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Linear response treatment of multipole excitations at finite temperature
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Multipole excitations k =2+ and 3, in " Sn and Pb, are calculated within the formalism of
the finite-temperature linear response theory. Low- and high-energy strength distributions, for
quadrupole and octupole vibrations, are shown as a function of the nuclear temperature. The re-
sulting energy-weighted sum rules, for the associated multipole operators, are found to be weakly
varying functions of the temperature T, in the interval 0 ~ T ~ 2 MeV, provided off-diagonal blocks
of the response matrix are included in the formalism.
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I. INTRODUCTION

The study of temperature-dependent effects upon col-
lective vibrations in finite nuclear systems has been
presented in terms of the discrete random-phase approxi-
mations (RPA), ' the coordinate representation
method, the functional representation method, and in
the semiclassical approximation. The features that
emerge from the above-mentioned references' are
mostly related to the thermal collapse of low-lying vibra-
tional states; an effect which is due to the thermal block-
ing of active configurations around the Fermi surface and
to the shift and broadening of strength distributions for
high-lying collective states, namely, for isoscalar and iso-
vector giant resonances. A common difhculty associated
with discrete temperature-dependent calculations of col-
lective energies and strength distributions in finite nuclei
is possed by the relatively large number of collective
roots of the corresponding dispersion relations that have
to be searched for in order to fulfill the relevant sum
rules. In this respect, the adoption of techniques, other
than discrete RPA calculations at finite temperature,
seems to be more adequate. Concerning this problem, an
alternative description has been proposed in Ref. 8,
which is based on perturbative techniques. Another
description, based on the Bethe-Salpeter equation, ' has
been proposed for the description of strength distribu-
tions in deformed nuclei at finite temperature. The case
of multiple excitations in highly excited deformed sys-
tems' provides us with a definite example about the sui-
tability of the method. In this paper we are going to dis-
cuss the application of linear response techniques in con-
junction with Bethe-Salpeter's equation method to the
description of multipole vibrations in spherical systems.
The equations of motion are solved for quadrupole and
octupole fields for the case of a separable multipole in-
teraction. " We have adopted this very simple force,
which nevertheless has been shown to reproduce fairly
well the observed features of quadrupole and octupole vi-
brational fields, " in order to show some differences be-
tween the present and previously reported results based
on discrete RPA treatments of the same interactions. ' At
the same time it is our aim to show that the present treat-

ment appears to be more reliable than the discrete RPA
one, when huge dimensions of pair configurations are re-
quired, i.e., for finite temperatures. The paper is organ-
ized in the following manner: theoretical details of the
formalism are discussed in Sec. II. Results for multipole
vibrations A, =2+ and 3 for a superAuid nucleus " Sn
and for a normal one Pb are discussed in Sec. III.
Conclusions are drawn in Sec. IV.

II. FORMALISM

In this section we are going to discuss the formalism
which is based on the Gnite-temperature treatment of the
single-particle and multipole-multipole terms of the mod-
el Hamiltonian"

j, & (n, p)
E, (t, )ct, (t, )&, (t, )

—
—,
' g x~(t„t,.)Q ~t„(t, )Q~„(t,.),

A.p

where T is the nuclear temperature, expressed in energy
units, associated to a given excitation energy of the nu-
cleus and pF(t, ) is the Fermi energy obtained from num-
ber conservation conditions at finite temperature. Matrix
elements qz(p„p „t, ) of the multipole operator Q&„(t, )
are defined by

1

1+a(P2~$' &
2A, +1

where (p, ,pz) denotes a configuration of two single-
particle states which can be coupled to angular momen-
tum A, ; 5(p2,p, ) is a Kroenecker delta symbol and double
bars stand for reduced matrix elements. ' The matrix ele-
ments of the separable multipole-multipole residual in-
teraction, which appears in Hamiltonian (1), can be writ-
ten as

where we have used the standard notation. ' "
Temperature-dependent effects can be accounted for by
introducing single-particle occupation numbers

n, ( T) =(1+expI [e~(t, ) pF(t, )]/T I
)—
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n, (T)—n, (T) (5)

H;„, I [j2(t, )j,(t, )]k„[k2(t, )k, (t, )] „I
5„—„,X(t, ;t,. )q (j2j „t,, )q (k k, ;t, ) .

(4)
The finite-temperature random-phase-approximation

(FTRPA) treatment of the Hamiltonian (1) has been de-
scribed in detail in Ref. 3 where the vibrational spectrum
of FTRPA phonons has been obtained by solving the cor-
responding secular equation for a discrete number of
configurations [p2(t, ),p, (t, )]k„. This procedure can be
attempted, provided a moderate number of particle-hole
configurations are included in the zero-temperature case.
As soon as the temperature increases, since single-
particle states will be distributed with occupation num-
bers (2), restrictions over the particle-hole character of
the [p2(t, ),pl(t, )]k„pair, namely, p2 ~p„„;,p, &pF„;,
wi11 no longer be operative. It means that for finite tem-
perature all configurations of the type [p (2t, ),pl(t, )]&„
with p2(t, ) ~pl(t, ) ought to be included. Therefore, the
number of configurations itself will be a function of the
temperature T due to the fact that a given
[p2(t, ),pl(t, )]&„pair will be suppressed from the
configuration space only if the associated factor

(S —A'tt) 2) )p" ) = f—.

Writing S =2)X1)t'QX and replacing it in (9) we obtain

&[nx« ~)nX n]p'"= f—.

By matrix inversion Eq. (10) takes the form

Pkk X—~kk, „(~)I,,(1)—

(9)

(10)

where

Y (kk')Y (jj')*
40+ Q

(12)

The extension of the above discussed formulas to finite

temperature can be straightforwardly performed intro-
ducing a diagonal matrix with the occupation factors (5)

&(~)=—b'(~ —&) 'nX']
fi

is the linear response matrix which, in terms of the
forward- and backward-going amplitudes X and Y, re-
spectively, has matrix elements of the form

1 + X (kk')X (jj')'
n.—

vanishes. Calculations based on this scheme are feasible
but the search for FTRPA frequencies becomes cumber-
some because of the large number of configurations
which have to be included, and also for numerical insta-
bilities which could show up due to the fact that consid-
erable large numbers of unperturbed pair energies
ep (t, )

—
ep (t, ) could difFer in a small amount. In orderpl z p2

to overcome this problem we shall work in the frame-
work of the linear response theory extended to finite
temperature. Let us brieAy review the zero-temperature
case in order to introduce some formulas which are
relevant for the finite-temperature case. Linear response
equations for the particle-hole channel of the RPA densi-
ty matrix in the presence of an external field f can be
written as

[n (T)—n (T)]

—[n ( T) n( T)]—

After some algebra we obtain

1 ~ X (kk')X (jj')*
ItT ~t) kk', Jj'

v)0 V

Y (k k) Y(jj')*
co+ Q~

X[n (T)—nj(T)] .

(13)

(14)

0 p(1)ph jph

+ e
—R'(t) 0 I (1)hp

= —
Ihp ~ (6)

P

where A and 8 are the usual RPA matrices
'

and co are
the frequencies associated to the external field. The solu-
tions of the inhomogeneous Eq. (6) can be written in
terms of the solutions of the homogeneous RPA equa-
tions

Sy =qyAQ,

where

co 6k +E'k~+ l 'g

1

CO +Ek +E'k + l 'g

using the linearized Bethe-Salpeter equation

0
pq. p'q' T ~ )pq, p'q'

(15)

Equation (13) can also be written in terms of the unper-
turbed linear response matrix

+T(~)kk', jj ' ~kj ~k'j '[n, ( T) nj ( T)]-
r

B X Y*

g sfc 7 g Y ~g P g
I 0
0 —1

+ y +T(~)pq p q Hl t(pl q1 p2q2 )

p2 92

The matrices g and 0 are the eigenvector and positive
and negative eigenvalue matrices, respectively, for a van-
ishing external field. With these definitions the inhomo-
geneous equations can be written

XRT(co)p q qp29p p q
(16)

Replacing H;„,(pq, p'q') by its value, Eq. (4) in Eq. (16),
and defining
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(co), , = g qq(pg ), t, )R (u)„
~&2 —&i ]t

Z

z'

Xqz(q 2q„t,'),.

we finally obtain the matrix equation

R z (m), , =R T(co)~ i,

RT(co), , RT(co), , RT(co),
z

l z2 Z Z "2'"'
1 2

(18)

where the matrix Rz(co). . . which is given by Eq. (17)
replacing R z ( co2 ) p ~ by the matrix elementsPPP ) ~929 l

RT(co)p p z z, cf. Eq. (18), denotes both proton and neu-

tron configurations. We are, at this point, dealing with a
coupled system of matrices of the form

Rz (co)„„=RTO(co)„„

—[x„„RT(co)„„+xp„RT(co)„p ]RT(co)„„

fx—„pRz(co)„„+xppRT(co)„p]RT(co)p„,

RT(co)„=Rz (co)„

—[x„„RT( co)„„+xp„Rr(co)„p]Rz(co)„p

—[x„Rz~(co)„„+x RT(co)„]RT(co)
(19)

RT(co) =RT(co) p

—[x„RT(co) „+xppRr(co)pp]Rz. (co)pp

—[x„„RT(co)„+xp„RT(co)pp ]RT(co)„p,

RT(~)p„=RTO(~)p

—[x„„RT(co)„+xp„RT(co) ]Rr(co)„„
—[x„pR T( co) „p+xppRr(co)pp]RT(co)p„.

After performing some algebra and remembering that
RT(co)p„=RT(co)„p =0, we obtain

[1+x RT(co) ]RT(co)„„

[1+x„„RT(co)„„][1+x,RT(co) ) x„RT(w—)„„RT(co)
—x„RT(co)„„Rr(co)

[I+x„„RT(co)„„][1+xRT(co)pp] —x„pRz(w)„„Rr(co)pp

[1+x„„RT(co)„„]Rz (co)p

[I+x„„Rz.(co)„„][1+xRT(co) p] —x„pRz.(w)„„RT(co)
—x„RT(co)„„Rr (co)

[1+x„„RT(co)„„][1+x R T(co) ]—x„RT(w)„„RT(co)p

(20)

Equation (20) defines the block elements of the linear
response matrix in neutron-neutron, proton-proton, and
neutron-proton channels, and can also be written in
terms of isoscalar and isovector components of the mul-
tipole operator Qz„, namely,

Qx„(r=0)= —[Qx„(n)+Qx„(p)],
1

2

Q~„(r= 1 ) = —[Q~„(n)—Q~„V» j .
1

2

(21)

Thus the corresponding isoscalar and isovector linear
response matrices can be written as

RT(co, r=0) =—,'[RT(co)„„+RT(co)pp

+RT(co)„+RT(co) „],
RT(co, r= 1)= —,

' [RT(co)„„+RT(co)
—RT(co)„p —R T(co)p„],

(22)

respectively. Therefore, the information concerning
strength distributions of multipole excitations can be ex-

tracted from the imaginary part of the linear response
matrix, i.e.,

1S(iP, co, r) = — ImgR&(A, ,co,—r),
7r

Sz(A, ,r)= J d coSco(A, , rco),
0

which are the strength distributions and the integrated
energy-weighted strength, respectively, of the multipole
fields .

III. RESULTS AND DISCUSSION

In this section we are going to present the results of
our calculations of the finite temperature linear response
for multipole excitations in " Sn and Pb. We have
selected these nuclei since they are good examples of
superQuid and normal systems, respectively.

For the single-particle basis we have chosen spherical
Nilsson's energy levels and wave functions up to seven
shells for " Sn, and up to nine shells for Pb. The cor-
responding coupling constants, k„=0.0638, p„=0.0319,
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k =0.0674, p =0.0382 for " Sn and k„=0.0636,
p„=0.0233, k =Q.0604, p =Q.Q379 for Pb, have
been adjusted in order to reproduce observed single-
particle energy sequences for active orbits near closed
shells. '

We have evaluated multipole excitations with A,"=2+
and 3 in both nuclei. For finite-temperature values T,
within the interval 0~ T~2 MeV, we have calculated
single-particle occupations numbers with and without the
inclusion of pairing correlations' for " Sn and Pb, re-
spectively. The critical temperature associated with the
collapse of the neutron-pairing gap for " Sn was found to
be of the order of T, =0.6 MeV. This result is consistent
with previously reported calculations about the tempera-
ture response of the quasiparticle mean field. '

Results corresponding to the unperturbed linear
response, Eqs. (15) and (23), are shown in Figs. 1 and 2.
In these figures the function

S' '(A. , co, T)=( —1 /m. )Im[RP'(A, , co, T j

I)
10—

5

)
10

CL
tI)

J

20

W MeV

I

30

Pb( A.~ —3 Neutrons )

208pb( A~ —2 Nt..utrong )

is shown, for each multipolarity and different values of
the temperature, for protons and neutrons, separately. It
should be noted that S' '(A, , co, T) is a distribution func-
tion associated with the non-energy-weighted strength
distribution, and the total energy-weighted strength can
readily be obtained from it by integration, as it has been
defined in Eq. (23). The same notation has been em-
ployed in Figs. 3 and 4 where the results corresponding
to the perturbed linear response are shown, as we shall
discuss later on. In obtaining the results which are
shown in Figs. 1 —4, we have adopted a value g=1 MeV
for the parameter introduced in Eq. (15). This value is
similar to that of Ref. 8. Since with g we are averaging
over isolated pair configurations, in such a way that the
energy denominators of Eq. (15) do not diverge, we have
performed calculations for several values of q until reso-
nances around unperturbed pair energies, of the particle-
hole or two quasiparticles configurations, were washed
out. The final value for g, i.e., g=1 MeV, was adopted
by following this procedure. As can be observed from the
results shown in Figs. 1 and 2, the unperturbed linear
response is nearly independent of T, except for the low-
energy domain in " Sn where the collapse of the pairing
gap produces the blocking of some neutron pair
configurations. The dominance of EX=2 configurations
for A, =2+ and EN=1 and 3 for A, =3 states is clearly
observed, both in " Sn and in Pb.

In order to illustrate the convenience of the present ap-
proach, with respect to the usual one, namely, the
discrete sum over configurations, let us indicate that for
the case of Pb at T=O we are dealing with 204
configurations for A,"=3,and with 96 configurations for
A, =2+, while at T =2 MeV the number of
configurations are 584 and 371, respectively. For " Sn,
at T =0, we have 164 and 98 configurations for octupole
and quadrupole excitations, and at T =2 MeV the num-
ber of unperturbed states increases to 351 and 228, re-
spectively. The advantage possessed by the linear
response treatment becomes evident since with the same
basis we have to compute the correlated strength distri-
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FIG. 1. Unperturbed strength distributions for multipole ex-
citations A, =2+ and 3 in Pb. The distribution function for
multipole transitions corresponding to neutron-neutron and
proton-proton configurations are shown for zero temperature
(solid lines) and for T=2 MeV (dashed lines), as a function of
the excitation energy co.
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FICs. 2. Unperturbed strength distributions for multipole ex-
citations A, =2 and 3 in " Sn. The results are shown with
the same notation used in Fig. 1.
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FIG. 3. Strength distributions for multipole isoscalar (~=0)
and isovector (r= 1) transitions in Pb. Quadrupole (A, =2+i
and octupole (k =3 ) temperature-dependent linear-response
functions are shown for T =0 (solid lines) and for T =2 MeV
(dashed lines).
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FIG. 4. Strength distribution functions for multipole fields in"Sn. The results are indicated with the same notation used in
Fig. 1.

butions for quadrupole and octupole states. In order to
get some confidence on the, T=0 results for the per-
turbed case, we have done two different sets of calcula-
tions, namely, with a conventional RPA code' and with
the present one based on the linear response theory of
Sec. II. The results of both calculations coincide for the
location of the discrete roots and for the centroids of the
strength distributions, as well as for the B (EA, ) and mul-

tipole moments for low-lying and high-lying isoscalar and
isovector resonances. We have used the following set of
coupling constants, which are given in units of
MeVfm ": y(0)=0.429X10, y(1)= —0. 156X10
for quadrupole vibrations in Pb; y(0)=0.640X10
y(1)= —0.291X10 for octupole vibrations in Pb;
g(0)=0. 191X10, g(1)= —0.676X10 for quadru-
pole vibrations in " Sn; y(0) =0.413 X 10
y(1)= —0. 187X 10 for octupole states in " Sn, respec-
tively. With y(0) and y(1) we have denoted isoscalar
coupling constants and the obtained energies for the first
excited states co(A,

&
) are the following:

co(2+, Pb) =4.086 MeV, co(3, Pb) =2.614 MeV,
co(2+,"Sn)=1.293 MeV, co(3,"Sn)=2. 266 MeV, re-
spectively. We have also verified that within a 5% accu-
racy the corresponding energy-weighted sum rules ex-
hausted the model-independent values. '

In constructing the matrix elements of the linear
response matrix, at a given temperature T, all possible
pair configurations have been included without an energy
cutofF'. For the single-particle states it means that, for
each temperature, they were always thermal occupied
states in the high-energy region of the spectrum. We
have also tested the stability of our results by increasing
the number of single-particle states. The final set, which
has been mentioned before, gave us stable results for the
unperturbed sum rules as compared to the model-
independent values.

Results corresponding to energy-weighted sum rules
(EWSR) for quadrupole and octupole excitations in "6Sn
and Pb are shown in Table I. The model-independent
EWSR for neutrons and protons, shown in Table I, have
been calculated using Bohr and Mottelson's' formulas,
but perform explicitly the radial integrals associated to
each multipole moment. It should be noted that for the
finite-temperature case approximations based on a series
expansion of the radial integrals in terms of the (a /R) ra-
tio' are no longer valid, as we have found from the re-
sults of our calculations. The results which are displayed
in Table I show that the temperature dependence of the
linear response EWSR is less pronounced than the one re-
ported from results based on discrete RPA calcula-
tions. ' The difference could be attributed to numerical
uncertainties in the search of RPA roots at finite T,
which are difticult to avoid.

Centroids and widths for isoscalar and isovector
energy-weighted strength distributions are shown in
Table II. The corresponding strength functions are
shown in Figs. 3 and 4. From the results which are
displayed in Table II we can observe a moderate shift up-
wards for the isoscalar energy-weighted sum rules, and
downwards for the isovector energy-weighted sum rules
for increasing values of T. At the same time, the spread-
ing width of both modes increases for larger T values.
Both features, namely the energy shift and the broaden-
ing of the spreading width, could be traced back to the
occurrence of thermal blocking effects induced by
changes in thermal occupation factors. These effects are
more pronounced for low-lying AN =0 and hN =1 tran-
sitions, for quadrupole and octupole excitations, respec-
tively. However, since at finite T the number of particle-
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TABLE I. Energy-weighted sum rules for multipole operators Qz„with iL"=2+ and 3 in 'Pb and " Sn. Neutron [EWSR(n)],
proton [EWSR(p)], isoscalar [EWSR(r=0)], and isosvector [EWSR(r= I)] values are displayed as a function of the temperature T.
The third and fourth columns show the unperturbed values which have been obtained by performing explicitly, at finite temperature,
the corresponding radial integrals of the model-independent sum rules (Ref. 16). The fifth to eighth columns show the results ob-
tained with the linear response matrix. All values are given in single-particle units [s.p.u.).

Model-independent
values

Correlated values

2+

3

r (MeV)

0.0
1.0
2.0
0.0
1.0
2.0

EWSR(n)

930
939
948

2466
2485
2538

EWSR(p)

530
534
543

1224
1239
1282

EWSR(n)

208Pb

950
954
959

2442
2432
2384

EWSR(p)

462
466
467

1029
1019
994

EWSR(~=0)

706
710
713

1738
1728
1693

EWSR(w= 1)

705
709
712

1733
1723
1688

0.0
1.0
2.0
0.0
1.0
2.0

757
719
724

2075
1901
1934

496
497
503

1200
1206
1243

116S

744
710
707

1735
1656
1605

446
446
450

1044
1041
1024

596
579
580

1394
1352
1319

594
577
578

1385
1344
1391

particle and hole-hale —like transitions increases and due
to the fact that they are generally less energetic than the
particle-hole transitions, the number of correlated low-
lying states could increase. This is the reason for the
broadening of the linear response for isoscalar quadru-
pole transitions in Pb, as well as in " Sn. By the other
side, contributions to the high-lying resonances, both for
isoscalar and isovector transitions, are almost una6'ected
by the increase of the temperature apart from the small
shift already mentioned before. These results are again
showing some differences with respect to the results ob-
tained within the discrete RPA approach. Insofar as our

results are concerned, the thermal dependence of the
multipole linear response is rather weak, except for quad-
rupole and octupole isoscalar strength distributions in" Sn. Consequently, it could be concluded that some of
the commonly accepted arguments in favor of more
significant changes in the vibrational features of nuclear
modes at finite temperature, i.e., a broadening of the reso-
nances with a clear linear dependence upon T, ' would be
only valid within the more restricted scope of the discrete
erst RPA description. The same conclusion could be val-
id for other temperature-dependent properties, i.e.,
changes in the nuclear radius determined from thermal

TABLE II. Energy centroids (E ), second moments (0.), energy maxima (E,„),and width (I ) of the energy-weighted strength dis-
tributions corresponding to isoscalar (~=0) and isosvector (~=1) multipole excitations (A, =2+ and 3 ) in Pb and " Sn are shown
as a function of the temperature T. All values are given in MeV.

0.0
1.0
2.0

11.87
11.89
11.85

2osPb

8.32
7.91
7.90

+max

9.88
9.40
9.42

2.47
2.09
2.11

11.60
11.45
11.36

7.40
7.50
7.58

116S

Emax

8.09
8.05
8.02

2.21
2.28
2.47

0.0
1.0
2.0

28.87
28.58
28.61

5.21
5.14
5.15

28.99
28.98
29.04

2.41
2.25
2.29

22.71
22.72
22 72

5.29
5.31
5.34

22.90
22.91
22.90

2.84
2.90
3.02

0.0
1.0
2.0

16.94
16.93
16.95

9.88
9.67
9.67

18.01
17.71
17.92

6.11
4.49
6.05

15.57
15.65
15.75

9.31
9.23
9.18

14.06
14.17
14.56

8.71
9.20
9.84

0.0
1.0
2.0

36.10
35.78
35.50

6.06
6.04
6.11

37.66
37.06
36.87

3.55
3.41
3.24

28.66
28.60
28.43

6.02
5.99
6.00

29.66
29.06
29.45

3.39
3.58
3.83
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variations in the EWSR or the softening of nuclear vibra-
tions determined from temperatures-dependent RPA fre-
quencies. '

IV. CONCLUSIONS

We have shown that the linear response method can be
applied to the calculation of strength distributions associ-
ated with multipole excitations at finite temperature.
Temperature-dependent properties of these collective
modes, such as shifts in the energy distributions of
EWSR and the broadening of giant resonances modes,
have been found to be less affected by thermal excitations
than in previously reported works' based on the discrete
RPA method. This difference in the thermal behavior of
multipole strength distributions could be attributed, in
the case of a conventional RPA method, to the onset of

numerical instabilities in the search of a very large num-
ber of collective and noncollective roots of the
temperature-dependent equation of motion. These nu-
merical instabilities do not a5'ect the results of the finite-
temperature linear response method which appears to be
more convenient than the standard RPA technique. Par-
ticularly, the linear response method see~s to be the ade-
quate tool for finite-temperature descriptions of collective
vibrations ip the presence of a very large number of pair
configurations.
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