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The description of p-shell orbitals in the 4 =14 nuclear system in terms of relativistic wave func-
tions, which are solutions to the Dirac equation with strong scalar and vector potentials, provides a
good description of the M1 form factors in '*N and the greatly suppressed '“C beta decay rate.

I. INTRODUCTION

Nuclei in the p shell have long provided testing
grounds for nuclear wave functions and thereby the nu-
clear shell model. Many ground state and low-lying ex-
cited state properties throughout the p shell can be de-
scribed as admixtures of p;,, and p,,, particle or hole
states such as in the global fits of Cohen and Kurath.!
The A =14 system, particularly the ground and first ex-
cited states of *N and the ground state of '*C, has at-
tracted a great deal of attention.>~* The elastic and in-
elastic M1 form factors of '“N have been measured over a
large range of momentum transfer which provides con-
siderable constraint on possible nuclear wave functions,
while the severely retarded '“C beta-decay rate has long
been a puzzle, and in conventional analyses seems to
force a constraint on the wave functions which is incon-
sistent with fits to data obtained from the 4 =14 system
with other probes.” As discussed in detail by Huffman
et al..? best fits to the form factors alone produce wave
functions which have too large a Gamow-Teller matrix
element and thus do not describe the beta-decay rate.
Furthermore, analysis of the photopion reaction “N
(y,m)1*C, ¢ is well fitted with the Gamow-Teller matrix
element coming from the Huffman analysis which ignores
the beta-decay constraint on the wave functions.* It has
been suggested® that the vanishingly small beta-decay
rate might be due to a destructive interference between a
small one-body Gamow-Teller matrix element and

The two-hole configurations are normalized by
a +b%4ci=m?+ni=1,

and when we consider a Dirac basis, a better label for the
state is the Dirac quantum number k. Recall the
(k)= |k+L| —1and j(k)=|k| —1.

We are interested in comparing the nonrelativistic and
relativistic description of the elastic and inelastic M1
form factors of *N and the '*C beta-decay rate. That is,
we want to compare Schrodinger single-particle wave
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higher-order exchange current terms, but a conclusive
calculation of this possibility has not yet been carried out.

All of the discussions of Huffman and others who have
investigated the A4 =14 system have been carried out in
terms of nonrelativistic wave functions, and usually in
terms of harmonic oscillator wave functions character-
ized only by a range parameter b. Following the empiri-
cal success of Clark and collaborators in fitting inter-
mediate energy proton scattering with relativistic wave
functions,® the large relativistic effects predicted in kaon
photoproduction from nuclei,” and the theoretical under-
pinnings of the sigma-omega model,® we choose to inves-
tigate the A = 14 system using relativistic single-particle
wave functions. In particular, we calculate the elastic
and inelastic M1 form factors of '*N and the beta decay
of '*C, using single-particle wave functions which are
bound-state solutions to the Dirac equation with scalar
and timelike vector spherically symmetric potentials. We
will comment on the limitations of this approach in Sec.
IIL.

Following Huffman et al. and others, we assume that
isospin is a good quantum number (that is, we neglect the
Coulomb potential in the 4 =14 system and the proton-
neutron mass difference) and represent the ground states
of "*N and '%C, and the first excited state of N at 2.313
MeV, in terms of two p-shell holes in the doubly closed
A =16 system. In j-j coupling, the ground state
(J=1%,T=0) and first excited state (J=0", T=1) of
4N can be written in standard notation as

1p35),

(1)

[
functions

Rnl(r)

S Co W2 YR @

mom,
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where &, ,, is a Pauli spinor, to Dirac single-particle wave
functions

V(1) = 3)
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where the spin-angle functions X¥ are given by

Xi@)= 3 Cl NAYRET, .

mymgp
mIm

Usually nonrelativistic shell-model analyses make use of a

harmonic oscillator potential without a spin-orbit term

and, therefore, the wave functions are only characterized

by a range parameter b even though a potential with the

Woods-Saxon shape

h(r)=

1+exp r——_R_
a

where R and a are the radius and diffuseness parameters
might furnish a better description for high-momentum-
transfer process. Note, R =r, 473

The Dirac radial functions f, (r) and g,(r) in Eq. (3)
satisfy the following coupled differential equations which
contain the strong scalar S(r) and timelike vector V(r)
potentials:

T, T T,
—~N;, N N,

1 f%Nfgm

= — 2
2J;+1 yA e

2

where fgy is the single-nucleon form factor, and f_ , is
the correction for lack of translational invariance of the
shell model, and the isospin projections are denoted by N.
We are using the convention where the Mott cross sec-
tion contains a factor of Z2. In terms of the four-
momentum-transfer squared q2 . and the three-
momentum-transfer squared g2, they are given by

fenlg2)=[1—q2 /(855 MeV ]

and

fem =explblg?/44),
where A is the atomic number and b is the harmonic os-
cillator range parameter. We use the notation and con-
ventions of Bjorken and Drell,!! so the four-momentum
squared is negative. The reduced nuclear matrix element

can be written in terms of the matrix elements for single-
particle states (labeled a,a’) (Ref. 10)

JpTy| | —iT 5] | J5T))
= 2 ‘!’Jr(a»a')(a" | "'?T}” |‘1> (7

The magnetic form factor operator is given by
Top, (@) =1y (gn) Y I} (R)- JTY 8)

where T ¥ takes into account the isospin change in the
matrix element and is defined by

de —K—l
—_— = M4+S(r)+E —-V(r ,
dr . [+ M +S(r)+ (r)le.
(5)
g, k—1
= g+H[M+S(r)—E+V(r)f, -

The potentials S(7) and V' (r) are written in terms of the
Woods-Saxon shape 4 (r) with strengths S, and V), re-
spectively. The strengths are of order of 400 MeV, but of
opposite sign (Sy; <0, V;>0). We choose the potential
parameters S,, ¥, R, and a to give the correct separa-
tion energy and spin-orbit splitting for 'O and the
correct rms for the 4 =14 system. The resulting scalar
and vector potentials are qualitatively similar to what one
obtains with a Hartree calculation using the o-o model,
but lack the slight bump near the origin. In addition, we
have constrained the scalar and vector potential to have
the same radius and diffuseness parameters.

II. RELATIVISTIC MATRIX ELEMENTS

The transverse magnetic form factors squared between
initial and final nuclear shell-model states of spin (isospin)
J(T) is given by* 10

(JpTp| | =TT [J5T) )2, 6)

[

. 1 T=0, N=0
1¢’=—2— 3 T=1, N=0 9)
T+ T—l, N=+=1

The i, are nuclear structure matrix elements reduced in
spin and isospin. For our case we restrict a,a’ to be
states in the p shell, and we make use of j-j coupling since
in a relativistic calculation L is not a good quantum num-
ber. The spin and isospin reduced nuclear structure ma-
trix elements for the transitions (J;T;)—(J,T;) are given
in terms of the wave function coefficients a, b, ¢, m, and n
of Eq. (1) by

(10)—(10),

Uiol4,4)=v2a2—b2/V3,
Uo(3,2)=c2/V54V5h%/4
¥1o(3,4)=—(V10bc)/4+(ab)/2 ,
Yiol3:3)=—%1($3)

(10)—(01), (10)
vnlg,3)=—am,

U3, 3)=—cn/V2,

Yu(3,9)=—bm/V2,

1/!“(%,%)=bn /2.



For the nucleon current operator we make the conven-
tional choice

ipr

JE=F yh
1Y+ M

FZU#qu ’ (1
where g* is the four-momentum transfer, u is the iso-
scalar (T'=0) or isovector (T =1) anomalous magnetic
moment, and M is the nucleon mass. We equate the
Dirac and anomalous form factors F; and F, to the
single-nucleon form factor fgy given earlier. With this
choice, the four-current can be written in zero and three-
component form in terms of y, g4, ¥, q, and

“r40 M

iquy
M Y-Yy =

YO?JAfTN(qr)z IM[J]

aY¥+

Jjilgr) +

where [J]=(2J +1)!/? and a is the standard Dirac matrix.

[=J"2, @Y+ T+ D)2, (@YY 1702
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o 0
=10 o
as
KT K140 ipr
JE=fen 70+m?’o'}"q’ Y+ M ‘}’07+_2M2><q

Inserting this result into Eq. (8) and multiplying by v,
we obtain

~
N
I7,

(13)

Inserting the operator in Eq. (13) between initial and final Dirac wave functions, we obtain the reduced single-particle
matrix element between relativistic states labeled by the Dirac quantum numbers « and «’,

: (v |4
’ __j4mag —
] | TG ) VardJ+1) |—3 O
*® 2 s
Xfo redr(k+x")j,(qr)

HTq

1
2

(fx'gk+gx'fx)+ W(fk’gk_gﬂfx)

L (=D
2

7
V2

HT140

+m{J(J + D410 +is 1@ f e f e —818)

+ (ke + 6 Tjy 41(gr) = (T +1)j; (@D f e f+818)} ] . (14)

Note that {«'y’ | =¢ I’u” y3=1, and we have included the usual factor of —i to make the matrix element real.
To obtain the nonrelativistic reduction of the single-particle matrix element in Eq. (14), we replace the “small” com-

ponent g, by the free relation for a particle with E=M

dfx Kk+1
dr + r S

1
gx(r)=“23,;

’

(15)

which is obtained in the limit that all potential and kinetic energy terms can be ignored in comparison to M, discard
terms of order 1/M?, and interpret f,(r) as the normalized radial solution of the Schrédinger solution. Carrying out

these steps we obtain

B et 0 i 2 10 | 4 A A B B B EES Viasaha v o B
(rj ‘—"TJ,TH |17 ) nonret = VardJ +1) -1o01 2 Va2 2M
L1 ds(gr) .
X [(x+x’)(x+x'+1)—J(J+1)]<l’]’ " l])
+—“'T—[J(x+x'+J+1)(l'j'| [ Jroilgr) | 1)
2J+l J+1

+(T+ T —k—k | [ Jr_ilgr) ] | 1)] ] )

where the nonrelativistic moment ur =g+ 1 and

K=(—1)j+1+1/2(j+%) .

(16)
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This result appears to be considerably simpler in its angular momentum structure than the result given in Donnelly and
Sick.'® However, the two results can be shown to agree apart from an overall phase by using the following relation be-
tween 6j and 3j symbols (which we believe to be given here for the first time)

rj % 1! J (__1)1+1’+J+l ,
[J(J+1)I(l+1)]‘/2j P 7l o -1 ——TUW[(K’+K+I)(K’+(—I)”’+’“K)—J(J—H)]
iJ
(17
[—% 0}

It has been our experience that the angular momentum matrix elements work out more easily in the relativistic formu-
lation.
The ground-state magnetic moment g is given in terms of the elastic form factor in the ¢ —0 limit

o 6] 12
_lim i T | | —iT ™as T
q—0 q (J,—{—l)(ZJ’—}-l) <J|’T1| | IT.1=1,T=0| |J1’T|> . (18)
For the ground state of '*N, we obtain
, e VIM | T L T 1 (=)
pa=Z Yolaa (=25 |21 g 1| |75
a'a 2 2
® 2 r ' Ho ’ ’
X fo ridr §(K+K )(fK:gK+gK'fK)+m[(l—K—-K Voo —(1+k+6)8,08,] (19)

Unlike the nonrelativistic case, the magnetic moment in a Dirac picture depends on the wave functions, and since the
integral involving the product fg dominates for isoscalar moments, and since in the nuclear interior g ~g™*/0.7, one
obtains the relativistic enhancement which has been extensively discussed.!”> Repeating the same limiting process for
the nonrelativistic matrix in Eq. (16), inserting the nuclear matrix element for (10)—(10) from Eq. (10), and using
o=, +H1t, =0.8798, we obtain

Enonrer=+(1.12a?4-0.76ab +2.07b>—1.20bc +1.88¢?) . (20)
The other quantity of interest is the '*C beta-decay rate. We use the standard V- 4 m(ldel for beta decay, but evaluate
the nuclear matrix element fully relativistically. The weak nucleon current operator is J, =y,(1—gys) with the renor-
malized value of g =1.253 arising from the nonpointlike character of the nucleon and ys=iy% 'y?y>. The Q value for
the '*C decay is less than an MeV, so we evaluate the beta-decay matrix element in the zero-momentum-transfer limit.
Thus we need only consider the Gamow-Teller nuclear matrix element arising from the operator ?'{}, rwithJ=T=1,
N = —1 which is given by
T =roarsdi', 1)
with 17! being defined in Eq. (9). The beta-decay operator is a one-body operator, so, as in the case of the magnetic
form factor, we define the Gamow-Teller matrix element as

CIRTATE T
- JIT]

Using results from Ref. 13, the single-particle spin and isospin reduced matrix elements are readily evaluated to be

GT

=%2¢,T(a,a')(a’l | 76T |a) . 22)

VA GT I Vi V1 0\ N AR A B T DU
WP ET) 0= 7 o ||

fowrzdr[(l—K-K')fKer-H1+K+K')8K'gx] .

[STES

(23)

Unlike the magnetic form factors, the relativistic matrix element is not directly proportional to the “small”” component
g, S0, unless the leading contribution accidentally cancels, one would expect small relativistic effects in beta decay.
The nonrelativistic limit is taken using Eq. (15) to obtain

J [ 14(=1)+r
1
7

2

TG VNT TG nonrer= (1—k—&") [ “RppPR(ndr ,  (24)

(=1 V2V T
V2
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where

k=(— 1)+ +172(j 4 1)

as before. Finally, using the wave functions of Eq. (1), the Gamow-Teller matrix element for the beta decay of '“C is

GOT=—LlamN, | +(V2bn+2bm)N, 53, —V5cnNs 5,1 25
2’2

where the “normalization” integrals N, , are
Nipin= fow(f% —3gi)ridr,
Nipsp= fowfxf—z"zd" ) (26)
Nipin= fow(fz_z —3g%,rir,

where the subscripts on f and g in Eq. (26) are kappa
values for a’ and a.

In the nonrelativistic limit with g2 terms omitted and
with no spin-orbit terms in the Schrodinger equation, all
the N’s are unity. Experimentally, the Gamow-Teller
matrix element for *C is quite small (=~10~3) which re-
quires extensive cancellation between the four terms in
Eq. (25). In such a situation, the deviation of the N, ,
factors from unity can play a significant role. Clearly,
with larger Gamow-Teller matrix elements, the relativis-
tic effects are negligible since the N, , only differ from
unity by about 10%.

II1. RESULTS AND CONCLUSIONS

All the formalism given earlier is based on a single-
particle approach which is known to be incomplete for
certain nuclear properties such as magnetic moments
where the response of the nuclear medium makes a
significant contribution, particularly at low-momentum
transfer.!>!415-19 A5 discussed in detail by Furnstahl
and Serot,'” these many-body contributions have not
been evaluated for nonclosed-shell nuclei, although their
contributions to the isoscalar form factors for one parti-
cle outside a closed shell have been evaluated in an ap-
proximate way. The effects at low-momentum transfer
are large, and basically reduce the enhancement of the
magnetic moment in the single-particle relativistic calcu-
lations back to the nonrelativistic values. Furnstahl and
Serot!® modify the Dirac part of the current operator for
isoscalar magnetic form factors by a factor depending on
the nucleon Fermi motion as modified by the local
baryon density. While the theoretical justification for
this procedure appears on solid footing for low-
momentum components of shell-model wave functions, it
is not obvious that a result based on nuclear matter calcu-
lations is valid for high-momentum components. We are
testing an admittedly intuitive notion that medium effects
such as “backflow” cannot respond at larger momentum
transfer and, therefore, the single-particle response will
be revealed. In any case, we attempt to fit the magnetic
form factors at momentum transfers greater than 200
MeV/c and do not attempt to fit the magnetic moment or
the M1 transition strength. Of course, the beta-decay
rate of '*C is a low-momentum transfer process. Howev-

er, as noted earlier, the Gamow-Teller decay rate does
not depend strongly on the small component of the rela-
tivistic wave function and is an isovector transition.
While at the present time it is only speculation, we
suspect that low-momentum transfer processes which de-
pend sensitively on the “small” Dirac component are
those where the relativistic many-body effects will make
significant contributions. Thus, we will also consider
constraining our fit to the magnetic form factors to the
beta-decay rate.

In Fig. 1 we show our best fit to the elastic and inelas-
tic magnetic form factors»?°~2 of N as compared to
the nonrelativistic harmonic oscillator fit (H1) of
Huffman et al.? The fit, using relativistic single-particle
wave functions which we obtained by numerically solving
Eq. (5) with the parameters shown in Table I, is clearly
superior at higher-momentum transfer for both form fac-
tors, although at very high-momentum transfer, the tran-
sition form factor still falls beneath the experimental
data. In Table II, we give the coefficients of our single-
particle wave functions for this fit (labeled J1) and com-
pare them to two fits of Huffman et al. (H1 and HF?2).

T T
14N (e,e) M1

[-]

E, = 2.313 MeV

=0t T=1
| | Ly

1 2 _13 4

FIG. 1. The ground state and transition M1 form factors of
¥N. The dashed line shows the harmonic oscillator fit (H1) of
Huffman et al., (Ref. 2) while the solid line shows our fit (J1) us-
ing relativistic bound-state wave functions. The experimental
data are from References 2, 20-23.

S
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o
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TABLE 1. Potential parameters and resulting single-particle
energies and rms radii of the Dirac bound state wave functions
V=317 MeV, S;=—433 MeV, r,=0.80 fm, a =0.70 fm.

State Energy (MeV) rms radius (fm)
lp]/z —12.2 2.60
1p32 ~19.0 2.40
1515 —48.4 1.70

The H1 wave function does not fit the beta decay while
the HF?2 does. Clearly, the J1 wave function is quite
different from either H1 or HF2. In particular, our re-
sults for the first excited state of '*N is much closer to the
Jj-j coupling limit. We also give the magnetic moment of
the '“N ground state in Table I but, as argued earlier, do
not expect the relativistic single-particle calculation to
reproduce this low-g result which depends sensitively on
the small component of the Dirac wave function.

In Fig. 2 we show our best fit to the magnetic form fac-
tors when we constrain the relativistic Gamow-Teller ma-
trix element given in Eq. (19) to agree with the experi-
mental lifetime of '“C. The fit to the form factors
remains quite good and, more significantly perhaps, the
wave function obtained with this fit (labeled J2 in Table
III) differs much less from the fit without the beta-decay
constraint (J1) than the two equivalent fits of Huffman
et al. (H1 and HF2). Of course, the beta-decay fit
should not be taken too seriously since in this approach
the cancellation in the Gamow-Teller matrix element is
very large and clearly many normally neglected effects
such as “exchange currents” and/or many-body effects
may be important. For example, the “normalization” in-
tegrals given in Eq. (26) cause the matrix element to
change from —12.7Xx107% when set equal to 1 to
—0.83x107® when their values of 0.899, 0.970, and
0.968 are used.

Part of the reason for our improved fit to the form fac-
tors at higher-momentum transfer is the use of Woods-
Saxon wave functions rather than harmonic oscillator
wave functions. In Fig. 3 we show our best fit to the
magnetic moment and the two form factors obtained in a
Schrodinger picture but with Woods-Saxon, rather than
harmonic oscillator wave functions. The shape parame-
ters are ry=2.65 fm, @ =0.60 fm, and V;=66.5 MeV,
and the resulting configuration amplitudes differ some-
what from H1 of Huffman et al.,? and are given by
a=0.944, b=0.302, c¢=-0.131, m =0.500, and
n =—0.866. The beta-decay matrix element for this fit is
—50.4x 1073, We also tried to fit the form factors with

TABLE II. Configuration amplitudes (1p shell) H1 and HF2
from Ref. 2, J1 and J2 from this analysis.

H1 HF2 J1 J2
a 0.978 0.974 0.486 0.4874
b 0.071 —0.228 —0.431 —0.2743
c —0.194 0.000 —0.761 —0.8290
m 0.553 0.526 0.978 0.9977
n —0.833 0.851 0.208 0.0677
w/ty 0.407 0.334 0.542 0.603
10°x GC7 —58.1 0.84 56.9 —0.83

10
10°
« 107
=
=

E,=2313MeV
I"=0" T=1

FIG. 2. Same as in Fig. 1, except that the solid line shows our
fit (J2) constrained to fit the experimentally determined beta-
decay rate of *C.

Woods-Saxon wave functions and the beta-decay con-
straint. We found configuration amplitudes close to the
HF? fit of Huffman et al.,? but the fit to the form factors
is considerably worse than the fit without the beta-decay
constraint. Clearly Woods-Saxon wave functions provide
a superior description of the large momentum com-

-5

10
10°

—7

n 10

10

10

2.313 MeV
7’ =0t T=1

| | [N
0 1 2 3 4

-1
Qeff (fm )

FIG. 3. Same as in Fig. 1, except that the solid line shows the
relativistic fit with the modification of the Dirac current in the
isoscalar form factor and the dashed-dotted curve is the
Schrédinger best fit with Woods-Saxon wave functions.
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TABLE III. Spin and isospin reduced nuclear matrix elements ¢,(j,j’) for 4 =14.

H1 HF2 J1 J2
Yol 1, 3) 1.351 1.323 0.268 0.309
Yi0(3,3) 0.020 0.029 0.363 0.349
Yio(2,3) 0.046 —0.111 —0.364 —0.247
Y103, 3) —0.046 0.111 0.364 0.247
¥n(,4) —0.541 —0.512 —0.475 —0.486
vu(3,3) —0.114 0 0.112 0.040
¥n(3,3) —0.028 0.085 0.298 0.194
(3, 32) —0.030 —0.097 —0.045 —0.009

ponents in the wave functions as compared to the har-
monic oscillator, but imposing the beta-decay constraint
still modifies the configuration amplitudes by a consider-
able amount.

We also show in Fig. 3 our best fit to the form factors
using the modification of the Dirac current in the isoscal-
ar form factor as proposed by Serot and Furnstahl.!” The
fit is not bad and, of course, now produces the correct
magnetic moment for the ground state of '*N. The beta-
decay matrix element for this fit is —24.1X 1073, and we
were unable to find a reasonable fit if we also constrained
the beta-decay matrix element. The configuration ampli-
tudes for this fit are reasonably similar to H1 and to
those obtained with the Schrodinger Woods-Saxon wave
functions discussed earlier. They are a=0.953,
b=0.273, c=—0.128, m =0.467, and n = —0.884.

Huffman et al., in their search for the 4 =14 wave
function, also considered other reactions such as photo-
pion production, (p,p’), and (p,n). Based on systematics
of nuclear structure calculations in the p shell and on the
analysis of the available data from these reactions, they
concluded that most likely there was some other reason
for the suppression of the '“C beta decay other than ex-
treme cancellation of the single-particle contributions to
the Gamow-Teller matrix element. A particularly strong
piece of evidence was the excellent fit obtained for the re-
action N (y,7%)*C with the H1 wave function which
has a considerable Gamow-Teller matrix element.*?*
Furthermore, at low-momentum transfer the nonrela-
tivistic calculation performed in LS coupling shows that
the dominant term in the pion photoproduction from N
is the Gamow-Teller matrix element. However, the
momentum transfer for this reaction is not zero (g =0.5
fm~! for the lowest-momentum transfer point mea-
sured?*), and preliminary calculations do find some rela-

tivistic effects (of order of 20%) in pion photoproduction
from p-shell nuclei.!* These relativistic effects may affect
a sensitive cancellation of one-body matrix elements
greatly, and work is underway currently to carry out a
reanalysis of pion photoproduction from "N with relativ-
istic Woods-Saxon rather than nonrelativistic harmonic
oscillator nuclear wave functions, and use of the complete
pion photoproduction operator.

In conclusion, we find that quite good fits to the mag-
netic dipole form factors in '*N at high-momentum
transfer can be obtained with relativistic 1p-shell wave
functions and the single-particle Dirac current. Further-
more, the greatly suppressed beta-decay rate of '*C can
be fitted simultaneously without great changes in the
wave function. On the other hand, we also find that a
Schrodinger analysis with Woods-Saxon wave functions,
as well as a Dirac analysis using a modified current
operator, also provide reasonable fits to the form factors.
In the case of the Schrodinger calculation, the beta-decay
lifetime can also be fit, but the configuration amplitudes
must be modified considerably. We suggest that addi-
tional nuclear properties be investigated with relativistic
single-particle wave functions, being careful to avoid
low-momentum transfer properties which depend sensi-
tively on the “small” Dirac component where nuclear
many-body effects play a large role. Furthermore, a rela-
tivistic Hartree calculation should be carried out for
non-closed-shell nuclei to investigate the importance of
medium modifications of the isoscalar current at large
momentum transfer.
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