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The effects of charge-symmetry breaking of nuclear forces can be observed in neutron-proton
elastic scattering as a difference between neutron and proton analyzing powers. A formalism has
previously been developed and applied to compute these effects in terms of electromagnetic interac-
tions, one-boson exchange potentials, the two-pion exchange potential, and possible quark effects.
The results were found to be in agreement with the one existing measurement. Here we extend this
work and study in detail how these charge-symmetry breaking predictions vary with the particular

choice for the nucleon-nucleon force.

We compare predictions for Reid soft-core, Paris,

coordinate-space Bonn, and hybrid quark-meson potentials. We show in particular that charge-
symmetry breaking measurements can place strong restrictions on models of the nucleon-nucleon

interaction.

I. INTRODUCTION

Discussions of the significance of charge-symmetry
breaking (CSB) have been given in a number of re-
views.! ™3 Charge symmetry implies the invariance of a
system under a transformation which reverses the sign of
the third component of the isospin for all of its constitu-
ents (e.g., p—n and n —p). Here we are concerned with
the phenomenon of neutron (n)-proton (p) elastic scatter-
ing, which is of particular interest since the absence of
Coulomb forces makes it possible to establish the ex-
istence of CSB unambiguously.

A recent TRIUMF experiment* has found evidence of
CSB in this system by measuring a difference between
neutron and proton analyzing powers in n-p elastic
scattering at 477 MeV at the zero-crossing point of the
analyzing power. Their nonzero result is a direct mea-
surement of CSB, since it shows that the system is not in-
variant under the transformation n<sp. The difference in
n and p analyzing powers is AA(0)=4,(6)— A4,(0),
where A4,(6) and A4,(6) are the neutron and proton
analyzing powers, respectively. Denoting the zero-
crossing angle of the analyzing power in the center-of-
mass (c.m.) system by 6., we define AA=AA4(6, ).
The quoted result at 477 MeV is AA=[37
+17(stat.)+8(syst.)]x 10™*, which is significant since
CSB had not previously been established unambiguous-
ly.'=3 An experiment at 350 MeV is planned at TRI-
UMTF, while another at 188 MeV is proceeding at the In-
diana University Cyclotron Laboratory (IUCF). Similar
measurements at energies up to 800 MeV are possible at
LAMPF.}

There have been a number of previous theoretical
treatments of CSB in the n-p system.~% Recent calcula-
tions® !° have found results in agreement with the one ex-

38

isting TRIUMF measurement. These calculations at-
tempt to understand the nonzero result for A 4 in terms
of electromagnetic (em) interactions, one-boson exchange
potentials (OBEP), and the two-pion exchange potential
(TPEP). Estimates of possible contributions from quark
effects have also been made.!® Our aim here is to extend
the work of Refs. 9 and 10 by using the developed formal-
ism to make a detailed comparison of CSB predictions
from different theories. We consider in particular to
what extent CSB measurements in the n-p system can be
used to place constraints on theories of the nucleon-
nucleon (N-N) force. The present work is complemented
by recent calculations!! of A4 from a momentum-space
OBEP. The reported results compared reasonably well
with those of Refs. 9 and 10. An additional calculation'?
of the contribution to A4 from the n-p mass difference
using a relativistic formalism and a covariant representa-
tion of the N-N on-shell scattering matrix yielded smaller
results. However, this relativistic approach contains no
explicit potential and requires an arbitrary off-shell extra-
polation of the T matrix. This treatment in effect uses a
very soft pion form factor, which acts to reduce the dom-
inant CSB contribution from one-pion exchange.

N-N forces can be divided into four classes' according
to their isospin invariance, where only class III and IV
potentials give rise to CSB. In the np system only class
IV forces can contribute to CSB. The simplest such
forces are

(1.1a)
(1.1b)

VW =(1,—7,)5(0,—0,)-Lv(r),
VWV =(1,X7)(0,Xa,) Lw(r) ,

where L is the orbital angular momentum operator in the
center-of-mass frame and r=r,—r, is the internucleon
separation. CSB in the np system requires mixing of
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T =0 and T =1 states and, hence, also of S =0and S =1
states. Then only J =L states can contribute to CSB in
n-p elastic scattering and hence to A 4. The calculations
are performed using the distorted-wave Born approxima-
tion (DWBA), where

V=V+V" (1.2)

and

8T = [y TV ™My (r) . (1.3)
The initial and final distorted waves (¢, and ¢) are cal-
culated from some charge-symmetric model of the N-N
interaction (Vg).

In Sec. II we briefly review the formalism used in the
calculations and the various class IV CSB potentials. A
full discussion of these can be found elsewhere.'® Only
four significant contributions were found: (1) n-p mass
difference in the one-pion exchange potential (OPEP), (2)
one-photon exchange between the proton charge and the
neutron anomalous magnetic moment, (3) mixed rho-
omega exchange, and (4) n-p mass difference in one-rho
exchange. The various choices of the (charge-symmetric)
N-N interaction are discussed in Sec. III. We consider, in
particular, the Reid soft-core (RSC),!’ Paris,!*
coordinate-space Bonn (OBEPR),!® and Virginia-Mainz'®
(VMZ) hybrid quark-meson potentials. For the RSC and
Paris potential cases typical values are chosen for the
coupling constants and form factors in the evaluation of
V1V, Since the Bonn (OBEPR) and VMZ potentials are
OBEP models, we perform consistent calculations with
the parameters of Vg also used to calculate V!V, The
numerical results are presented and the different models
compared in Sec. IV.

II. CSB POTENTIALS

The elastic scattering of two spin-1 particles can al-
ways be specified in terms of six invariant amplitudes,”!’
assuming only Lorentz invariance, parity conservation,
and time-reversal invariance. @ These amplitudes
a,b,c,d,e, and f are complex functions of the total c.m.
energy E and the c.m. scattering angle 6. The scatter-
ing matrix spin operator can be written as

M=1[(a +b)+(a —b)(a,n)0,n)
+(C +d)(01‘m)(02'm)
+(c —d) o ;- Doy D)

+e(o,+0,)n+f(o,—0;)n], (2.1

where k; and k, are the initial and final c.m. momenta
for the scattered particle (particle 1) and where
k,+k;

_ k,—k; k, Xk,
|k,+k; |’

m= , N=
lk,—k; | Ik, xXkg |
(2.2)

It is straightforward to show'? that the difference in n-p
analyzing powers is given by

AA(0)=A,(0)— A,(0)=2Re(b*f) /0y, (2.3)
where 0 is the unpolarized cross section
o= |92
0:
aQ unpol
=1Te(MM)=1(|a|*+ |b|*+ |c|?
+ld 2+ le P+ 1f1D . @4

As was already discussed, CSB in n-p scattering requires
spin singlet-triplet mixing and, hence, requires f (k,0)0
in Eq. (2.1), where k= | k; | = |k, |.

The bar phase-shift L-S representation of the N-N
scattering matrix'® can be extended to include a new pa-
rameter 7, (the spin singlet-triplet mixing angle). This
representation can then be related to the six amplitudes
of Eq. (2.1) and, in particular, it can be shown’ that

fk0)=== 3 (2] +1)sin(27,)
2%k 2

xexp(i&; +i8,,)d1,(8), (2.5)

where the d7, are the Wigner functions and §; and 5,
are the singlet and uncoupled triplet bar phase shifts, re-
spectively. Use of the DWBA and using sin(27,;)~27,
(since 7, is very small) allows ¥V to be related to f (k,8)
and hence to 7;. This gives

7,=—2ErkVI({T +1 )fo‘”dr r2R,(r)g(rRy(r), (2.6)

where E;=(total) c.m. energy =2FE with E the energy
per nucleon in the c.m. frame and where

g(r)=v(r) and (—1Yw(r) 2.7)
for Egs. (1.1a) and (1.1b), respectively. The distorting
effects of the strong interaction are included through the

radial wave functions R,(r) and R j;(r), both of which are
normalized such that

R (r) —-—»sin(kr—%Jn'+S)/kr ,

r— oo

(2.8)

where §=8, and §,; for R,(r) and Ry,(r), respectively.
The radial wave functions R (r) are calculated for each of
the N-N interactions (i.e., for each Vg) to be discussed in
Sec. III. The charge-symmetric bar phase shifts (i.e., ex-
cluding 7,) are taken from the phase-shift analysis of
Arndt et al.'”” We do this in order that we obtain the
correct analyzing power zero-crossing angle for the
different theories. In this sense we are not performing a
completely consistent calculation!! for each theory.
However, our objective is to obtain the most reliable esti-
mates possible for A 4 and to meaningfully compare A 4
predictions from the different theories.

The CSB contributions considered in Refs. 9 and 10
are shown in Fig. 1, with the exception of those arising
from quark effects. We neglect the TPEP and quark con-
tributions since they were found to be very small. In
evaluating contributions from these one-boson exchange
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(d) (e)

FIG. 1. The charge-symmetry breaking processes considered
(with the exception of quark effects). Shown are (a) one-photon,
(b) one-pion or one-rho, (c) mixed rho-omega, and (d) uncrossed
and (e) crossed two-pion exchanges. The crosses indicate the
CSB vertex function arising from the neutron-proton mass
difference. The cross hatching refers to the usual subtraction
procedure in (d). Only (a), (b), and (c) have been found to have
significant effects.

diagrams the form factors applied to each vertex were'’

where a=y, 7, p, and w. The exception is the VMZ po-
tential'® which uses Gaussian form factors derived from
the constituent quark model. The form factors are not
explicitly included in the following equations, but are to
be understood.

The one-photon exchange CSB contribution has the
form of Eq. (1.1a):

2 K
e n {M|1d |l
=— |- — ==, 2.10
by(r) 47 |4M? | E |r dr |r .10
where k, = —1.91 is the anomalous magnetic moment of
the neutron (e?/47)= -1 is the fine-structure constant,

137

and M =938.93 MeV is the nucleon mass. The y NN ver-
tex form factor used here had n,=2 and A,=842.6
MeV, which is the conventional dipole fit to the experi-
mental®® proton form factor (c.f. Ref. 10). The (M /E)
factor is a relativistic correction. The infinite range of
the em interaction causes large J contributions to be im-
portant. However, since form factors and nuclear distor-
tion become negligible for J % 5 an excellent analytic esti-
mate can be made for the sum of all higher partial
waves.” 10

The n-p mass difference gives rise to a class IV CSB po-

A2_m? |"a tential in both charged one-pion and charged one-rho ex-
F, (g = % (2.9)  change diagrams. The OPEP contribution has the form
A,+q of Eq. (1.1b):
J
g2 | 1 (M) [M—M, |14 |1
- |27 = n e |24 |1, Mt
w, (r)= ar | o2 | E M ; dr e ] , (2.11)

where (M, —M,)=1.293 MeV is the n-p mass difference and (M /E ) is a relativistic correction. The exact choice of
(g2 /4m), m_, and form factor depend on the potential being considered and will be discussed in Sec. III. The one-rho
exchange contribution has pieces of the form of both Egs. (1.1a) and (1.1b):

3

e | & |1 [ M| | MMy 11 a1

P 4 ) aM? | E 2M rdr|r
2

w (= |52 1+E+3M£p_ E+M |/,

P 47 M g, M | g,

where again a relativistic correction has been included
and (gf, /4m), (f, /8,), m,, and A, will be chosen later.

Another contribution comes from mixed rho-omega
exchange. Since the rho and omega mesons are isovector
and isoscalar, respectively, this obviously allows T =0
and T =1 mixing. The p-w mixing matrix element has
been extracted from experimental data by a number of
groups"?' with values for (w|H |p°) ranging from
—3400 to —6000 MeV2. A recent treatment??> drawing
on new data argues for a value of —4520 MeV2. We will
follow Ref. 10 here and use the conservative value?® for
ease of comparison:

(w|H|p°)=—3400 MeV? . (2.13)

The p-w mixing contribution to A 4 is essentially propor-

1
2M?

o

(2.12a)

3
M Mn —Mp 1
£ M " (2.12b)

-

tional to (2.13). The uncertainty in the p and @ coupling
constants leads to an uncertainty in this effect of at least
30%. The resulting class IV potential has the form of
Eq. (1.1a):

v (r)=—fpgw 1 (w|H|[p®
pe 4m 2M* m2—m?

—myr —mr
14d ‘5———8— 2.14)

X
r dr

r

No relativistic correction is included, and so for con-
sistency E;r—2M in Eq. (2.6) for this contribution. As
for the 7 and p parameters, (g2 /4m), (f,/8,), m,, and
A, will be fixed according to the particular N-N potential
being considered.
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III. N-N POTENTIALS

We now discuss the charge-symmetry part of the N-N
interaction. We have chosen different distorting poten-
tials to investigate the model dependence of A 4. As stat-
ed in the Introduction we have chosen for this purpose
the RSC," Paris,'* Bonn'’ (OBEPR), and VMZ (Ref. 16)
potentials. These models differ strongly in their treat-
ment of the short-range part of the N-N interaction.

Some of these models have been discussed previously in
this context. Extensive calculations with the RSC poten-
tial can be found elsewhere.'® A calculation using the
Paris potential has been reported,® but did not include
sufficient partial waves for the em contribution. A
momentum-space version of the Bonn potential has also
been used to evaluate A A4.'' Calculations in the plane-
wave Born approximation have been made and show the
importance of including the effects of distortion.'© How-
ever, to date no systematic investigation of the model
dependence of these predictions has been carried out.

The RSC potential uses Yukawa potentials to
parameterize the N-N force. Only the long-range part
can be identified with an existing meson, i.e., the pion.
Medium- and short-range parts are purely phenomeno-
logical. For partial waves with L > 2 the potential is set
to zero.

The original version of the Paris potential was based on
dispersion theory and introduced a phenomenological,
energy-dependent potential for » <0.8 fm to treat the
short-range N-N interaction. In our calculations the
coordinate space version!* was used, which is a parame-
trization in terms of a regulated sum of Yukawa-type in-
teractions.

The Bonn potential used here is the coordinate-space
version (OBEPR) with the parameters of Table 14 in Ref.
15. It is a nonrelativistic one-boson exchange model with
parameters chosen to give the best fit to empirical data.
The experimental elastic phase shifts are reproduced
reasonably well for E,;, <350 MeV, except for the 'P,
phase shift. The short-range repulsion of the N-N force
arises from an w exchange, with a large w NN coupling
constant, g2y, /47 =20. The Bonn form factors have the
form given in Eq. (2.9).

The VMZ potential is a hybrid model that combines
quark degrees of freedom and quantum chromodynamics
(QCD) symmetries with the successful OBEP description
of the N-N force. The quark degrees of freedom in the
short-range part of the potential are treated via an optical
potential with discrete energy levels for the six-quark
core. This model was motivated by the compound quark
bag model of Ref. 24. We have considered two different
versions, where the six-quark core radius is either b =1
fm or b =1.2 fm. The medium- and long-range parts are
described by a meson exchange model with coupling con-
stants fixed by QCD symmetries. In this model a constit-
uent quark model with relativistic corrections was used
as the basis to determine coupling constants and vertex
form factors. The boson masses and coupling constants
are given in Table 2 of Ref. 16 (1987). The vertex form
factors of Eq. (2.9) for simple, one-boson exchange lead to
the momentum-space replacement

2 2 )2n
Ay,—myg |7e

Al+q?

1 1
(@®+m3)  (@®+m?)

(3.1

The vertex form factors for the VMZ potential give rise
to a Gaussian function

1
(@+m2)  (@+m?)

exp(—q*/3ad) , (3.2)

where @3=2.8 fm~2 is the spring constant of the har-
monic oscillator potential. The form factors are identical
for each meson vertex (i.e., 7, p, , etc.) in the VMZ gen-
erated CSB potentials. This form factor gives rise to the
coordinate-space replacement!® in Egs. (2.11), (2.12), and
(2.14):

X
Xo— A~

1 exp(—mr)—m,exp(x3)/2x [e"‘erfc
r X0

—(x—»—x)J ,  (3.3)

where x =mr, xg=(m,/ayV'3), erfc(z)=1—erf(z), and
erf is the usual error function. In the limit ay— o the
point nucleon limit is recovered [i.e., rhs — 1lhs of Eq.
(3.3)]. For the y NN vertex in the VMZ model it is also
consistent to use the usual dipole form factor, since the
underlying constituent quark model reproduces the data
to within 10% if relativistic corrections are included.?

In the VMZ model for r < b the N-N system has both a
nonhadronic six-quark component and the usual two-
hadron component. The class IV CSB potentials given in
Sec. II are applicable only for the two-hadron com-
ponent. In Ref. 10 an estimate of the class IV CSB con-
tribution from a six-quark core was found to be negligi-
ble. The quark spatial wave functions were in the com-
pletely symmetric,® which has only a very small two-
nucleon component and so is essentially orthogonal to
the two-hadron component. Thus, the only significant
contribution to a class IV potential is the two-nucleon
contribution given by the equations in Sec. II.

While it is clear what masses, coupling constants, and
form factors to use in the class IV potentials for the Bonn
(OBEPR) and VMZ potentials, the best we can do for the
RSC and Paris potentials is to choose typical values from
low-energy analyses.”®?’ For these two potentials we
have used exactly the same parameters as Ref. 10 (except
for the choice of the Yy NN vertex form factor). The vari-
ous parameters relevant to the class IV potentials are
summarized in Table I.

All of the potentials give a reasonable description of
the deuteron properties and the elastic scattering data for
E,,, <350 MeV.

IV. NUMERICAL RESULTS

The results of our calculations of A4 are shown in
Table II for four energies of interest. The one experimen-
tal result from TRIUMF (Ref. 4) at 477 MeV is also
shown. We illustrate the angular dependence of the con-
tributions to the analyzing power difference in Figs.
2(a)-(d) for E|,, =477 MeV. The differences between the
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TABLE I. The meson parameters used in the class IV poten-
tials of Sec. II. All masses are in MeV and n,=1 for a=m, p,

RSC Bonn VMZ VMZ
Paris (OBEPR) b=1fm b=12fm
gi/an 14.4 14.9 13.4 14.0
m, 139.57 138.03 138.5 138.5
A, 1300 1300
gp/4m 0.55 0.95 1.05 1.10
fo/8, 6.1 6.1 1.53 1.53
m, 770 769 763 763
A, 1400 1300
g2 /4T 8.1 20 9.44 9.85
m, 783 782.6 782.3 782.3
A, 1500 1500

predictions of the four N-N potentials in this figure is typ-
ical of what was also found at the other energies. All of
the predictions for A4 at 477 MeV lie within one stan-
dard deviation of the experimental result, with the obvi-
ous exception of the Bonn (OBEPR) potential.

While we used relativistic kinematics throughout, the
Schrodinger equation was used for calculating the dis-
torted wave functions. This is adequate for the lower en-
ergies (E,, <350 MeV) where the potentials have been
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fitted to the experimental phase shifts, but there is some
small uncertainty in the calculation at 477 MeV, which
can be expected to worsen at 600 MeV. In the
Schrédinger equations for the VMZ potential, a relativis-
tic correction was included.'® These distorted wave func-
tions are then used in Eq. (2.6) to calculate the mixing an-
gles 7 for each of the potentials.

In order to obtain the correct analyzing power zero-
crossing angle and to make a meaningful comparison of
the different N-N potentials, the charge-symmetric phase
shifts are taken from the phase shift analysis of Ref. 19.
We linearly interpolate these phenomenological phase
shifts to the energies of interest and use them together
with the calculated mixing angles ¥ ; to calculate A 4(6)
and A A. In particular for 188 and 350 MeV the 1983 n-p
energy-dependent phase shifts were used, while for the
higher energies of 477 and 600 MeV the more recent 1987
n-p single energy analysis phase shifts were taken. The
recent analyses include high-energy data.

At 477 MeV there are already inelasticities in the 'D,
and *P, channels and no account is taken of these in the
calculations. However, previous estimates'® of their im-
portance have been made and it was argued that their
influence is relatively small. Future work should attempt
to explicitly include pionic degrees of freedom, particu-
larly at higher energies.

For the 7, p, and p-w contributions we keep partial

TABLE II. Comparison of the various model predictions of A 4( X 10*) at four energies of interest
and the one experimental result at 477 MeV. Shown are the laboratory kinetic energy E\,;,, the c.m. an-
gle (in deg) at which the analyzing power goes to zero 6., , and the separate contributions from =, v,
p-o, and p exchanges. The different nucleon-nucleon potentials used are the Reid soft-core (RSC),
Paris, coordinate-space Bonn (OBEPR), and Virginia-Mainz (VMZ) potentials. The VMZ potential is a
hybrid quark-meson potential and the two versions considered here have a six-quark core radius of

b =1 fm and 1.2 fm, respectively.

E,,, (MeV) 0.m (deg) Potential T Y pw p Total Expt.

RSC 7 8 5 1 21
Paris 11 10 7 2 30
188 96 Bonn (OBEPR) 16 12 22 5 55
VMZ b=1 8 9 4 1 22
VMZ b=1.2 9 10 5 1 25
RSC 42 4 -3 6 49
Paris 47 8 3 8 66
350 72 Bonn (OBEPR) 64 13 32 21 130
VMZ b=1 36 6 —1 4 45
VMZ b=1.2 41 9 2 4 56
RSC 43 7 —6 8 52
Paris 46 12 2 10 70

477 70 Bonn (OBEPR) 67 16 38 27 148 37+17+8
VMZ b =1 35 7 -3 4 43
VMZ b=1.2 41 12 2 5 60
RSC 34 13 -5 9 51
Paris 33 18 4 9 64
600 70 Bonn (OBEPR) 54 22 42 26 144
VMZ b =1 26 13 —1 4 42
VMZ b=1.2 31 17 4 5 57
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FIG. 2. The contributions to A 4(60) at 477 MeV as a function of the c.m. scattering angle 6. Shown separately are the (a) pion, (b)
em, (c) rho-omega, and (d) rho contributions. Each figure compares the results for the Reid soft-core (RSC) (—), Paris (——),
coordinate-space Bonn (OBEPR) (----), and b =1 Virginia-Mainz (VMZ1) (—.—-—.) potentials. The vertical dashed line indi-

cates the analyzing power zero-crossing angle 6. ,, =70".

waves up to J =8. As explained in Sec. II for the ¥ con-
tribution we use analytic results for J > 5. Since this em
contribution is long range the numerical integration was
performed out to » =100 fm in Eq. (2.6) to ensure accura-
cy. There are only two minor differences between the
RSC calculations of Ref. 10 and those reported here. The
dipole form factor for the y NN vertex is used here and
we keep up to J =38 for m, p, and p-w. A comparison of
these two sets of RSC results shows that they give essen-
tially identical predictions.

The RSC and Paris cases differ only in the distorted ra-
dial wave functions R; and Ry ; in Eq. {(2.6), since all oth-
er parameters were chosen to be the same. This is true
for the ¥ contribution for all of the potentials, since the
long-range one-photon exchange is well understood. To a
lesser extent the same applies to the 7 contribution (see
Table I). A comparison of Figs. 2(a) and 2(b) shows that
all one-photon exchange contributions compare well,
whereas significant differences begin to appear in the
OPEP contribution. This results because the em interac-
tion is long range and has significant contributions from
high partial waves where the differences between the po-
tentials are becoming very small. Conversely the 7 con-
tribution is dominated by the low partial waves, which
are very sensitive to the detailed short-range behavior of

the N-N potential models. Hence, we see that shorter-
range CSB contributions have increased sensitivity to the
radial distortion of the low partial waves, which is exact-
ly what we would expect.

For the p and p-o contributions another source of
significant differences between the potentials is in the p
and o coupling constants, masses, and form factors. For
example, we find from Egs. (2.6)-(2.14) that ¥; (for
p) gl and 7, (for p-o) < f 8, which enhances the Bonn
(OBEPR) results over those of RSC by 0.95/0.55 ~1.7
(for p) and ~2.1 (for p-0). From the f, g, factor the p-o
contribution from the VMZ potentials will be suppressed
with respect to RSC by a factor of ~2.7. Since Eq.
(2.12b) is expected to dominate the p contribution due to
the extra (— 1)’ factor in Eq. (2.7) (see discussion in Ref.
9) we have the approximate relation

Q 2
g, '

which implies a suppression factor of ~4 for VMZ with
respect to RSC. Different distortions, masses, and form
factors will, of course, cause deviations from these simple
relations. It is clear from an examination of Figs. 2(c)
and 2(d) that for the p and p-w contributions the above

p

7, (for p)cg)
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FIG. 3. The integrands for the 7 contribution to ¥, at 477
MeV after scaling out the coupling constant (g2 /47) (form fac-
tors are included), i.e., see Eq. (2.6). The Bonn (OBEPR) in-
tegrand has a peak almost twice as large as the others and it
occurs at ~0.7 fm than ~1-1.2 fm.

arguments do explain the qualitative differences between
the predictions of the different N-N potentials.

The Bonn (OBEPR) potential clearly stands out from
the others and gives a prediction which is three times
larger than the experimental result. This is partly due to
the large p and o coupling constants and partly due to
differences in distortion for the low partial waves. We
found in particular that 7, was increased significantly by
the radial distortion in the Bonn (OBEPR) potential com-
pared to the others. This is illustrated in Fig. 3, where
the integrands for the 7 contribution to 7, at 477 MeV
are compared after scaling out g2 (form factors are in-
cluded). This indicates a difference in the P waves, which
may be related to the relatively poor fit to the P, phase
shift. It seems reasonable to conclude that the Bonn
(OBEPR) potential is not giving a good description of the
short-range N-N interaction. This may be a result of the
rather large wNN coupling constant which provides a
strong short-range repulsion in the N-N system.

For clarity only the VMZ potential with b =1 fm is
shown in Fig. 2, although the b =1.2 fm results are
somewhat similar. The b =1 fm case gives a slightly
better fit to the deuteron magnetic form factor and the
3P, phase shifts. As is evident from Table II both ver-
sions give comparable results for A 4 at all energies and
at 477 MeV both are in agreement with the experimental
result.

There is, of course, some dependence on the choice of
charge-symmetric phase shifts in the calculation of
A A(6). When the 1987 phase shifts of Ref. 19 at 477

MeV are replaced with the 1983 phase shifts very little
change results.!® However, if a fully consistent calcula-
tion is performed (i.e., using the charge-symmetric phase
shifts from the N-N potential being considered), more
significant changes may result. This is particularly true if
the predicted phase shifts do not correctly reproduce the
correct zero-crossing angle for the analyzing power. This
question has been discussed briefly for the case of a
momentum-space OBEP in Ref. 11.

V. CONCLUSIONS

We have applied a previously developed formalism!'®
for studying charge-symmetry breaking in n-p elastic
scattering in terms of y, 7, p, and mixed p-w exchanges
(the contributions from two-pion and quark effects are
negligible). Our aim was to examine the model depen-
dence of the charge-symmetry breaking predictions. The
charge-symmetric N-N potential models considered were
the Reid soft-core, Paris, coordinate-space Bonn, and
Virginia-Mainz potentials. These models differ principal-
ly in their treatment of the short-range part of the N-N
interaction. Where possible the same parameters used in
the charge-symmetric N-N potential were also used to
evaluate the charge-symmetry breaking potentials.

We found reasonable agreement with the one existing
experimental result at 477 MeV, with the exception of the
coordinate-space Bonn potential. We have argued that
the long-range 7 and y contributions are relatively well
understood and that most of the variation arises from the
uncertainties in the short-range behavior of the charge-
symmetric potentials, and the p and ® coupling con-
stants. We concluded that the coordinate-space Bonn po-
tential is not providing an adequate description of the
short-range N-N interaction. Without additional experi-
mental data it is not possible to make similar comments
about the remaining potentials. It is worth noting that
comparisons can also be made in one-boson exchange
models of the parity violating N-N force.?

We have shown that charge-symmetry breaking can be
a useful probe of short-distance behavior in the N-N sys-
tem. A number of theoretical refinements are desirable,
but it is essential to have more data. We are looking for-
ward to results from IUCF at 188 MeV and TRIUMF at
350 MeV.
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