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Existing photonuclear data for 'Er are analyzed in the framework of both the dynamic collec-
tive model and the interacting boson approximation. In particular, the cross section for the inelas-
tic scattering of photons populating the y-vibrational band is reanalyzed in order to infer informa-
tion about the coupling of the giant dipole resonance to y vibrations in deformed nuclei. These data
are found to be in agreement with the predictions of both models and therefore do not discriminate

between them.

I. INTRODUCTION

It has long been thought that the giant dipole reso-
nance (GDR) is strongly coupled to low-lying collective
degrees of freedom, such as quadrupole surface vibra-
tions.! The consequences of this coupling are the mixture
of surface vibrational components into the GDR state,
the fractionation of the GDR into vibrational satellite
peaks, and the acquisition of often substantial branching
ratios for photon emission from the GDR to low-lying vi-
brational levels. Photon scattering is an ideal reaction for
probing the coupling of the dipole and quadrupole
modes, since inelastic scattering to vibrational states pro-
vides a direct measure of the strength of vibrational com-
ponents in the wave function of the GDR.

Historically, the first attempt to describe the coupling
quantitatively was the hydrodynamic model and its ex-
tension, the dynamic collective model (DCM),? where the
coupling is a consequence of the hydrodynamic result
that the frequency of the dipole mode of a liquid drop is
proportional to the inverse of the radius of the drop. For
nuclei with a vibrating surface, this leads to an almost
classical problem of the coupling between high-frequency
dipole modes and low-frequency surface modes, leading
to an admixture of surface vibrational components into
the GDR state. Qualitatively, for nuclei that are “soft”
vibrators (i.e., low frequency and large amplitude) one ex-
pects a strong coupling between the dipole mode and sur-
face vibrations, a large splitting of the dipole strength
into satellite peaks, and a substantial photon decay
branch of the GDR to low-lying vibrational levels. The
opposite is expected for “stiff”’ vibrators (i.e., high fre-
quency and small amplitude). The DCM has met with
considerable qualitative and quantitative success in pre-
dicting both the distribution of dipole strength® and pho-
ton decay modes* for a variety of spherical and transi-
tional nuclei. In deformed nuclei, on the other hand, the
distribution of dipole strength is largely determined by
the static deformation, and the principal signatures for
coupling to vibrations are the photon decay branches to
low-lying y- and B-vibrational levels. Several years ago,
we reported the only definitive test of the DCM in a de-
formed nucleus!%Er.* Experimentally, we measured the
inelastic photon scattering cross section leaving the nu-
cleus in the K =2, 2% y-vibrational band head at 0.786
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MeV excitation. At 90° the ratio R, of this cross section
to the cross section populating the 0" and 2+ members
of the ground-state band was typically < 3%, whereas the
DCM (Refs. 5-7) predicted R, ~12-18%. We con-
cluded that the DCM greatly overpredicted the coupling
of the GDR to y vibrations. The apparent success of the
DCM in spherical and transitional nuclei, and failure in
deformed nuclei, has remained a mystery.

More recently, the interacting boson approximation
(IBA) has been expanded to include the GDR and its
coupling to the low-lying collective levels.»® The IBA
has enjoyed considerable success over the last decade in
predicting the properties of these low-lying levels in a
wide range of nuclei throughout the periodic table.
Among its more recent accomplishments is the successful
prediction of the shape of the photoabsorption cross sec-
tion in the GDR region of transitional and deformed nu-
clei.'® However, there have been few comparisons be-
tween theory and experiment with regard to the photon
decay branches. The most detailed comparison to date
has been for the inelastic photon scattering into the ¥
band of '*®Er, where it has been found that the apparent
coupling of the GDR to y vibrations is significantly less
than that predicted by the DCM and essentially in agree-
ment with experiment.” In fact, with a relatively simple
version of the IBA, it has been shown that excellent
agreement with all photonuclear data on '°Er can be ob-
tained, especially the inelastic photon scattering into the
y band. This has led to the suggestion that the IBA pro-
vides a more correct description of the coupling of the
GDR to low-lying collective states than does the DCM.°

In this paper we critically reexamine the photonuclear
data for '*®Er in the framework of both the DCM (Sec.
II) and the IBA (Sec. III). We will show that, after ad-
justing the input parameters of each model to agree with
the known properties of the low-lying levels, both models
can adequately account for all the existing photonuclear
data on '$®Er. In particular, the mystery as to why the
DCM had previously overpredicted the scattering into
the ¥ band is resolved. We suggest that before one can
draw conclusions as to which model provides a better
description of the GDR, better experimental data are
needed. These results are discussed in Sec. IV, and our
conclusions are summarized in Sec. V.
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II. DCM ANALYSIS

A. Formalism

The reinterpretation of the '%Er(y,y’) data utilizes the
formalism of Semenko!! to describe the coupling of the
GDR to y vibrations in deformed nuclei. We briefly re-
view that formalism here. The starting point is the semi-
classical Danos-Okamoto relation'? for the energies of
the dipole modes E,, corresponding to oscillations along
the principal axes of a spheroidal nucleus

— R R#—
E#(B,Y)———E}— 140.08

m

) (1)

where for small deformations
R,=R[1+(=1I*IV5/4n(B+V6un)] . @)

The index u is the Cartesian label for the principal axis,
whose length is R w the parameter S is the overall defor-
mation, and the parameter 7 measures the deviation from
axial symmetry
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for the dipole modes along the Cartesian axes in the in-
trinsic frame. For a nonstatic nuclear surface, one in-
vokes the adiabatic approximation, since the frequency of
the dipole vibration is much larger than that of the sur-
face vibrations. For axially symmetric, deformed nuclei,
one sets B=P,+& and =0+, and expands the GDR
energies about the equilibrium values 3, and 0. The pa-
rameters £ and 7 are the amplitudes for 8 and y vibra-
tions, respectively, and are treated as dynamic variables.
For the present analysis, the coupling of the GDR to S8
vibrations is expected to be small, and in any case it is not
of interest. We therefore set £=0 and only explicitly
consider the coupling to y vibrations. We also switch to
a spherical basis, with q;r),qn being the creation and an-
nihilation operators of the dipole mode with projection of
angular momentum along the intrinsic symmetry axis
Q1 =0,x1. Finally, we assume small amplitude vibrations
and, therefore, only retain terms linear in 7. The GDR
Hamiltonian then separates into a part H gip depending
only on the equilibrium deformation 3, and a part H,,
depending on the dynamic variable 7

n—ﬁl ' 3) Hdlp_Hd|p+Hint ’ 5)
V2 where
. . T . Q=+1
This leads to the following Hamiltonian for the GDR: dlp 2 EQ ‘10 da
Hyp='S E 87010, . @ ®)
Pt g H, (‘hq_l+q—1‘I1)E+1(0)G+1‘/677
where QZ,Q,1 are the creation and annihilation operators =~ We have defined the quantities
|
Eq(0)=E[140.08(—1) /B [14+ (-5, (7
Go=(—1'21(4m/5) 72 —[14(—1)!%1B] 7' +0.08[1+0.08(— 1) 1151} ®
[
and the y vibrations and are uniquely determined by the
—(47/5)-128. properties of the low-lying K=2 y band.
Bo=(4m/5)""h0 ®) In the absence of H,,, the diagonalization of H is
The full DCM Hamiltonian is straightforward and the energy levels relevant to '®Er
o are shown in Fig. 1. The lowest dipole states are the
H=H+H,+Hgp+Hi , 10 g—q=0 longitudinal mode, corresponding to dipole vi-

where H_; accounts for the rotational motion normal to
the symmetry axis. In the harmonic approximation the
Hamiltonian for the y vibrations H,, is given by’

# d?

Hy= 4—B—;—2+C'r] +

Y

IGBnZ[(K Ji3)r—1]. (11)
The first term is the translational kinetic energy associat-
ed with the y vibrations, the second term is the vibration-
al potential energy, and the third term is the kinetic ener-
gy of rotation along the symmetry axis, where K is the to-
tal angular momentum along the symmetry axis and j; is
the projection along the symmetry axis of the GDR an-
gular momentum operator. The eigenvalue of j; is Q.
The parameters B and C are, respectively, the inertial pa-
rameter and the restoring force constant associated with

brations along the symmetry axis with energy
Ey(0)=E(1-0.588,) ,

and the K =Q =1 transverse mode, corresponding to di-
pole vibrations normal to the symmetry axis with energy

E. ~E(1+0.298,) .

This is the familiar deformation splitting of the GDR.
The structure of H;, shows that only the transverse
GDR couples to the ¢ vibrations, so we focus the discus-
sion on this mode. The uncoupled spectrum has a se-
quence of transverse modes at the energies E ., +nk,,

where E, =#V C/B, corresponding to the s1mu1taneous
excnatlon of the transverse GDR and n y-vibrational
phonons (i.e., the transverse GDR built on the n phonon
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FIG. 1. The relevant energy levels for '*°Er, including the
ground-state band, the y band, and the uncoupled components
of the giant dipole resonance. The wavy lines show which di-
pole levels are connected to which low-lying levels via a dipole
transition.

y vibration). In particular, the n =0 and n=1 states con-
tain all the transverse dipole strength built on the ground
state and the y-vibrational band head, respectively. Since
H,, is linear in the y-vibrational amplitude, the states
with n differing by *1 are mixed, resulting in a fractiona-
tion of the ground-state (n =0) dipole strength and a
mixing of components with different n into the resulting
eigenstates. The simultaneous presence of both n =0 and
n=1 components in a particular eigenstate gives rise to a
nonvanishing amplitude for inelastic photon scattering to
the y-vibrational band head. In first-order, two-level per-
turbation theory, the strength with which the n=1 and
n =0 components are mixed depends on the ratio of the
matrix element (n=1|7|n=0) to the energy separa-
tion E,. The matrix element is related to the zero-point

1 EE'’

TN RI A e

The DCM does not specify the widths of the GDR states
I',. We parametrize these widths according to the phe-
nomenological prescription of Danos and Greiner,'?

[,=T\E,/E)®, (15)

and adjust I'y and § to fit some body of data, such as the
photoabsorption or the elastic scattering cross section.
Before proceeding, we point out that the formalism

7 = (IFID|17) (17| DljoT)

amplitude for y vibrations’ 7

Bo¥ #
n=1 n=0)=—47=————.
(n=1]n|n=0)="7~ VETT
*“Soft” vibrations (¥ large or B small) imply strong mix-
ing whereas “stiff” vibrations (¥ small or B large) imply
weak mixing. Therefore, the inelastic scattering cross
section into the y-vibrational band head is expected to be
a sensitive function of 7; we demonstrate this point ex-
plicitly in the following.

The actual calculation proceeds along the lines out-
lined by Semenko.!! One diagonalizes the full Hamiltoni-
an in the basis of eigenstates of the uncoupled Hamiltoni-
an H.+H,+HY,, for which all the matrix elements
can be computed analytically. We have determined that
stable results for the n =0 and n=1 components (the
only ones of importance for the inelastic scattering exper-
iment) are achieved if multiphonon y-vibrational states
up to n=7 are included. The matrix diagonalization
yields both the dipole energies, E,, and the wave func-
tions for both the low-lying, |/ j+), and dipole states,
| 1, ). These are then used to calculate dipole transition
strengths connecting the dipole and low-lying states,
(17]ID|II). These quantities are related to the cross
sections as follows:* (i) photoabsorption,

4
o,= ‘/’T_f; ImP, , (12)
(ii) photon scattering,
do (E,0)
ot g+t ’
S E 2
T=F§ | P; | gj(G)Sj,f , (13)

where the angular distributions are given by
g0(0)=1(1+cos?0) ,
g,(0)=L(13+cos?0) .

Here, 0 is the scattering angle and E and E’ are the ener-
gies of the incident and scattered photons, respectively.
The polarizabilities are given by

1 1

+ (Ze)?
E,+E'+4il, " E,—E—LT,

AMc?

—8,68,0V'3

(14)

r

just described is not identical to that described both by
Arenhdvel et al.® and by Eisenberg and Greiner’ and
used by us in our previous analysis.” These latter treat-
ments solve the eigenvalue problem for the y vibrations
in an approximate manner rather than exactly as we do
here. The two formalisms do not appear to be equivalent.
This was pointed out long ago by Semenko'! but has been
largely ignored in the literature.
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B. Results

We now describe in detail our results. The input pa-
rameters'* include the deformation B,=0.30%0.05, the
rotational energy e=E, . /3=0.0269 MeV, the width pa-

8

rameters I'y and §; the mean energy E of the GDR, and
the two parameters characterizing the y vibrations B and
C (or, equivalently, E, and 7%). The energy
E,=E,, —€=0.759 MeV. The calculation was done for

various fixed values of 7 ranging from 0° to 20°; for each
value, the width parameters and E were adjusted to fit the
photoabsorption cross section'’ o,. The results are sum-
marized in Figs. 2-7.

Figure 2 shows the distribution of ground-state dipole
photoabsorption strength, or equivalently, the distribu-
tion of elastic scattering amplitudes as a function of 7.
The K =0 mode is near 12 MeV and is not affected by the
coupling to y vibrations. The K =1 mode is concentrat-
ed in the 15-17-MeV region and splits into several peaks
depending on the size of ¥, separated roughly by E, .
The larger the value of 7, the larger the fractionation of
strength. Figure 3 shows the distribution of amplitudes
for inelastic scattering to the 2% level, consisting of one
positive component and one or more negative com-
ponents. Both the absolute size of the amplitudes and the
separation between the centroids of the positive and neg-
ative components increase with increasing 7, resulting in
a concentration of scattering cross section to the 2;" level
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FIG. 2. DCM results for the distribution of dipole photoab-
sorption strength (or, equivalently, the distribution of elastic
scattering amplitudes) for '%®Er, calculated as a function of the
zero-point vibrational amplitude 7.

which peaks in the region of the K=1 strength and
which increases with increasing 7. This is shown in Figs.
5 and 6, which we discuss later. Figures 4 and 5 show o,
and the scattering cross sections, respectively. The points
in Fig. 4 are from Ref. 15 and the curve in both figures
was calculated with ¥ =12°. However, for both o, and
the scattering into the ground-state band, the curves look
virtually identical for all values of 7 up to 20°. The
reason is that these cross sections are mainly determined
by the relative strengths and energy separation of the
K =0 and K =1 components, which are not a sensitive
function of 7. In the calculation, the increased splitting
of the K =1 mode with increasing ¥ is compensated by a
decrease in the damping widths in order to obtain an ac-
ceptable fit to o,. In the absence of any theoretical gui-
dance for these damping widths, we conclude that these
cross sections are completely insensitive to the coupling
to y vibrations. The energy dependence of the scattering
to the 27+ level is equally insensitive to 7: It always peaks
in the 15-17-MeV region. However, the overall magni-
tude of that cross section is very sensitive to 7. This is
shown in Fig. 6, in which the peak ratio Ry of the
scattering to the Z,T level to the scattering to the ground-
state band is plotted as a function of 7. In Fig. 7, the ex-
perimental data for R, as a function of energy are
presented along with calculations for 7 =12° and 7 =18".
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FIG. 3. DCM results for the distribution of amplitudes for
inelastic scattering into the K=2, y-vibrational band head in
168Er, calculated as a function of the zero-point vibrational am-
plitude 7.
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FIG. 4. The photoabsorption cross section for '®Er. The
points are the data of Ref. 15 and the curve is the present DCM
calculation, assuming 7 =12°.

We now must decide on the appropriate value of 7 for
166

Er.

We first define the ratio R,:

B(E2;0; —23)
Rpy=——""7"—"-"—, (16)

B(E2;0f —2)

and note that R, is related to 7 by’
2

1-0.728,
=y | 17
Rex=Y" 7300368, an

Experimentally,'* R;,=0.022, thereby implying 7 =12°
and R, ~4%, in reasonable agreement with experiment,
as shown in Fig. 7. On the other hand, in the pure liquid
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FIG. 5. DCM calculations of the scattering cross sections
into the ground-state band (g) or ¥ band (y) of '®Er, assuming
¥ =12° and other parameters determined from the properties of
the low-lying levels. The inset show the relevant levels in the
decay scheme.
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FIG. 6. The DCM result for the peak ratio R, of cross sec-
tion populating the y-band head to that populating the ground-
state band, calculated as a function of 7. The single arrow
points to the value of 7 specified by the liquid drop model, and
the double arrow points to that value determined by the experi-
mental value of Rg,. Other parameters are determined by the
properties of the low-lying levels of '%°Er.

drop model (LDM),” 7 is completely determined by the
parameters € and E,: (7) pm="1"3€/E,,, thereby imply-
ing =18 and R, ~10%. Our previous calculations as
well as those of Refs. 6 and 7 utilized the LDM value of
7, thereby resulting in an overprediction of Ry, by a fac-
tor of 2.3 and an overprediction of R, by a factor of 3.
This reduction of R, from its LDM value is a systematic
occurrence in the rare-earth deformed nuclei, and it re-
sults in a significant reduction in the coupling between
the GDR and the y vibrations. We conclude that, using
input parameters in agreement with the known properties
of the low-lying levels, the DCM calculation is able to ac-

14 15 6 | 17
E, (MeV)

FIG. 7. The value of R, plotted as a function of incident
photon energy. The points are the data of Ref. 5. The solid and
dashed-dotted curves are DCM calculations with ¥ equal to 18°
and 12°, respectively. The dashed curve is the IBA calculation
with the value of X, =X adjusted to reproduce the experimental
Rp,. The dashed and dashed-dotted curves are the only ones
that should be compared to the data or to each other, as dis-
cussed in the text.
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count for all the known photonuclear data for the GDR
of '®Er, including both photoabsorption and photon
scattering cross sections, and especially the inelastic pho-
ton scattering into the ¥ band.

III. IBA ANALYSIS

An analysis of the photonuclear data for the GDR of
168Er in the framework of the IBA has been presented by
Scholtz and Hahne.® Our treatment is similar to theirs in
many respects, but different in one important respect,
which we discuss later. We first review the IBA formal-
ism.

In the IBA, the low-lying states are described as in-
teracting bosons of spins 0 and 2, or s,d bosons. The gi-
ant dipole resonance is described as spin-1 p bosons. The
Hamiltonian of the low-lying states and their interaction
with the dipole states are constructed using general
group-theoretical techniques. In the usual second quan-
tized formalism,'® the Hamiltonian assumes the general
form

H=H,+H,+H,, . (18)

J

The low-lying collective levels are eigenstates of H;:
Hy=efg+ao(P1-P)va(L-L)+ay(0-0)
+ay(Ty-T)+a (T, Ty, (19)
where
Ay=d"d),
P=1d-d)-17),
E=viod™>xd)",
O=(s"xd+d"x5)+x(d"xd)?,
Ty=(d"xd)?¥,
Ty=(d"xd)* .
The Hamiltonian describing the giant dipole resonance is

t
H,=¢,(p"p), (20

and the interaction Hamiltonian,

Him=b0(dTXa')(0),(pTXp~)l0)+b1(d*xg)ll),(p1'x-p~)(l)+b2[(sTXg+dfx—§)(2)+xp(d7xg)(2)].(pfxp~)12) . 21

The parameters appearing in front of the various opera-
tors in the Hamiltonian are not yet constrained by any
microscopic theory. In principle, there is complete free-
dom to adjust the a; in H, to fit the known properties of
the low-lying states. There is less guidance in choosing
the b; in H,,,, and it is quite easy to demonstrate that, in
the absence of any constraints, important features of the
GDR, such as the scattering cross section into the y
band, are completely unconstrained by the model. There-
fore, in order to facilitate a meaningful comparison with
both the photonuclear data and the DCM calculations,
we have chosen to simplify the IBA Hamiltonian as
much as possible. Ultimately, of course, the extent to
which this simplification is valid must be answered exper-
imentally.

Since '%®Er is far from closed shells, one expects the
IBA Hamiltonian to have approximate SU(3) symmetry.
Following Scholtz and Hahne, we first investigate the
consequences of pure SU(3) symmetry. This requires that
only the £-L and Q-0 terms in H,, are nonvanishing,
and that the X parameter in the definition of the quadru-
pole operator Q exactly equals —V'7/2. Furthermore,
motivated by the geometrical picture of the DCM, we as-
sume that the chief microscopic mechanism for the cou-
pling of the GDR to the low-lying collective states is
through the quadrupole degree of freedom. Accordingly,
we retain only the b, term in H;,, and we require that X,
is identically equal to X.

With these assumptions, the spectrum of low-lying and
GDR states has the following features.

(1) The moment of inertia of the rotational bands, as
well as the excitation energy of the ¥ band, is determined
by the parameters a; and a,, which can be adjusted to
reproduce the experimental values.

(2) The energies of the lowest ¥ and B bands are degen-
erate.

(3) The E2 transition rate connecting either the 3 or y
bands to the ground-state band is identically zero.

(4) The GDR splits into exactly two modes, which can
be identified with the longitudinal and transverse modes
in a geometrical picture. The mean GDR energy is ¢,
and the energy splitting is determined entirely by b,.

(5) The electric dipole transition rate connecting the
GDR to the ¥ band is identically zero.

Clearly, items (2)—(5) are not in accord with experiment,
so it is necessary to deviate from the pure SU(3) symme-
try. Warner and Casten have shown that by allowing the
parameter X to deviate from its SU(3) value, one can
simultaneously remove the B-y degeneracy as well as
reproduce the E2 transition rates connecting the ¥ band
and the ground-state band.!® This is called the “con-
sistent Q formalism” because the same quadrupole opera-
tor is used in the Hamiltonian as is used to calculate the
E2 transition rates. Motivated by this, we have extended
the formalism so that the same quadrupole operator is
also used in H;,; i.e., X, =X. With this ansatz, the same
number of free parameters is needed to do the IBA calcu-
lation as was needed to do the DCM calculation. These
are the parameters a, and a,, which are adjusted to
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reproduce the 2, and 2" energies (equivalent to € and E,
in the DCM); the parameter X, which is adjusted to
reproduce the E2 ratio R, in Eq. (16) (equivalent to 7 in
the DCM); the parameter b,, which is adjusted to repro-
duce the deformation splitting of the GDR (equivalent to
B, in the DCM); and the parameter €,, which is adjusted
to reproduce the mean energy of the GDR (equivalent to
E in the DCM). Of course, the width parameters must be
adjusted to fit Ty just as in the DCM. However, there
are no further free parameters and, in particular, there is
no further freedom in predicting the branching ratio R,
for decay to the ¥ band. It should be noted that without
the restriction X, =X, one can achieve a wide range of R,
while still reproducing the remaining photonuclear data.

The actual calculation utilizes the computer codes GR
and GRT,!” which we have adapted to calculate photoab-
sorption and photon scattering cross sections. Assuming
a value of N=15 bosons appropriate to ®Er, the remain-
ing input parameters, chosen as discussed earlier, were
a;=0.0075 MeV, a,=-0.0175 MeV, X=-0.4919,
€,=14.26 MeV, and b,=0.3520 MeV. The resulting
cross sections for photoabsorption and photon scattering
into the ground-state band are virtually identical to those
obtained with the DCM and are in excellent agreement
with the existing data. The calculated curve for R, is
plotted in Fig. 7; this is also in good agreement with the
data, although not in agreement with that of the DCM.
Scholtz and Hahne® also achieved good agreement with
the photonuclear data. They assumed pure SU(3) sym-
metry for Hy, retained the terms b, and b, in H,,,
without the restriction X,=X. We prefer our own ap-
proach in part because we are able to account for all ex-
isting data with two fewer parameters, and in part be-
cause we believe it is the more consistent approach, as
discussed in the following.

IV. DISCUSSION

We have shown that both the DCM and the IBA are
able to account for the existing photonuclear data for
166Er, particularly those data relevant to the coupling of
the GDR to the y band. Each calculation was done with
a restricted form of the respective model: For the DCM
we assumed the harmonic approximation for the y vibra-
tions, while for the IBA we assumed approximate SU(3)
symmetry. Both calculations require a single parameter
to describe the coupling of the GDR to the surface de-
grees of freedom. This parameter is fixed in the DCM by
the Danos-Okamoto relation [Eq. (1)] and in the IBA by
the parameter b,. In the DCM one is able to successfully
predict the deformation splitting of the GDR, whereas in
the IBA the parameter b, must be adjusted to reproduce
the splitting. In each model, once the coupling parame-
ter is fixed and the model has been adjusted to reproduce
the properties of the low-lying levels, there is no addition-
al freedom in predicting the coupling of the GDR to the
v vibrations. Both models agree with the existing
scattering data, although they disagree with each other
by a factor of about 2.

Scholtz and Hahne® have carried out an extensive com-
parison between the DCM and the IBA, and have applied
it to the case of '%Er. They conclude that there is a fun-
damental difference between the two models in their pre-
dictions for the coupling of the GDR to the low-lying vi-
brational bands. They demonstrate that this difference is
not just due to a choice of parameters, but is inherent in
the structure of the two models. While we do not dispute
this conclusion (indeed, the present calculation seems to
reinforce it), we do dispute part of the reasoning that
leads to it. The conclusion is based in part on the obser-
vation that in one form of the IBA, namely, pure SU(3)
symmetry, the coupling of the GDR to y vibrations ex-
actly vanishes, whereas there is no limit of the DCM that
achieves the same result. However, they have used the
liquid drop parameters as input into the DCM, thereby
removing one degree of freedom from the model. If one
is really to compare the DCM to the SU(3) limit of the
IBA, one needs to let 7 —0 or, equivalently, the mass pa-
rameter B — oo, since both models would then predict
R;=0. Under these conditions, the DCM would also
predict a vanishing of the coupling between the GDR
and y vibrations. In our own calculations, the compar-
ison is done in a self-consistent manner in that the two
parameters governing the coupling to the ¥ band, name-
ly, 7 and X, =X, are both controlled by the experimental
value of R, and nothing else. We show that under these
conditions there is indeed an asymmetry between the two
models, and we suggest that it would be a worthwhile
goal to try to understand the fundamental origin of this
asymmetry. Clearly, it would also be desirable to have
scattering data that would better discriminate between
the two models.

V. CONCLUSIONS

We have reanalyzed the existing photonuclear data for
1Er in the framework of both the dynamic collective
model and the interacting boson model. Using input pa-
rameters consistent with known properties of the low-
lying levels, and using a restricted form of the IBA Ham-
iltonian, both models adequately account for all the exist-
ing data, in particular the inelastic photon scattering
cross section into the y vibrational band head. This
latter point disagrees with our earlier conclusion about
the DCM. However, better data will be needed before
one can further refine the models or decide which model
works better.
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