possibility is to include all states in the set of
GS irrespective of the value of €; and to make the selec-
tion on the final basis states. For instance, in the
particle-hole case studied here, the selection would be
done according to the values of the energy difference be-
tween the particle and hole states. The disadvantage of
this criterion is that it depends on the kind of excitation
that one studies (e.g., particle-hole, two-particle—one-
hole, etc.). Finally, another criterion is to include in the
set of GS only states with values of |61| smaller than a
given quantity €;(max). We tried different possibilities
for €;(max). We found the remarkable property that
wide GS do not have an appreciable influence upon the
giant resonances. This is due to the oscillating charac-
teristics of wide GS. As will be shown below in more de-
tail, absolute values of the radial integrals (21) become
smaller the larger the number of contributing oscillations
to those integrals is, i.e., the larger |¢;| is. This property
supports our assumption that processes related to observ-
able states may be described by a single-particle represen-
tation consisting of GS which are not very wide.

After numerically investigating the different criteria
mentioned above, we decided to choose as a set of GS
only states with |€;| <15 MeV. That is, we consider
single-particle resonances wider than 30 MeV to be a part

of the continuum. But it should be noted that this cri-
terion allows for the inclusion of very wide GS, as seen in
Table II, and therefore the calculated states may also be
very wide.

By using this representation to describe GR’s, we hope
to retain the advantages of a discrete representation and,
in addition, to be able to account for the escape width in
a straightforward manner. We avoid the continuous
background, as is the case when using harmonic oscilla-
tor bases, and we obtain the escape width ' as a by-
product of the RPA calculation because I'! is simply

TABLE II. The closest single-particle states to the Fermi lev-
el in 2%8Pb calculated by using the computer code GAMOW (Ref.
32) and the potential of Table I. The proton (neutron) energies
€, (€,) are in MeV. Note that all imaginary values are negative,
as it should be for decaying resonant states.

N State €, €,

3 0f 7,2 —22.67 —26.61
3 0fs, —20.17 —24.78
3 1pi,n —18.32 —23.47
3 1pi, —17.33 —22.70
4 089,2 —16.23 —20.99
4 0g7,2 —12.37 —18.06
4 1ds,, —11.04 —17.06
5 Ohyy /2 —9.26 —14.96
4 1d; . —9.10 —15.51
4 251 —8.71 —15.30
5 Ohy —3.78 —10.69
5 1f7 —3.54 —10.49
6 0iy3,, —1.84 —8.57
5 2p3n —0.69 —8.35
5 1fs,2 —0.52 —8.08
5 2p1 .2 0.49—i0.00 —7.41
6 19,2 4.03—i0.00 —3.93
6 0iy1 2 5.43—1i0.00 —2.80
7 0j1s/2 5.96—i0.00 —1.88
6 2ds,, 6.75—10.00 —2.07
6 3812 7.84—i0.04 —1.44
6 187, 8.09—i0.00 —0.77
6 2ds 8.53—1i0.03 —0.78
7 3p3n 12.64—:i1.89

7 2f1, 12.75—1i0.65 2.10—i0.87
7 1hy1 5 11.39—i0.02 2.25—i0.03
7 3p1,2 13.22—12.50

7 2fs5,, 14.65—i1.56 2.70—i2.32
8 0k 7,2 14.06— i0.00 5.03— i0.00
7 lhy 15.96— i0.39 5.40— i0.73
7 0j13,2 15.09— i0.00 5.41— i0.01
8 0iy3,, 18.14— i0.57 7.66— i1.04
8 3ds,, 16.62— i8.47 7.41— i13.20
8 3d; 17.86— i10.93

8 4s1,, 16.88— i11.90

8 289, 17.84— i3.55 5.54— i6.38
8 287, 20.07— i6.63 8.35— i11.54
9 0ly9,, 22.34— i0.04 12.02— i0.09
8 iy 23.24— i2.52 11.33— i3.94
8 2hy1 .2 23.40— i9.22 13.04— i13.59
8 0k s, 24.82— i0.22 13.58— i0.44
9 1j1s5,2 24.68— i2.31 13.22— i3.52
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TABLE III. The calculated lowest 0" states in 2°Pb. The uncorrelated energy E, =¢; —¢; is the
particle-hole energy corresponding to the given configuration. The correlated states have energies W,,,
and their contribution to the isoscalar energy-weighted sum rule is SEWSR. The percentage corre-
sponding to the real part of the SEWSR is also given. Energies are in MeV and the SEWSR is in arbi-

trary units. The cases where the imaginary energies are not given correspond to bound states.

Configuration E, w, SEWSR Yo
V(2fsp1f5/5) 10.64—i2.32 10.68—i2.31 3.0—i0.2 4
v(2f1,1f74) 11.81—i0.87 11.78 —i0.80 0.1—i1.0 0
W(3sy 2251 /4) - 13.39 13.25—i0.15 37.6—i5.2 46
v(2d3,,1d3) 14.09 13.60—i0.10 23.8—i3.1 29
v(2ds,,1d5)5) 14.70 14.10—0.03 10.3—i1.3 13
m(351,,251/5) 15.85—i0.04 15.10—i0.05 4.6—i0.9

m(1hg,,0h5.%) 16.17—i0.73 15.94—i0.04 1.0—i0.3 1

twice the imaginary part of the resonance energy W,,.

Once the GS have been chosen, we construct the RPA
matrix of Eq. (10). We thereby calculate the correlated
particle-hole energies W, and the corresponding forward
and backward amplitudes. We will use the separable in-
teraction (15) but including both the isoscalar and isovec-
tor components.?”?® The isoscalar strength «, of the in-
teraction is adjusted, as usual, by fitting the experimental
energy of the first excited state. This strength is related
to the isovector strength «; and the mixing strength «’
through the relation®

K /Kog=—A—3, K'/k;=—(N—2Z)/4, (25)

where N —Z is the neutron excess and A is the mass
number. For the multipole operator we use the form (17)
because the corresponding matrix elements are easier to
calculate. That is, the integral (21) converges rapidly for
this operator. However, we also calculated a large num-
ber of cases using (19) and we did not find any apprecia-
ble difference, neither in the energies nor in the sum
rules, from the cases calculated with (17).

B. Monopole excitations

Giant monopole resonances (GMR’s) have been exten-
sively studied during the last decade mainly because of
their relation to the incompressibility of nuclear matter.>*
But the important feature for us is that the location and
particle decay of the GMR in medium and heavy nuclei
has recently been measured. It was found in Ref. 10 that
the isoscalar giant monopole resonance (SMR) in 2%’Pb
has a width of 2.4+0.3 MeV and is located at 13.940.3
MeV. The decay width was estimated to be about 10%
of the total width, that is, about 240 keV. Yet, a more re-
cent measurement'>!3 gives for this width the value

0.425£0.100 MeV. The extraction of these experimental
values does not seem to be an easy task. In particular,
the particle decay of the SMR may also proceed through
preequilibrium. Even the position of the SMR is difficult
to determine because it lies in the same energy region as
the giant dipole resonance. This was shown in detail in
Ref. 35, where the SMR is estimated to lie at 12.9 MeV.
Actually, there are a number of different experimental
values for this energy. Their average is 13.7+0.3 MeV
with a total width of 2.5+0.3 MeV, while it is estimated
that the SMR exhausts 94110 % of the isoscalar energy-
weighted sum rule (EWSR).!°

To perform our calculation we used a set of GS which
includes states up to the N =8 shell with single-particle
energies as in Table IT except for bound states, where we
used experimental energies when available. As in the
standard shell-model RPA calculations®® we found an im-
portant redistribution of the uncorrelated EWSR. But in
our case both the energies and the EWSR are complex
quantities, and the imaginary part of the energy fluctu-
ates considerably from state to state, as seen in Tables III
and V. A striking feature of these tables is that the states
which exhaust most of the EWSR are narrow, although
they may be surrounded by wide states. Moreover, the
collective states, i.e., the giant resonances, are not isolat-
ed from the neighbor states. This is in contrast with stan-
dard calculations, where, for example, the SMR is the
first excited state within the corresponding harmonic os-
cillator shell.>’

In the case of Table III, the three correlated states at
13.25, 13.60, and 14.10 MeV exhaust 88% of the EWSR,
in good agreement with experiment!® as well as with the
results of Ref. 11, where a continuum RPA calculation is
performed. Besides, the largest imaginary part of the en-
ergies of these collective states is 150 keV, i.e., a width of
300 keV, also in reasonable agreement with the experi-

TABLE IV. Main components of the RRPA wave functions corresponding to the two most collec-
tive states in Table III. Only the forward amplitudes are given because the backward amplitudes are

negligible.

Wn (MeV) V(3S1/225r/12) V(2d3/21d;/‘2) V(2d5/2 lds_/lz) Tr(2d5/2 ld;/lz)
13.25—i0.15 0.78—i0.15 0.34+i0.10 0.26+i0.10 0.25+i0.08
13.60—i0.10 0.69+i0.17 —0.52+i0.16 —0.32+i0.06 —0.224i0.06
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TABLE V. Calculated monopole states lying in the energy region of VMR. The isovector energy-
weighted sum rule is VEWSR. The rest is as in Table III.

Configuration E, w, VEWSR Yo
w(1g,,,0874) 19.49—i0.00 19.61—i0.00 0.44i0.0 0
m(1£7,,0f74) 19.78 19.95—i0.01 1.0+i0.1 1
m(1g,,0g854) 20.26 20.49—i0.02 1.1+i0.1 1
w(1hy, ,0h 1Y) 20.74—i0.02 22.12—i0.32 49.0—i8.2 60
m(4s, 2257 4) 24.89—i11.90 24.88—i11.90 0.3+i0.3 0
w(3d;,,1d55) 26.21—i10.93 26.20—i10.93 0.7+i0.6 1
w(3ds,,1d5.5) 26.29—i8.47 26.27—i8.44 1.7+i3.1 2

mental value of about 240 keV mentioned above.

It is interesting to notice that standard shell-model
RPA calculations® give about the same strength distribu-
tion as that shown in Tables III and V. To clarify this we
show in Table IV the wave functions of those fragments
of the monopole resonance which contribute most to the
isoscalar EWSR. Comparing Tables III and IV one
clearly sees the reason for that agreement. Namely, our
calculated SMR is built up mainly from bound GS. This
is because the interaction matrix elements corresponding
to wide GS are relatively small.

As we mentioned above, the collective state is not the
solution with the lowest energy; neither the real part nor
the modulus of the energy is the smallest one as should be
the case with a harmonic oscillator representation. In
Table III the particle-hole configurations lying below the
SMR are shown.

In Ref. 29 the imaginary part of the inelastic scattering
cross sections was related to the uncertainty of the in-
terference between the resonant process and the corre-
sponding background. For our GR, the imaginary parts
of the EWSR are rather small. This means that we could
have little doubt about the degree of collectivity given by
the real part.

Due to the repulsive character of the isovector interac-
tion,*® at energies even higher than those analyzed so far
lies another collective state, i.e., the isovector giant
monopole resonance (VMR) which plays an important
role in the total width of the isobaric analog resonances.®
At such a high energy one would expect that the VMR
escape width would be large’® and the experimental
detection of the VMR would be very unlikely. To see
how the VMR is built up within our formalism we show
in Table V a few states lying in an energy region close to
the VMR. It is seen that the giant resonance is narrow,
but surrounded by wide states. As before, the collective
state is narrow because it is composed of many
configurations which are bound or quasi-bound, as seen
in Table VI.

The strong collectivity of the VMR as compared to the
other 0" is manifested in the large number of important

components in the corresponding wave function, evenly
distributed among neutrons and protons. Most of the
correlated states are mainly built on a single particle-hole
configuration as, for example, the state lying at
W,=24.88—i11.90 MeV in Table V which consists vir-
tually of the component 7(4s, ,257).

An important feature to be noted in Table VI is that
neutron and proton configurations differ in the sign of the
real part of the wave function, as expected for a collective
isovector mode. The backward RRPA components both
in the isoscalar and in the isovector modes are small, as
expected.”’ Yet, these components are needed to obtain a
total EWSR which is independent of the residual interac-
tion.*! We use this feature to check our calculations.

In our calculation the VMR exhausts only 60% of the
EWRS and the rest is spread over small pieces in other
regions, as shown in Table VII.

Probably the most important result of our calculation
is the small escape width obtained for the giant monopole
resonances. This is only a manifestation of the fact that
both the isoscalar and the isovector resonances are built
upon bound or quasi-bound configurations. While this
feature explains why our giant resonances are located at
about the same energies than those calculated with har-
monic oscillator bases, the small escape width of our
VMR is an unexpected result.*?

C. Quadrupole excitations

The experimental data on isoscalar quadrupole giant
resonances in 2%®Pb are rather abundant,’>*>** and their
analysis within the RRPA was therefore useful to check
the reliability of the method!* as well as to get new in-
sight into the structure of the giant resonances.

Here we present the results of the calculation corre-
sponding to the isovector quadrupole giant resonance
(VQR).

Using the same set of GS as in the monopole case ana-
lyzed in the preceding section, we obtained the states
shown in Table VIII. The VQR has an escape width of 1
MeV. This is wider than the VMR but still rather nar-

TABLE VI. The six largest components of the VMR wave function. v(7) labels neutron (proton)

configurations.

v (0.314+i0.02)(1g,,,0g85/5)
7 —(0.594i0.03)(1h}, ,0h 5},)

(0.29+i0.01)( 1A, ,0h 1Y)
—(0.40+i0.01)(1g,,,085/5)

(0.24+i0.02)(1g,,,0g7 )
—(0.25+i0.00)(1£5,,0f /%)
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TABLE VII. The nine states which exhaust most of the
monopole VEWSR. Units and notation as in Table III.

W, VEWSR %
18.06— i0.02 1.06— .02 2
19.95— i0.01 1.0+ i0.1 1
20.49— i0.02 1.1+ i0.1 1
22.12— i0.32 49.0— 8.2 60
26.27— i8.44 174 i3.1 2

28.11— i13.48 53— il.3 6
31.48— 6.62 1.7+ il5 2
32.82— i9.22 9.1— 2.1 11
45.11— i8.47 1.5+ i0.3

row in comparison to the other states contributing to the
isovector EWSR. From Table VIII one sees that the
VQR is surrounded by very wide and noncollective states.
We tried to understand why the VQR is so narrow by
analyzing the VQR wave function. We found that it
mainly consists of configurations with high spin single-
particle states, as seen in Table IX. These states are ei-
ther bound or quasi-bound and, as already mentioned,
the wider the corresponding GS, the smaller the matrix
elements (21). At the same time, the particle and the hole
in the neutron configurations of Table IX are aligned,
giving a large contribution to the quadrupole transition
matrix elements. The proton configurations correspond
also to narrow GS, but the alignment is not so remark-
able. These configurations are important because the
proton states in Table IX lie very close to the VQR.

It is actually this combination of quasi-bound states
with enhanced transition matrix elements which explains
the success of real representations in describing the
strength distribution of the quadrupole giant resonances.
The structure of the wave function in Table IX also ex-
plains why the calculated escape width of the VQR is
rather small.

A remarkable feature in Table VIII is that the EWSR
of the VQR has a large imaginary part. This suggests
that there is a strong interference with the background,
impairing a probable experimental detection of the VQR.

Finally, we increased the size of the GS basis by 20%,
but neither the energies nor the EWSR of the states dis-
cussed here changed significantly, showing that these
correlated states are indeed contained in the subspace

TABLE VIII. Quadrupole states around the VQR. Units
and notation as in Table II1.

W, VEWSR %
22.92— i13.20 0 0
22.92— i15.29 0 0
23.14— i15.29 0 0

23.31— i0.51 340— 230 70
23.57— i13.53 8+ i4 2
23.60— i6.37 i2 0
23.73— i13.59 0 0

spanned by the GS chosen according to the criterion dis-
cussed in Sec. IV A.

D. Octupole and hexadecapole excitations

Since the strength corresponding to a given multipolar-
ity is spread over a larger energy range for larger angular
momenta, excitations of multipolarity higher than quad-
rupole are difficult to analyze experimentally. Moreover,
the isoscalar pieces of many giant resonances lie just at
about the same cnergy,42 blurring the identification of
any of them. In spite of all these difficulties, a number of
experiments have recently been performed detecting reso-
nances of high multipolarity.3>4

The octupole resonances best studied in the lead region
are the low-energy isoscalar ones which are mainly built
upon AN =1 excitations.*> Also at higher energies, im-
portant broad pieces of the same isoscalar resonances,
but built upon higher AN excitations, were recently mea-
sured.*? To study these resonances we included in our
representation excitations up to AN =5.

The states obtained by diagonalizing the RRPA matrix
have to a large extent the same features as the quadrupole
states. That is, giant resonances are built upon high-spin
GS and they are always narrow.

One notices in the calculated spectrum that there is a
rather large fragmentation of the isoscalar octupole
strength. The low-energy region, i.e., up to 7 MeV, con-
tains essentially one large piece at 2.62 MeV, which is the
low-lying octupole vibration, exhausting 22% of the
EWSR. This is in good agreement with the experimental
value® of 20.4%. At 6 MeV we have another concentra-
tion of strength exhausting 4% of the EWSR, which does
not fit the experimental value of 15.2% at 5.4 MeV well.
However, neither the good agreement of the lowest octu-
pole vibration nor the poor one of the others is an ex-
clusive feature of the RRPA. Both features are common
to a number of other calculations.*

At about 19 MeV we have also obtained a large portion
of the isoscalar octupole strength. This is the high-
energy octupole resonance (HEOR). In our calculation
the HEOR exhausts 28% of the EWSR while experimen-
tally there are very large differences,*? from 20+6% up to
22013%,9%. But the position of the HEOR is given well
by the RRPA, although this is also a feature present in
shell-model RPA calculations.’’

Our calculated isovector giant resonance lies at about
31 MeV and has an escape width of about 1.5 MeV,
which is rather narrow considering its high excitation en-
ergy. The isovector strength is strongly concentrated in
the giant resonance, and its imaginary part is less than
10% of the real part, as seen in Table X. This is a nice
feature which would make this resonance an outstanding
candidate to be searched experimentally, although it
seems to be difficult to generate a probe which would
specifically excite the isovector mode.**

All the other important pieces of the octupole giant
resonances are also narrow, and the imaginary parts of
their strengths are small. For instance, the isoscalar exci-
tation at 18.73 MeV has an EWSR of 327+i6 (in arbi-
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TABLE IX. Main components of the VQR. Note the difference in sign between neutron and proton

amplitudes.
W, (MeV) v(0k 7,00 3),) 0j13,2,0h5/5) m(2ds,,085/5) m(1g7,,085/5)
23.34—i0.51 0.26+i0.02 0.22+i0.01 —0.50—i0.07 —0.35+i0.07

trary units). This exhausts 309% of the total EWSR.

The small widths of the octupole GR’s are a conse-
quence of the structure of their wave functions, which, as
usual, mainly consist of high spin GS. As an example, we
show in Table XI the wave functions of the isoscalar and
isovector HEOR. The strong collectivity of the isovector
mode is seen in that the wave function is spread in many
equally important configurations. Moreover, all com-
ponents of the wave functions in Table XI have the spins
of the particle and the hole aligned. Also, in all cases the
orbital angular momentum of the particle is the max-
imum possible. This facilitates the “trapping” of the par-
ticle within the nucleus, hindering the decay of the giant
resonance. This feature is even more pronounced here
than in the quadrupole case discussed above.

Finally we calculated the hexadecapole states. The iso-
scalar strength of the hexadecapole mode is rather frag-

mented, but three distinct regions of the spectrum can be
observed. At 4.32 MeV lies the low-energy hexadecapole
vibration which exhausts 7% of the isoscalar EWSR. At
about 12 MeV, just in the same region where the mono-
pole and the quadrupole isoscalar resonances lie, a con-
centration of strength exhausting 22% of the EWSR is
found. This agrees rather well with the experimental
value of 10£3 % of Ref. 46 and with the value of =~30%
of Ref. 47. Besides, in the SQR region a strength of
23-29 % was estimated for the hexadecapole mode in
Ref. 48. But our calculated value differs from the experi-
mental one of 6220 % given in Ref. 42.

At about 27 MeV a strong isoscalar resonance appears
which mainly corresponds to AN =4 excitations, as is
seen from the corresponding wave function. The imagi-
nary part of this wave function is negligible, while the
four most important real components are

|4T; E=26.97—i0.06 MeV ) =10.84v(0l 5,0k {;},)+0.337(0j 5 ,,0f 74 )+0.22m(0k |7 ,08 5,5 )

+0.19(0! 4 ,,0h ﬁl/Z )

Again in this case one sees, through the sign and the
alignment features of the wave function components, the
reason for the collectivity of this state as well as for its
small escape width. This resonance exhausts 23% of the
EWSR and it may correspond to the high-energy reso-
nance, exhausting 20+10% of the EWSR reported in
Ref. 42. .

In the isovector spectrum one does not see the strong
concentration of strength found in the corresponding oc-
tupole mode. This, and the fact that the isovector hexa-
decapole resonance lies at very high energy, indicates
that its experimental detection is improbable.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a formalism to de-
scribe nuclear properties of states lying in the continuum.

TABLE X. The five states which exhaust most of the octu-
pole isovector VEWSR. Units and notation as in Table III.

w, VEWSR %
26.29—i0.07 20+i16 2
27.01—i0.09 28—i3 2
30.65—i0.77 1065 —i102 89
32.29—i6.29 31+i43 3
34.13—i0.24 21—i18 2

The representation used in this formalism, which we call
GS, consists of both bound single-particle states and reso-
nances with outgoing boundary conditions (Gamow reso-
nances) being solutions of the Schrodinger equation with
a Woods-Saxon potential. The states (GS) cannot be nor-
malized in the usual meaning of this term, but we have
shown how this problem can be overcome. Thereby we
used for the GS the completeness relation of Berggren.'®
Although Gamow resonances are perpendicular to any
real state, they have the peculiar property of having a
large overlap with wave packets centered in the reso-
nances.?> Making use of this property and guided by the
shell-model prescription to select a physically meaningful
representation, we have established a criterion to choose
a set of GS adequate to describe observable quantities.
This allows one to calculate rather straightforwardly the
decay properties of correlated states. In this paper we
have given the RPA equations for particle-hole excita-
tions (RRPA). The imaginary part of the calculated en-
ergies is half of the escape width of the corresponding
states. We have also presented the expression corre-
sponding to the energy-weighted sum rule (EWSR) for
the decay of the RRPA states. The fragmentation of the
EWSR was identified with the Landau damping of the
GR concerned. Using a separable interaction we ob-
tained a complex dispersion relation which we discussed
in detail and showed how to solve it by a graphical
method. The graphical method opened some insight on
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TABLE XI. Main components of the wave functions corresponding to the isoscalar octupole reso-
nance at 18.73 MeV and the corresponding isovector resonance at 30.65 MeV.

W, V(ijs/zogf;/lz) v(0k 7 ,,0h 1—11/2) 77'(01'13/20f7$/12) m(0k7,,0h 1_11/2)
18.73+i0.00 0.61—i0.01 0.22+i0.00 0.35+10.00 0.28+i0.00
30.65—1i0.77 0.20+i0.01 0.26+1i0.02 —0.13—i0.00 —0.30—i0.00

how the collective states are built from several p-h com-
ponents as the strength of the interaction increases.

We applied the RRPA formalism to study giant reso-
nances in 2°®Pb. Since the particle decay properties of
these resonances have recently been the subject of several
experiments'®"!® the calculation of the corresponding
widths is of actual interest. We found that in all cases the
escape widths of giant resonances are not large. This is
partially due to the fact that transition matrix elements
are smaller the wider are the states connected by the
transition operator. But it is also a manifestation of the
structure of the resonances, especially those with high
multipolarities. The main configurations of the giant res-
onance wave functions have the spins of the particle and
the hole aligned with the angular momentum of the tran-
sition operator. This enhances the transition probabili-
ties because the angular momentum recoupling
coefficients acquire in this case their maximum values.
Moreover, to also obtain the maximum overlap between
the initial and final radial wave functions in the transition
matrix elements it is necessary that the difference in the
number of nodes of those functions is as small as possible.
This is indeed the case, because for a given value of AN a
minimum value of An implies a maximum for Al

Since the hole in the particle-hole giant resonance is in
a bound (i.e., low-spin) state, the alignment mentioned
above requires that the particle move in a high angular
momentum orbit. Therefore, the corresponding centrifu-
gal barrier tends to trap this particle within the nuclear
volume, hindering the particle decay of the giant reso-
nance. This also explains the success of harmonic oscilla-
tor representations in describing giant resonances.

The calculated escape widths agree reasonably well
with available 'experimental data. Among the states
which have not been observed so far, our calculation pre-
dicts that a candidate likely to be observed is the octupole
isovector giant resonance, with 89% of its strength con-
centrated at about 31 MeV and an escape width of about
1.5 MeV.
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