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The existence of superdeformed shell closures &ogether with pairing and the nuclear temperature
effects are shown to explain the originally unexpected properties of the superdeformed band ob-
served up to I -60k' in the '"Dy nucleus. No parameters were adjusted to the superdeformed band
properties. Population, and depopulation of the superdeformed bands, the moments of inertia, and
side feeding properties are discussed and qualitatively understood. The use of the free-energy calcu-
lation results and the microcanonical ensemble formulat&on of the level-density problem at high-

spin are proposed and discussed.

I. INTRODUCTION

The recent explosion of interest in high-spin behavior
of strongly elongated (superdeformed) nuclei is well
justified by the very special nature of those states. The
presence of exotic intruder orbitals under the Fermi level,
the very large E2 transition rates of about 2500 WU or
more, the relatively unusual conditions for charged-
particle emission due to the drastically lowered Coulomb
barriers, these are only a few examples of the extreme mi-
croscopic mechanisms inducing "unusual" behavior.

The superdeformed shapes whose existence was pre-
dicted first by theory have been observed recently in ex-
periments. They are the manifestations of strong, "de-
formed shell" effects, which remain in close analogy to
the well-known spherical shell closures of Goeppert-
Mayer and Jensen. The present study has been motivated
primarily by the new experimental results on "66Dy«nu-
cleus.

The high-spin properties of '66Dy«have been exten-
sively studied in the past mainly because of the pro-
nounced isomerism characteristic of a noncollective rota-
tion. Competing collective decay modes have been estab-
lished' relatively late and only recently a regular @-
decay sequence with properties characteristic of the su-
perdeformed structure has been reported. Discovery of
the corresponding rotational band c:xtending up to spin
I-6(Hi showed simultaneously several a priori unexpect-
ed features: (a) The constant angular momentum gain
I=constto (to=rotational frequency); (b) significant con-
centration of the population on one superdeformed band;
(c}very small side-feeding for most of the superdeformed

states at I & 56''; and (d) the rapid depopulation of the su-
perdeformed band over about three transitions around
spin I -26fi.

In this article we discuss the possible influence of the
nuclear shell and pairing correlations and thermal excita-
tions on the above features. (Discussion of details related
to a competition between triaxial and superdeformed
shape configurations ' or of the predicted band struc-
ture ' can be found in literature. )

In obtaining the results presented below several well-
established techniques were employed and this is likely to
reduce the uncertainties related to a possible model
dependence of the final result. In calculating total nu-
clear energy, the Woods-Saxon average field and crank-
ing approximation ' have been used. The pairing effect
was accounted for using the independent quasiparticle
approximation, and the so-called particle-number projec-
tion technique, Ref. 10. Thermal excitations were treated
using the concept of free energy, calculated as in Ref. 11.
(An overview of the applied techniques can be found in
Ref. 12; modifications are discussed below. )

In Sec. II the shape evolution and coexistence between
"normally"- and "super"-deformed states are discussed
taking into account the effect of thermal excitation. This
discussion addresses in particular the disappearance of
the potential barriers which separate the superdeformed
minima from the rest of the total energy landscape.

Section III presents the results of the "full-scale"
(Pz, y, P4} energy minimization in the presence of the
yairing interactions. The highest-spin limit is discussed
in particular and a comparison with experiment illustrat-
ed. Characteristic global features of the population
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(nonzero temperatures) and depopulation (zero tempera-
ture limit} of the superdeformed band in "Dy are dis-
cussed in Sec. IV. In particular, the level density calcula-
tions are presented. The results are summarized in Sec.
V.

II. SHAPE EVOLUTION EFFECTS
IN THK PRESENCE OF THERMAL EXCITATIONS

An effective method of calculating the nuclear shape
properties in function of global parameters such as, for
instance, deformation P (here one symbol stands for
several shape degrees of freedom, e g , P. z,.y, P4, . . . ) rota-
tional frequency cu, nuclear temperature T, etc. , is provid-
ed by Strutinsky's macroscopic-microscopic method.
Since Strutinsky's approach in its various particular cases
has been in use for many years, only those aspects are
given here which are necessary for the unique definition
of our final result.

The total energy formula involves, as usual, a splitting
into macroscopic and microscopic terms, the latter gen-
erated using the deformed Woods-Saxon potential. '

Having solved the Schrodinger equation (with the so-
called Woods-Saxon universal parameter set as defined in
Ref. 13)

Hwsk. =e.S.
or, for a rotating nucleus, the analogous, so-called crank-
ing equation

(lb)

the oblate-shape noncollective, triaxial, and superde-
formed collective equilibrium deformations. The corre-
sponding overview of the total energy landscapes ob-
tained using the Woods-Saxon deformed single-particle
potential is shown in Fig. 1 for a number of increasing
spin values. Here the pairing, whose effects will be treat-
ed separately below, was neglected. This part of the cal-
culation has been performed taking into account an effect
of the hexadecapole deformation in a simplified manner.
At each (Pz, y) point the P4 value has been fixed after
minimizing the total classical energy at a fixed spin value
I =ID. We selected ID=40 in order to optimize the re-
sults to some extent for both the very high (up to I-60)
and the moderate (I-20) spin limits. By doing so the
possibility of a systematic large error due to P4 effect on
the total energy result is to a far extent reduced. (The
final results compared to experiment in Sec. III will con-
tain both the effect of pairing and full P~ minimization. )

The results in Fig. 1 show that the moderate-
deforrnation minima; y =60', oblate shape with spin
parallel to the symmetry axis, and the triaxia1 one are
clearly evolving when spin increases. On the contrary, the
superdeformed minimum remains considerably stable
with respect to increasing rotation (cf. also Ref. 7).

To gain some insight into the shape coexistence prob-
lem when the nuclear temperature is different from zero,
i.e., at the conditions met when the corresponding states
are populated in heavy-ion reactions, calculations have
been performed assuming a thermal equilibrium situation
at each (Pz, y) point. Calculations of this type involve as
usual the free-energy in the rotating coordinate frame

one calculates the total energy of a nucleus in a rotating
coordinate frame (the Routhian) as

F (def, T)=R (def, T) TS"(def, T—) (4)

R "(def)=E"=„„,(def)+E =;„,(def)

+ g [e"„(def}—e „"=( def) ], (2)

as the adequate thermodynarnical potential to describe a
nuclear object after its thermal equilibration. The entro-
py is calculated from the standard expression

S (def, T)= —g n inn„—g (1—n )ln(l n„)—
with the summation extending over all occupied levels.
Here, the macroscopic term E",„,(def) is calculated as in
Ref. 14 and E =;,„,(def} as in Ref. 15, with the smoothing
order p =6 and smoothing range y =1.2Acoa (ficta=41/

MeV); for definitions and notation cf., e.g. , Ref. 15.
Expression (2) applies in this form for the Woods-Saxon
type potentials (Woods-Saxon, folded Yukawa) as dis-
cussed, e.g. , in Ref. 12; in this respect the Nilsson model
potential requires special care, Ref. 16. The detailed rela-
tions between the two average field approaches are dis-
cussed in Ref. 17.

If necessary a transformation between the rotating and
the laboratory coordinate frames can be obtained in a
usual manner (see, e.g. , Ref. 10), leading to

with the coefficients determining probabilities for the
nucleonic levels e" to be occupied

n, =n, (def, T)= 1

1+exp [ [e„(def)—A, ]/T ]
(6)

and where k, calculated separately for protons and neu-
trons, satisfies

(X or Z) = g n"„(def,T) .
V OCC

For "heated" rotating nuclei one obtains the following
generalized Strutinsky method result (see, e.g. , Refs. 11
and 18):

E(I,def)=R (def)+coI, I = g (j ),„, (3) R (def, T)=R (def, T=0)+U (def, T)

an equivalent energy representation in the laboratory sys-
tem of reference. This kind of representation will be used
in Figs. 1 —3.

Our calculations of the total energy surfaces in func-
tion of the quadrupole (Pz, y ) deformations give, in agree-
ment with experimental results, a coexistence between

with the microscopic thermal excitation energy defined,
as usua1, by

U "(def, T) = g n, (def, T)e", (def)

—g n,"(def, T =0)e",(def) .
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FIG. 1. The total energy surfaces in the (p&, y) plane with the p4 ——p4(pz, y ) optimized, as discussed in text. The convention related
to the sign of the triaxiality parameter y is as follows: y =60' corresponds to oblate shape noncollective rotation with spin parallel to
the symmetry axis, y =0' (nearly diagonal axis) corresponds to collective rotation of the prolate deformed nucleus with the symmetry
axis perpendicular to spin, etc. The lowest energy minima are marked with dark blue in the landscapes and the color scale defines the
energy elevation (in MeV).
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FIG. 2. The total free-energy surfaces calculated as discussed in text for I =60. Various frames correspond to increasing tempera-
ture. Note the early disappearance of the shell structure responsible for various coexisting minima already at T-800 keV. The
definition of the coordinate system is the same as in Fig. 1.
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FIG. 3. Similar to Fig. 2 but at I =80, i.e., close to the so-called Jacobi instability (for more details see captions to Figs. 1 and 2).
Note that disappearance of the shell structure responsible for various minima affects the barrier height considerably.

The temperature effect on the macroscopic energy term
in Eq. (2) can be considered neglegible in the temperature
range of interest here (T(2 MeV) (cf., e.g., Diebel
et al. ,

' and references therein).
Transformation (3) can be applied to Eq. (4) as well

with

I = g n „''(def, T)(j„)„„. (10)

The results of Eq. (4) have been often represented in
terms of the free-energy landscapes over the (P2, y) plane.
Before discussing further the meaning of such a represen-
tation and its possible modifications (in Sec. IV) let us il-
lustrate the characteristic evolution in the normal versus
superdeformed shape coexistence picture when ternpera-
ture increases. Such an illustration is given in Figs. 2 and
3 where the free-energy surfaces at spins I =60 and 80,
respectively, are represented for temperatures T =0.3,
0.7, 1.1, 1.5, 1.9, and 2.3 MeV. From Fig. 2 it becomes
clear that at spins I-60 "heating up" the ' Dy nucleus
to T-(0.8 to 0.9) MeV should result in a disappearance
of the shell effects responsible for identification of a well-
defined superdeformed minimum. Similar results hold
for many landscapes at lower and also higher spins.

A slightly exceptional picture applies, however, for a
relatively narrow spin range, EI-6, at spins close to the
so-called Jacobi instability critical spin I,„;,. It is we11

known (the particular case of Jacobi instability eff'ect in"Dy has been treated in Ref. 20) that increasing rotation
in classical objects like stars, macroscopic liquid drops, or
"nuclear liquid drops" results in a gradual building up of
a pronounced oblate shape deformation. Only for

I &I„;,a triaxial shape equilibrium develops. These tri-
axial configurations lose stability against fission already
after a relatively small further spin increase. In ' Dy the
estimates of Ref. 20 based on the extended nuclear liquid
drop model' give I =78, 80, and 82 as the characteristic
spin range over which the triaxial shape configurations
evolve fast, leading to fission. It is therefore the narrow
spin range around I-I„;,where increasing the nuclear

temperature removes the barrier separating the super-
and the normal-deformed minima but at the same time
the free-energy landscape remains Hat over a broad defor-
mation range, including superdeformation. (Strictly
speaking, the superdeformation even increases with tem-
perature at I=80, Fig. 3.) Thus despite the fact that the
barrier disappeared, the probability of populating the
largely elongated nuclear configurations increases (as dis-
cussed in detail in Sec. IV) or at least remains comparable
to that of populating moderately deformed states.

III. COEXISTENCE BETWEEN SUPERDEFORMED
AND NORMAL DEFORMED SHAPES

AND THE EFFECT OF PAIRING

The effects of pairing in the potential energy calcula-
tions can be taken into account using the following gen-
eralized Strutinsky expression [cf. appendix section in
Ref. 12 and compare with Eq. (2)]:

R (def) =E"=„„(def)+E"=;,„,(def)+E~,=;, (def)

+[&~ (def&HFBQ —&0 ='(«f) &HFBc]

with
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ws + pair ~J (12)

E,=;, (def) in (11}denotes the usual pairing energy term
calculated within the standard BCS approximation. For
convenience expression (11) has been "symmetrized" in
such a way that the square brackets enclose the rotational
contribution normalized to zero at co =0, and by
definition E,=;„(def)= (H = (def) )H„ac. The subscript
HFBC refers to the traditionally applied name of this ap-
proximate approach: the Hartree-Fock-Bogolyubov
cranking method. (Details and definitions can be found
in Ref. 10; at m=0 both, i.e., HFBC and BCS methods,
coincide. )

Calculation of (H (def))HFac involves an iterative
process to achieve the self-consistency (see, e.g., Ref. 10)
and, therefore, is relatively time consuming. For this
reason, instead of performing the iterations for all defor-
mation points considered (cf. Figs. 1 —3) a limited scale
algorithm bringing essentially the same physical informa-
tion has been applied.

A. EKect of pairing —results of the calculations

Calculations with pairing have been repeated in the vi-
cinities of the total energy minima (see Fig. 1) large
enough to allow for the energy minimization with respect

[Equation (2) is a particular case of the above expression
for vanishing pairing interaction. ] We use the monopole
pairing Hamiltonian

(13)

to deformation. The minimization over (P2, y, P4} per-
formed independently at each spin shows that the super-
deformed minimum is very stable, while the triaxial one
evolves with increasing spin. This result confirms the one
obtained without pairing correlations, as discussed in Sec.
II. The characteristic deformations are given in Fig. 4
where the results of the cranking model calculations for
I =I (co) dependence (angular momentum gain) are com-
pared to the experimental data.

In the calculations for the superdeformed config-
urations, a very smooth I =I(co) dependence follows
from the fact that the deformed-shell closures at Z =66
(b.E„-0.8 MeV) and N =86 (bE„—1.2 MeV) are not
modified by rotation in any significant way up to the
highest spins considered. This stability of the deformed-
shell closures follows, in turn, from the fact that in ' Dy
the alignment-sensitive single-particle orbitals (e.g. , those
with small m and high-j content) are sufficiently far from
the Fermi energies. Another important mechanism very
likely to contribute to the "straightening" the I vs co rela-
tion in a superdeformed minimum (as compared to typi-
cally more complex I vs co relations in the moderately de-
formed nuclei, cf. also the left-hand-side part of Fig. 4) is
due to the so-called rotation-deformation scaling. This
has to do with the rotation-induced evolution of the over-
laps between the relevant single-nucleonic orbitals (cf.
Sec. III B and Ref. 21). The latter are responsible in par-
ticular for the intensity of pairing correlations in a rotat-
ing nucleus and thus to some extent, ' for details in the
angular momentum alignment process.

Taking into account that none of the parameters of the
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calculation has been fitted to any property of the ' Dy,
the agreement between the theoretical and experimental
results is remarkable. Slight discrepancies between the
two are most likely due to the fact that the multipolari-
ties different than A, =2 and 4 in the shape parametriza-
tions have been neglected. Also a possibility of, e.g. ,
particle-vibration or other couplings may influence the
angular momentum gain to some extent. Including such
effects goes, however, beyond the scope of the present
study.

The importance of the pairing correlations at the
highest spins observed is visible from Fig. 4, where the
standard treatment of pairing (HFBC) and the improved
one, HFBC with particle number projection (PNP), are
compared (for details see Ref. 10). An overestimate as
compared to the experiment, in the angular momentum
gain by typically (6—8}iri when the "static" pairing gaps
calculated within HFBC approximation drop to zero (cf.
Fig. 4, bottom) reduces practically to zero as compared to
experiment after applying the improved (HFBC-PNP) ap-
proach with the standard parameters choice. (We use the
standard parametrization of pairing, Ref. 22, and the cor-
responding cutoff which allows for, typically, 50 states
distributed symmetrically around the Fermi level. )

According to the theoretical result even at the highest
spins considered the pairing correlations are responsible
for "dealigning" the angular momentum of EI =SR, as
compared to rigid rotation in the superdeformed state.

B. Effects of pairing —discussion

Both formal and physical meaning of the results in Sec.
III A can be illuminated using as a guidance some results
of the previous studies on the soluble models. Those have
been performed by making use of the Hamiltonian for-
mally identical to the one employed in our realistic calcu-
lations. The only difference lies in the replacement of the
Woods-Saxon single-particle term in Eq. (12) by the cor-
responding simplified two-level model term. When using
the simplified cranking model Hamiltonian

+soluble sp+Bpair ~Jx (14)

with Hsp, H~„„,and ( —toj„)representing single-particle,
pairing, and the cranking terms, respectively, one is able
to express the matrix elements of H,",~„b~, exactly with
the help of simple analytical formulas. Consequently, the
physical quantities of interest like E =E( )tour I =I(co)
can also be calculated exactly.

A great advantage of the soluble model consists in the
fact that also the most frequently used approximations,
such as, for example, Hartree-Fock-Bogolyubov crank-
ing, particle number projection, or random-phase-
approximation (RPA) techniques lead to analytical ex-
pressions for the quantities of interest. Therefore the
quality of various approximate methods can be straight-
forwardly tested relying totally on the analytical results.
Such a detailed study has been recently completed for the
HFBC, RPA, and PNP approximations, and thus here it
will be sufficient to summarize the relevant final results.

The HFBC approach often provides a "reasonably"
good approximation to the exact energy and spin expres-

q -co/P, (15)

where P represents the nuclear elongation. The latter re-
lation demonstrates the property of the so-called
frequency-deformation scaling: the ~ dependence of, e.g.,
E( o), angular momentum alignment, or other derived
quantities is weaker for the mell deformed nuc-leus as
compared to the moderately deformed one.

In "realistic" potentials the above scaling property is
more difficult to demonstrate analytically but numerical
calculations confirm the similar trend. It takes, roughly
speaking, more rotation (higher to) for a superdeformed
as compared to normal nucleus to undergo similar

sions, for rotational frequencies which do not exceed cer-
tain critical value, co=co„;,. For co & co„;,the approxima-
tion is generally poor, the HFBC solution coinciding with
the so-called "trivial" or "unpaired" solution. Applying
the PNP technique improves the agreement with the ex-
act result considerably, especially for rotational frequen-
cies close to co„;,(cf., e.g. , Fig. 8 of Ref. 24) and generally
for co ~ co,„;,. The nontrivial HFBC solution (for co &ai„;,)
is said to describe the "static" pairing correlations. The
difference between, say, energy vs co curves calculated ex-
actly and with the help of the simple HFBC is believed to
result mainly from the neglect of the effect of "dynami-
cal" nature often referred to as "pairing fluctuations" or
"dynamical pairing vibrations. "

As mentioned above, there are two commonly used
ways of improving the approximation (over the HFBC
approach). In the PNP improvement evidently not only
the static but also significant amount of dynamical pair-
ing correlations is effectively taken into account since the
final PNP result approximates the exact one very well (cf.
discussion in Ref. 24). A formally nonequivalent way of
improving the approximation (over the HFBC approach)
is provided by the RPA treatment which approximates
the exact analytical result with the quality comparable to
that provided by PNP (cf., e.g., Fig. 1 in Ref. 25).

Let us emphasize that both discussed methods, al-
though nonequivalent formally, provide similar improve-
ments over the simple HFBC approximation, both repro-
ducing the exact result for the yrast E vs co dependences
comparatively well. One may therefore expect that the
bulk of the "extra" (over HFBC} pairing correlations is
accounted for, although perhaps to a different extent, by
both approximations. These extra correlations amount to
(6—8}iri in the I vs to comparison of Fig. 4, and this brings
the realistic theoretical results closer to the presently
known data on ' Dy. [The reader is referred to Ref. 25
for extensive discussion of the pairing vibration problem
in rotating nuclei together with the higher-order effects
treated in terins of the nuclear field theory (NFT); an in-
dependent study in this direction can be also found in
Ref. 26.]

Another study performed recently ' with the help of a
soluble model sheds some light on the problem of
"unusually" small deviations of I vs co dependence from
the linear one. Analysis of the pairing vibration in a ro-
tating harmonic oscillator by making use of the RPA
shows that the solutions depend on the rotational fre-
quency in a characteristic way, namely, via parameter
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rotation-induced changes.
Summarizing this part of the discussion let us stress

the following.
(a) The existence of pairing correlations (which go

beyond the part described in terms of the independent
quasiparticle approximation—:HFBC) is responsible for
lowering the I vs co dependence in ' Dy by an approxi-
mately co-independent amount of typically (6—8)R.

(b) The spin dependence of the superdeforrned equilib-
rium deformation in ' Dy turns out to be very
insignificant.

(c) The relatively weak dependence of E or I vs tu, as
compared to the analogous quantities known from the
normal deformed minima in many nuclei (also the triaxial
minima in ' Dy itself) can be viewed as a result of both
the particularly e-stable shell structure at the superdefor-
mation and the deformation scaling mechanism as stud-
ied in Ref. 21.

IV. PROBLEMS OF POPULATION
AND DEPOPULATION RELATED

TO THE SUPERDEFORMED BANDS

Since the high-spin states are populated in heavy-ion
collisions which lead in general to highly excited nuclear
configurations the description of thermal excitations in
the population process becomes inevitable. On the other
hand, depopulation of the band at its lowest spin limit in-
volves most likely the effect of pairing which again needs
to be taken into account.

A. Population and thermal excitations

Let us begin by recalling the shape coexistence picture
of the zero temperature limit (Fig. 1). It shows that, in
principle, one should expect many competing local mini-
ma produced by quantum (shell) effects. "Heating up" a
nucleus is known to result in washing the shell effects out.
Thus, for each individual minimum one should expect a
shape transition out of it to occur, formally at various
"critical" temperatures T, (i ) different for various
i = 1,2, . . . , minima. (One possible way of defining T, is
to relate it to the temperature at which the separating po-
tential barrier vanishes in some area of the deformation
space. ) Typical examples are provided by most often
studied prolate-to-oblate shape transitions in the so-called
good rotor nuclei. Here we will be particularly interest-
ed in transitions related to superdeformed states.

In statistical physics an analog of those transitions is
provided by phase transitions in macroscopic objects.
The analogy, for temperatures considered in this article
lies not so much in dramatic differences between the
states of nuclear matter at various equilibrium deforma-
tions but rather in the fact that for temperatures close to
T, the fluctuations (in nuclear case —shape fluctuations)
are expected to be particularly large. (Discussion of some
general aspects of stability loss at T-T, in statistically
describable objects can be found in, e.g., Ref. 28.)

For the superdeformed minimum in ' Dy the critical
temperature, T, ( usperde f-)070keV over a broad spin
range. While the superdeformed barriers on the free-

P(E*,I,P)du — g pt(E* —e„)p„(P,e„)du, (16)
e„(E

where e„denotes the energy of a collective (oscillatory)
motion in a state

~

n ) and p„(P,e„)is the related
deformation-probability distribution. Let us recall that P
stands for the deformation variables (P2, y) and dv is the
corresponding volume element in the deformation space.
Replacing the probabilities p„(P,e„)by their quasiclassi-
cal limits and the summation in (16) by integration over e
leads to the following approximate result:

P(E*,I,I3)dv -pt[U(I, T,P)]T(I,P)du, (17)

where T(I,P) denotes the local nuclear temperature at
deformation P. Here the Fermi gas formula for pt will
be adopted:

energy landscapes vanish at this temperature, the numeri-
cal value of T, as defined above has more formal rather
than practical meaning since the shape fluctuations are
probably large already for T&T, . Our experimental
knowledge about those fluctuations is too limited at the
moment to allow for restrictive testing of the theories at
this point. In the following we rather concentrate on the
simplest consequences of our microscopic calculations of
the free energy, illustrated in Sec. II, and their possible
qualitative tests.

Our starting point is the observation that a nucleus
produced at certain initial excitation energy, E, , and
spin I;, must preserve both these quantities until an emis-
sion of, e.g., a quantum y, a particle, etc., takes place. At
typical excitation energies, after subtracting the rotation-
al energy, a significant part of what remains is the defor
mation energy. Consider, for instance, a typical A —150
nucleus where the fission barrier at spins I-(10—20)fi
amounts to -25 MeV. Let us denote the rotational ener-
gy in the initial state by E;(rot). At E —E;(rot)=20
MeV, there will be areas in the deformation space ~here
the full available excitation will be equal to deformation
energy (temperature equal zero) and those where it may
be totally gone into the thermal excitation
T-&20la & 1000 keV [for an order of magnitude esti-
mate here it will be sufficient to set a = ( A /8)].

Thus when calculating the deformation related proper-
ties at the experimentally encountered situation, i.e., with
the total excitation energy E'=const, the free-energy
representation in the usual form of F vs deformation at
constant temperature is not of much help. [Let us note
that despite this, the free-energy representation is still in-
structive when, for instance, the overall variation of the
deformation energy can be considered weak over large
areas of the deformation space and the constant E* or
constant T representations are nearly equivalent (cf. Sec.
II, Fig. 3)]. Consequently we will need to reformulate the
problem. We chose the reasoning very much in line with
the early proposition of Moretto.

Let us assume that the probability of finding the system
at the point (E",I,P) can be expressed in terms of the
corresponding nuclear level densities, pl, by
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' 1/2 3/2

6 ' 2J(P)

1/2

X exp 2 g0 U(I, T,P) (18)

mines the deformation probability distributions but also
the population probability; for instance, assuming the
giant-dipole type deexcitation as a dominating elec-
tromagnetic decay-feeding mode at high excitations leads
to the following integrated decay transition probability
from a state with I, to If ..

where g0 represents the proton- and neutron-related
single-particle level densities at the Fermi energies, and
J(P) is the corresponding (rigid rotor) moment of inertia.
Result (17) shows that apart from a preexponential tem-
perature dependence, the high-lying coherent (oscillatory)
excitations do not modify the "primary" relation

P(E', I,P)-pi[U(I, T,P)] . (19)

In the following we limit ourselves to a qualitative discus-
sion related to the above proportionality (quantitative re-
sults will be published elsewhere). It is important to
remember that the nuclear level density not only deter-

I

TGoa(E1; U, )

U,.—f p, (U)/p, (U, )foDa(U, —U)(U, —U) dU .

(20)

It will be instructive at this point to recall how the
mechanism of disappearance of the shell effects (in partic-
ular, also the relative elevation of the deformation energy
at various deformation points) influences the level densi-
ties and thus the population probabilities when tempera-
ture increases. Let us first combine relations (2, 8, and 9)
which give:

R (def, T)=E =„„(def)+pe, = (def) g'n „=—(def)e = (def)

+ g e"„(def) ge—"„=(def) + g' n, (def, T)e„(def) g' n, (d—ef, T =0)e„(def) (21)

where g„extends over all the (lowest) occupied levels and g'„extends in principle to infinity (in practice the occupa-
tion coefficients assume very small values for energies extending sufficiently far above the Fermi levels and the summa-
tions stay always within finite limits). The first term within large square brackets in Eq. (21) stands for the E =;„,(def) of
Eq. (2). The Strutinsky's occupation coefficients, n "„(def),can be calculated analytically, (cf., e.g. , Ref. 15).

Taking into account that n, (def, T =0) represents 1, for e", & A, = Fermi level, and 0 otherwise, implies that

g e (def) —g' n", (def, T =0)e„(def)=0

and we obtain

R "(def, T)=E =„„(def)+g'n (def, T)e, (def) —g'0 „=(def)e"„= (def) (22)

Equation (22) can be rewritten as follows:

R (def, T)=E~,=,„(def)+ g' n „(def,T)e, (def) —g' n, = (def, T)e = (def)

+ g'[n = (def, T) n„"=(def)—]e,= (def) (23)

The erst difference in the above relation represents the in-
dependent particle Routhian normalized to zero at co=0
and for the Woods-Saxon type potentials it can be ap-
proximated (see, e.g. , Refs. 11 and 18 and references
therein) by

—J(def, T)co /2

where the moment of inertia J can be shown to satisfy for
the increasing temperature (typically T & 0.5 MeV)

J(def, T)~J„;;d(def,T=O)—=J „„(def).
One can show further that the temperature-dependent

occupation coefficients in the second bracket of Eq. (23)
approach the corresponding Strutinsky distribution n,

R (def, T)=E"=„„(def)——,'J „„(def)co (24)

[We recall that within the temperature range considered
here the T dependence in macroscopic energy and mo-
ment of inertia, Eq. (24), can be neglected. ]

One can always transform the total free Routhian

I

when temperature increases; it is then a decrease in this
last term together with the above relation for the mo-
ments of inertia which, within Strutinsky method, gives
rise to the disappearance of the shell effect in the total
free Routhian. Increase in temperature eventually brings
the complicated in general total Routhian landscapes into
a smooth asymptotic form represented within the dis-
cussed method by
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FIG. 6. The heights of the barriers separating the superde-
formed and the triaxial minima on the free-energy surfaces as a
function of temperature for the indicated spin values. Note that
the barrier heights and thus the probability of trapping due to
the potential barrier goes to zero at T-800 keV, at I-60.

merical factor. A possible preexponential spin depen-
dence of the density differing from that in Eq. (18), as dis-
cussed in Ref. 31, does not inAuence the conclusions of
this article where we compare the densities at various de-
formation points for a given common value of spin.

Another problem to consider when looking for the op-
timum chances to observe the superdeformed states is re-
lated to the probability of "trapping" a nucleus in the
corresponding minimum. Such a probability is believed
to increase when the barrier between the super and the
normal minimum increases. Results in Fig. 6 illustrate
the dependence of the calculated barrier height (mea-
sured from the bottom of the superdeformed minimum)
in function of both the spin and temperature. These re-
sults show, in quantitative terms, how the spin increase
helps in building up the barrier thus counteracting the
destructive inAuence of the increasing temperature. At
spins I-(70—80) the 1 MeV barrier, for instance, "sur-
vives" up to T-(500—600) keV, while at I-50 the cor-
responding limit would only be T -250 keV.

The most important implication of the above results for
optimizing population of the superdeformed configura-
tions is to bring to the compound system the amount of
angular momentum approaching the fission limit. Too
low angular momentum in the system will produce both
the unfavorable level-density conditions for populating
superdeformed states, and nonoptimal trapping condi-

tions because of the barrier behavior in function of tem-
perature and spin.

While it is generally true that the probability of fission
may quickly increase with spin, one may also expect that
some (even small) probability of trapping the nuclei in su-
perdeformed states will be sufficient for the observation
by the contemporary 4' detection systems. The (Hl,xn)
reactions with largest possible x may offer here the most
favorable conditions as it was the case in the recent ' Gd
study, Ref. 32.

B. Sudden depopulation of the superdeformed band
at low spins and the eft'ect of pairing

Q2

where (b, n IEP) denotes the number of level crossings
per deformation stretch b,p for protons (m) or neutrons
(v), b,„„denotesthe average pairing gap and g are the
proportionality constants which can be further related to
the single-particle level densities at the Fermi energies.
The penetrability through the potential barrier at the en-
ergy E is, within the one-dimensional WKB approxima-
tion, given by

The fact that the superdeformed band has been ob-
served down to I -24 where its intensity suddenly disap-
pears within three transitions can be understood in a sim-
ple way as indicative of disappearance of the potential
barrier between the normal- and the super-deformed
minima. Such a hypothesis contradicts the results of the
Strutinsky-type calculations with the Nilsson model,
Refs. 7 and 33, which show no indication of the barrier
disappearance at the experimentally observed spin range.
Present results, with the Woods-Saxon potential and the
optimized classical energy of M511er and Nix' do not
support the above picture indicating a very strong de-
crease of the barrier at I-20. Thus, one may consider
that there exists some "model dependent uncertainty" re-
lated to the decay out-of-band in the ' Dy superdeforma-
tion case. However, even if the barriers do exist but are
not extremely high over the spin range I-(20—30) the
chances for the nucleus to survive in the superdeformed
minimum are not large because of pairing-related argu-
ments and the barrier penetration mechanism. The prob-
lem of penetrating through potential barriers in the pres-
ence of pairing correlations has been considered by
Bertch and in the context of superdeformed nuclei, in
Refs. 35, 36, and 20.

Summarizing the results of those studies brings us to
the following argumentation. In the process of penetrat-
ing through the potential barrier the nuclear intrinsic
configurations are often strongly rearranged. For in-
stance, changing the nuclear shape from the lowest ener-
gy super-deformed state to the lowest energy norma1-
deformed state in ' Dy is related to several (about 20)
configuration rearrangements which in the mean-field ap-
proximation can be simply visualized as single-particle
level crossings. The effective nuclear inertia related to
such a deformation change can, under certain simplifying
assumptions, be expressed by

' 2 2
An gv hn

bp „g'Ap
(27)
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P,„,
penetrability-exp —— 2B V —E d

P;„

(28)

where V(P} denotes the total nuclear potential in func-
tion of deformation and P refers in this case to a one-
dimensional trajectory in the deformation space.

As it can be seen from the bottom part of Fig. 4, the
average pairing correlations in the lowest energy superde-
formed states are expected to increase significantly at de-

creasing rotational frequencies which correspond well to
the discussed I y20 spin range. There, increasing in b
and h„would cause an order of magnitude decrease in

the average mass parameter B, thus increasing
significantly, via the exponential dependence in Eq. (28},
the chances for an out-of-band penetration through the
barrier. Therefore, more generally, even if the heights of
the barriers at the low-spin range in superdeformed nu-

clei may be model uncertain to some extent, the pairing
correlations at low rotational frequencies are likely to
spur the out-of-band decay.

the fission-gamma decay competition. It apparently can-
not be excluded that the so-called second chance fission
(fission from the superdeformed state after say one or two
A, = 1 gamma rays have been emitted) wins in competition
with the next, possibly low energy y transition. Such a
mechanism would effectively decrease the chances to
populate the excited superdeformed bands in a few steps
of relatively low transition energies Ez as compared to
those of high F.~ leading directly to the neighborhood of
the lowest or just to the lowest superdeformed band.

One should emphasize at this point that the reported
intensity of -0.2% for the states close to the top of the
superdeformed band in ' Dy is still 1 —2 orders of magni-
tude higher as compared to the extrapolated intensity
pattern of the normal bands in, e.g., ' Er, ' Yb, and

Hf. Intensities of the discrete transitions in those nu-
clei are known up to I-40 and thus the corresponding
extrapolation (confirmed by the Monte Carlo simulation
test, cf. Fig. l in Ref. 36) seems to be sufficiently certain.
The second chance fission mechanism, possibly related,
needs further investigation from both theoretical and ex-
perimental points of view.

C. A comment on fission stability at high spins

From the discussion in Sec. IV A it becomes clear that
the highest-spin limit would be optimal for the popula-
tion of superdeformed states if not of the competition
with fission. Here, however, the fast rotation factor may
turn out to be crucial in stabilizing the superdeformed
configurations. Indeed, in the highest-spin range con-
sidered (I & 50) the average pairing factors b, in Eq. (27)
are expected to be very small (they should not be con-
fused with the trivial b =0 solutions of the simple HFBC
method which fails at this frequency range). As the re-
sult, the effective inertia parameters in fast rotating rare-
earth (RE) nuclei should become significantly larger than,
say, in the low-spin (and excitation) states of the actinide.
Therefore, the comparable fission barriers for a superde-
formed fast rotating state in a RE nucleus and a fission
isomer in the actinide range may result in much stronger
high-spin RE stability against fission because of
differences in pairing.

D. Remarks on the enhanced population
of the lowest superdeformed bands

There is a possibility that the enhanced population of
the lowest superdeformed band may be perhaps viewed as
an experimental confirmation of the presence of the
strong shell structure. Indeed, the branching ratio for
feeding

I &„d(lowest)/I &„d(excited)-[(E +bE)/E ] +'

favors the population of the lowest band with hE-800
keV -min(bE„,bE„), A, =l or 2, and E —(2—3}MeV,
typically, by a factor of 2 —3. However, one should ex-
pect that in general the higher lying excited superde-
formed bands should also be populated and indeed some
presence of intensity related to quasicontinuum has been
reported.

This problem may have a more intimate connection to

V. SUMMARY AND CONCLUSIONS

Using well-established methods of nuclear structure
(deformed mean field of the Woods-Saxon type, general-
ized Strutinsky method with elements of the statistical
model approach, independent quasiparticle method) the
superdeformation properties of ' Dy have been studied.
The results can be summarized as follows.

(a) A coexistence between the three experimentally
well-established shape configurations (oblate, triaxial, and
superdeformed) is well reproduced by the applied tech-
niques. The spin gain (I vs co) calculated at the two col-
lective minima, viz. triaxial and superdeformed, repro-
duces well the characteristic I(co) behavior known exper-
imentally for the two collective bands only after applying
the particle number projection technique in the treatment
of pairing. The simple so-called Hartree-Fock-
Bogolyubov cranking method overestimates the experi-
mental results by typically (6—8)fi, an amount which does
not depend very much on rotational frequency. A possi-
ble interpretation of this result in terms of dynamical
pairing effects has been discussed on the basis of previ-
ously completed studies on the exactly soluble models. It
is argued that the inhuence of the so-called rotation-
deformation scaling mechanism is contributing to some
peculiarities of ' Dy behavior.

(b) Minimization of the total energy with respect to de-
formation gives the following result: The positions of su-
perdeformed minima on the (P2, y) plane are practically
spin independent; on the contrary, the triaxial ones
evolve markedly with rotation.

(c) The almost linear I vs co dependence in the superde-
formed configuration is reproduced within only a small
inaccuracy margin. Suggested mechanisms contributing
here are the strong and relatively stable against rotation
shell (gap} eff'ects in both the neutron and proton systems.
(One should stress that this property is related to a par-
ticular shell structure in ' Dy, and possibly also some
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other nuclei, rather than a general feature related to any
superdeformed configuration. )

(d) Nuclear level density dependence on deformation at
fixed total excitation energies and spin is calculated.
These results are used to argue that at spins slightly in ex-
cess of 50k and below, the side feeding of the ' Dy super-
deformed band should decrease fast with decreasing spin,
in good qualitative agreement with what is observed.

(e) Depopulation of the superdeformed band at the
low-spin limit (out-of-band escape), according to the
present calculation, may be attributed to a significant
lowering of the relevant potential barriers at spins ap-
proaching I -20 range from above. Even if the calculat-
ed barrier heights are somewhat uncertain due to a possi-
ble model dependence, the influence of an increase in

pairing on the barrier penetrability is expected to depop-
ulate the band. Calculations predict a significant increase
in both proton and neutron pairing correlations in the su-
perdeformed ' Dy minima at spins approaching I-20
from above.

(f) Calculations predict also a "fourth" class of nuclear
shapes (in addition to oblate, triaxial, and superde-
formed). They posses quadrupole deformation P2-0. 9
(super-superdeformation), with a significant hexadecapole
component, and are expected to compete with the usual
superdeformed states very high in spin (I-80). (More
optimal cases for possible observation of those super-
superdeformed states have been suggested in Ref. 20.)
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