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Optimal polynomial theory applied to 0—350 MeV pp scattering
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The optimal polynomial theory of Cutkosky, Deo, and Ciulli has been tested for its use in a mul-

tienergy phase-shift analysis of pp scattering data below T&,b ——350 MeV. The power of the optimal

polynomial theory to predict higher partial wave phase parameters is investigated also for a realistic

potential model; the Nijmegen potential. It is seen that the optimal polynomial theory has indeed

predictive power whenever the phase parameters do not decrease too rapidly as a function of the or-

bital angular momentum. For a high-quality phase-shift analysis, the optimal polynomial theory

does not predict F and 6 waves well enough. Therefore, these have to be parametrized. The predic-

tive power of the optimal polynomial theory is then only used for higher partial waves. It appears

that the Nijmegen potential tail contains valuable physical information beyond the optimal polyno-

mial theory.

I. INTRODUCTION

The conventional partial wave (p.w. ) expansion
expresses the nuclear scattering amplitude as an infinite
series of Legendre polynomials Pt(cose), where the ex-
pansion coefficients are related to the p.w. phase parame-
ters. Due to the short range of the nuclear forces, the
higher p.w. phase parameters decrease quite rapidly.
Usually one approximates, therefore, in a nucleon-
nucleon phase-shift analysis, ' the higher p.w. nuclear
phase parameters, which are not searched for by the
longest range interaction one-pion exchange (OPE). One
of the problems of an analysis is to judge which phase pa-
rameters can be determined from the data, and which
phase parameters can be taken to be OPE. The quality of
an analysis can be improved if one has a better approxi-
mation for the higher p.w. phase parameters.

The optimal polynomial theory (OPT) of Cutkosky and
Deo and Ciulli is meant to be a method to expand a
function in a series in the most efficient way. The basic
idea of OPT is to use knowledge about the domain of
analyticity of the function to be expanded. For the
scattering amplitude this means that the expansion is not
made in terms of Pt(cos8), but in functions which are
determined by the branchpoint that is nearest to the
physical region. The p.w. series is known to converge in
the cos8 plane within an ellipse, determined by the mass
of the lightest exchanged particle (the Lehmann ellipse ).
When applied in a pp phase-shift analysis, the advantage
of using OPT instead of the conventional p.w. expansion
would be that one could reach the same accuracy with
less parameters, since the OPT expansion converges fas-
ter. It provides also a smoother transition from
parametrized to fixed phase parameters.

Cutkosky and Deo applied OPT to determine coupling
constants from single-energy np and K+p differential
cross sections. The OPT method has first been tested for
pp scattering by Chao to investigate whether the higher
p.w. phase parameters of the analyses of Macoregor

et al. from 200 to 400 MeV cpuld be reproduced with
OPT from their lower p.w. phase parameters. It later
turned out that for the triplet phase parameters the
method followed by Chao did not work in practice. Rij-
ken et al. ' ' studied the use of a different set of triplet
amplitudes, and found that the higher p.w. phase param-
eters of the Nijmegen soft-core (NSC) potential' could be
predicted by OPT from the lower ones for a number of
partial waves. An acceleration of convergence of the p.w.
series, more primitive than OPT, has been used in the
single-energy phase-shift analyses from 142 to 800 MeV
of Dubois et al. ' In this paper we test the use of OPT
for the description of the pp scattering data with

Ti b &350 MeV.
We do not make use of the refinements in data analysis

as developed by Cutkosky. ' These were used by Chao
in his application of OPT to the pp and np phase-shift
analysis. We only check first whether the applied OPT
formalism"' is capable to produce the higher partial
waves from the lower ones for the Nijmegen potential
model. Secondly, we apply our OPT formalism to a pp
phase-shift analysis and compare the results with those
obtained from using the Nijmegen potential tail for the
higher partial waves.

The outline of the paper is as follows. In the next sec-
tion the method is explained using a simple example. The
specifics of OPT when applied to pp scattering are given
in Sec. III. Here we note that we apply OPT to the K
matrix and not to the T matrix. For the application to
the T matrix we refer to Cutkosky and Deo and Chao.
In Sec. IV the predictive power of OPT is judged from a
realistic nuclear potential model. The predicted higher
p.w. phase parameters can in that case be compared with
the higher p.w. phase parameters of the model. In Sec.
V, where OPT is used in a multienergy pp phase-shift
analysis, we compare the quality of description of the
data, measured by 7;„/Ndf, with and without using
OPT. In Sec. VI the results are summarized and dis-
cussed. Furthermore, an Appendix is devoted to the de-
tailed construction of the optimal mappings.
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II. THE METHOD: AN EXAMPLE

N

f opT(x) = g c„P„(z(x) }
n=0

(2)

In Fig. 2 we show the result for a two-term expansion.
We also show the two-term expansion in x that would re-
sult without OPT. The difference should be clear from
the figure.

To see why the OPT expansion should be better than
the normal one, we look again at Fig. 1. It is know that a
Legendre expansion converges within the largest unifocal
(foci +1) ellipse that contains no singularity. Now, in the
z plane this ellipse is large than in the x plane (see Fig. 1).
Convergence in a larger ellipse automatically means that
the expansion coefficients decrease faster. This hopefully
will lead to a more accurate approximation on [—1, 1]
with a given number of terms. Unfortunately, one can
only be sure of this if the number of terms in the expan-
sion becomes sufficiently large. With a given number of
terms, the quality of approximation depends strongly
on the function that is approximated. For instance, the

IiZ(+m)

x-plane &- plane

FIG. 1. The optimal mapping for x, =1.2.

To illustrate the method we take a simple example.
Let us assume that we are interested in an expansion on
the interval [—1, 1] of the function f (x)=(x, —x }
with x, =1.2. This function has branchpoints at x =x,
and x = Dc, and the cut can be taken along [x„~).

For an expansion in a finite number of powers of x we
have to choose a norm in order to define which approxi-
mation is best. Using the Lz inner product Idx fg on

[—1, 1] results in the approximation

N
f'"'(x)= g a„P„(x).

n=0

The expansion coefficients a„are independent of N be-

cause the P„(x)are orthogonal with respect to the chosen
inner product.

To make an OPT expansion of the function, one first
has to construct a confortnal mapping z(x) which maps
the complex x plane onto an ellipse in the z plane (Fig. 1).
The upper and lower edge of the cut are mapped on to
the border of the ellipse; the points —1 and 1 are invari-
ant. This makes the mapping unique. In the Appendix
we give the detailed construction of this mapping. We
can now expand our example function in Legendre poly-
nornials of z(x). With the L2 inner product J dz fg on

[—1,1]we obtain the approximation

f/x)

2.0

1.5

1.0

FIG. 2. The example function f (x)=(x, —x )
'~' (solid line)

and the two-term expansion approximations to it. Dashed:
without OPT. Dotted: with OPT.

figure analogous to Fig. 2 for f (x}=ln(x, —x) would

have been even more impressive, but the results for
f(x)=Qx, —x would have been meager with a two-

term expansion.
Knowing only the position of the nearest branchpoint,

OPT is the best expansion scheme to choose. Ciulli gave
a detailed mathematical treatment of the method. The
expansion scheme of OPT is "optimal, "only if the expan-
sion coefficients are determined using the function on the
entire interval [ —1, 1]. This is, in fact, what a Legendre
expansion does. In practice, the available data do not
form a continuum on this interval, but merely some spots
on it. The distribution along [—1, 1] only exists in a sta-
tistical sense. Of course, the situation of sparse data
favors an expansion without too many terms, which OPT
seems to provide.

The OPT expansion [Eq. (2)] in a finite number of
powers of z can be rewritten as an infinite series in x

fopT(x)= g a„P„(x).
n=0

In Table I the coefficients a„for a two-term expansion
(labeled OPT) are compared with the exact values. The
coefficient a 2 comes out fairly well. The higher
coefficients are in the right direction, but too small in this
example. Measured with the L2 norm in x, the OPT ex-
pansion with two parameters is more than two times as
good as the normal expansion with two parameters.
Therefore, the use of OPT corrects for a substantial part
of the truncation error that would be present in a two-
term expansion in x. It is seen from the table that ao&ao
and a&&a&. If one knows the lower expansion parame-
ters (as in this example), one can choose a difFerent
method of determining the OPT expansion parameters,
e.g., fixing co and c, such that ao=ao and a, =a&. The
coefficients a„ofthis method, labeled OPT', are also
given in Table I. In Fig. 2 the differences between both
OPT approximations would be sma11. The OPT' method
is somewhat better near x = —1 and somewhat worse
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TABLE I. Exact expansion coefficients of our example function and approximations to them.
Linear: Two expansion parameters determined with the L2 inner product. OPT: Two OPT expansion

parameters determined with the L2 inner product. OPT': Two OPT expansion parameters determined

to reproduce the first two a„.

Exact a„
Linear a„
OPT 8„
OPT' 5„

1.036
1.036
1.022
1.036

0.556
0.556
0.639
0.556

0.290
0
0.229
0.199

0.160
0
0.092
0.080

0.086
0
0.039
0.034

0.046
0
0.018
0.015

0.025
0
0.008
0.007

near x = l.
The method analogous to OPT' will be used in Sec. IV,

where the OPT higher p.w. phase parameters are com-
pared with model values. In the actual analysis the lower

p.w. phase parameters are parametrized as smooth func-
tions of the energy. The OPT expansion coefficients that
reproduce these lower p.w. phases are determined by the
criterium that they give the minimal 7 in a fit to the
scattering data.

It is clear that the coefficients if„follow from the OPT
coefficients c„.For the first N coefficients tt„there will be

a one-to-one correspondence to the c„.So instead of say-

ing that OPT uses the c„asparameters to approximate
f(x), one can also argue that the first N+1 of the
coefficients 0'„are the parameters. In that case, OPT is

seen as a kind of expansion in x, where the higher
coefficients B„with n gN are "predicted. " We will use
this point of view, which is completely equivalent to the
former, in our application to pp scattering. The reason
for this is, of course, the connection with the existing ex-
pansion in x =cos8, where the coefficients are related to
the phase parameters.

Since Po(x) =Po(z) =1, it is readily seen from Eqs. (2)
and (3) that the ito term (which in the phase-shift analysis
will correspond to the 'So and Po phase shifts) is only
linked to the co. Therefore, the 0 term has no predictive
power.

III. THE METHOD: SPECIFICS FOR pp SCATTERING

In this section we turd to the specifics of OPT when
applied in a pp scattering phase-shift analysis. First of
all, we use the nuclear scattering amplitude, i.e., the
scattering amplitude minus the electromagnetic ampli-
tude, as the function to be expanded. The "original"
variable is x =cos0, with 8 the c.m. scattering angle. The
procedure is rather simple for the spin-singlet amplitude.
Usually this amplitude is expanded as

where k is the c.m. relative momentum and p, is the mass
of the lightest particle of which the exchange is taken
into account in Ms. For our application of OPT as ex-
plained above, we have, therefore, p=rn , 0. For un-

charged identical particles OPE leads to poles in the am-
plitude at x =+x, . Due to the Coulomb interaction OPE
leads for pp scattering to branchpoints at these places, as
the amplitude then' contains the factor 1/(q +}M )'+ '",
with q the exchanged momentum and g the Coulomb pa-
rameter.

A small difference between the method followed by
Cutkosky and Deo and ours is that Cutkosky and Deo let
OPT predict the higher a& or S—1 matrix elements fol-
lowed by a unitarization, whereas we predict the higher
1-matrix elements. Since these j:-matrix elements are
real, unitarity is automatically guaranteed in the higher
partial waves.

We can now proceed in two different ways. The first
one is the method of Cutkosky and Deo. It uses a map-
ping of this twice cut complex x plane onto an ellipse in
the z plane. This is again a unique mapping, but it is
different from the one we used for one cut. The construc-
tion of this mapping is again deferred to the Appendix.
We only mention here that the OPT variable z(x) will be
an odd function of x. This means that we will need only
even powers to expand Ms in z. The other method has
been proposed by Rijken et al. ' ' It was intended to
be used for amplitudes, which in general have a right-
and left-hand cut, although not always symmetrical. It
starts with a decomposition of the amplitude

M(x) =ML (x)+Ma(x),

where ML and Mz have only the left- and right-hand cut,
respectively. This decomposition can be made uniquely if
M(x) behaves well at x~oo. In the general case, one
then defines the signature amplitudes

Ms(x)= g (21+1)aiP,(x)
1=0

where the sum is over even orbital angular momentum I
only. Thus Ms is an even function. Its singularity struc-
ture, which is also symmetric, is given in Fig. 3. It only
has cuts along ( —00, —x, ] and [x„oo), with

x, = 1+ p
2k

FIG. 3. Singularity structure of the spin-singlet nuclear am-

plitude Ms in the complex x =cos8 plane.
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(7)M~(x) =—,'[M„(x}1ML( —x)] .

The amplitudes M+ and M are then expanded sepa-
rately. In our case, scattering of identical particles, the
amplitudes are either symmetric or antisymmetric.
Therefore, one of the signature amplitudes vanishes, and
the other coincides with Mz. In the case of our singlet
amplitude we have for symmetry reasons

Ms(x)=ML(x)+M+(x)=Ms( —x)+Ms(x) . (8)

Therefore, we now have to expand only one function with
only a right-hand cut. So we need here the optimal map-
ping that we first introduced. We will call this mapping
the signature mapping. A disadvantage of this approach
is that Ms(x) is no longer an even function, so both even
and odd powers appear in the expansion, but an advan-
tage is that the optimal mapping for one cut results in a
larger Lehmann ellipse than that for two cuts, so the ex-
pansion coei5cients decrease somewhat faster.

We now turn to the problem of the spin-triplet ampli-
tudes. In that case it is not quite clear which functions to
expand. We cannot take the M-matrix elements Mao,
MD„M&0,M», and M, &

(Ref. 17) as they are not in-

dependent and some of them have kinematical singulari-
ties at x = hi. Chao made use of amplitudes based on
Fermi invariants, which have been studied by Goldberger
et al. ' It, later turned out that for the triplet ampli-
tudes this procedure does not work. Another method is
to make use of the so-called "derivative" amplitudes of
De Alfaro et al. ' Their use in NX scattering has been
studied by Rijken et al. ' ' With these derivative am-
plitudes it js possible to construct a set of functions that
are closely related to the phase parameters and still have
the required analyticity properties. They are

co,(x)= g (2J+1)azzPJ(x),
J

co„(x}=g (21+1)aj,~PJ(x},
J

(9)
co22(x) = g (2J +1)aj+,zPz(x},

J

co,2(x)= g (2J+1)a P~(x),
J

where we use tkie Stapp, Ypsilantis, and Metropolis
(SYM) parametrization to define the p.w. amplitudes
aIJ. The functions ~; are either odd or even in x, as
shown in Table II. Furthermore, the table lists the phase
parameters involved in each co;. For easier recognition of
the p.w. phase parameters involved, the amplitudes co;

are in the following called after the 1owest p.w. phase pa-
rameter that they contain. The amplitudes are then
called partial wave sequences. The OPT expansion for
these functions can of course be made with the Cutkosky
and Deo as well as with the signature mapping. For co„
which is an odd function of x, the Cutkosky and Deo

TABLE II. The spin-triplet amplitudes which are expanded
(see text).

Amplitude co1 ~11 ~zz ~1Z
Signature odd even even even

3 3 3 3 3 3Content P1, F3, . . . Pz F4, . . . Po Fz, . . . cz, c4, . . .

mapping uses only odd powers of z(x), and the signature
mapping has m&L

———co&&.

Finally, we mention a method which makes explicit use
of the OPE contribution co& to the amplitudes. If we

write

co(x) =co, (x)+co(x), (10)

IV. THEORETICAL TESTS

In this section we judge OPT and OPT(m. ) from a
theoretical side, analogous to the test in Ref. 12. The
higher p.w. phase parameters predicted by OPT and
OPT(n ) with the signature mapping from the lower p.w.
phase parameters of a realistic NX potential model are
compared with the higher p.w. phase parameters of that
model. Furthermore, we examine the significance of the
di8'erences in higher p.w. phase parameters between
OPE, OPT, and this potential model in the description of
the scattering data.

The potential model considered is

Vc + VQPE + VHBE
N N

Here VC is the point-Coulomb potential, VHBE is the
non-OPE part of the Nijmegen soft-core potential, ' and

VppE is the OPE potential with a form factor as in the
Nijmegen potential

N 2 p m
opE fa

m+

m [—,'(cr &.crz)Pc+S, zkr], (12)

with m the m mass, and E the c.m. total energy of a pro-
ton. The functions Pc and @are as defined in Ref. 13.
The pseudo-vector ppn. -coupling constant f0 has been
determined from the 0-350 MeV pp scattering data in
Ref. 21 as f0

——(72.5+0.6).10
For each m,- the lowest p.w. phase parameters of the

potential are input. In the case of OPT(m ), the OPE am-
plitude co subtracted is the unitarized OPE amplitude in
Coulomb-distorted-wave Born approximation. OPT or
OPT(m } provide higher p.w. phase parameters that can
be compared with the phase parameters of the model. As
stated before, in the case of OPT(m. ) it is the difference of
the predicted phase parameter with the OPE phase pa-
rameter, that is to be judged. In the case of OPT, x, is
given by the Coulomb plus OPE branchpoint. Since this
branchpoint is removed when we use OPT(n. ), the nearest
branchpoint then corresponds to two-pion exchange.

The predictions of OPT and OPT(m ) have been com-

then co will have a more distant branchpoint (see Fig. 3).
More explicitly we have @=2m 0 in Eq. (5). We can now

use OPT to expand the functions co; (also for the spin
singlet of course}. This new method we call OPT(m. ). If
OPT is viewed as a method to predict higher p.w. phase
parameters, then OPT(m } predicts the deviation of higher
p.w. phase parameters from the OPE ones. Therefore, to
judge the predictive power of OPT(m}, this difference,
and not the phase parameter itself has to be judged.
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FIG. 4. Model ( ) and C plus OPE (—-) phase parameters in degrees compared with predicted values. OPTn: prediction of
OPT with n lower phase parameters as input. OPT(m. )n: predictions of OPT(m. ) with n lower phase parameter differences as input.
Pion-coupling constant used f0 =73 X 10 . ———,OPT1; ———,OPT2; ————,OPTivr)1; —-—-———-—,OPTim)2.
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FIG. 4. (Continued).

puted for all partial waves with J (10. The results for
some partial waves are given in Fig. 4. The predictions
are labeled OPTn and OPT(tr)n, where n is the number
of input phase parameters for the predictions. For the
'G4 and the F4 only n = 1 is possible, since the 'So and
the Po have no predictive power. Also, for the partial
waves not displayed the OPT predictions are always in
the correct direction, which demonstrates the predictive
power of OPT. Of course, this is of no practical use in a
phase-shift analysis, since the C+OPE phase parameters
are in general a far better approximation to the phase pa-
rameters of the model. In general, OPT(m) works well
for the 'So, P &, and P2 sequences. However, it does not
work for the mixing parameters and the Po sequence.

The simplest interpretation for these mispredictions
could be that we work with heavily truncated expansions,
so we cannot expect very good results, but the origin of
these mispredictions can be seen in the model phase pa-
rameters: both the c2 and F2 of the model deviate very
much from OPE, but the higher p.w. phase parameters of
these sequences deviate only slightly from OPE. There-
fore, no singularity other than OPE can be of importance
here. OPT(tr) will extrapolate the large deviation from
OPE in the c.2 and F2 smoothly to higher J and therefore
predict wrong higher partial waves.

At 300 MeV in the cases where OPT(m) works well,
the difference of the model phase shifts with the C+OPE
phase shifts decreases with a factor of 5 —10 if I is in-
creased by 2, but decreases with a factor of 80 or larger
from the c2 to the c4, and from the F2 to the H4. Had
we taken the parametrized Paris potential instead of the

Nijmegen potential, then the predictions for higher mix-

ing parameters would have been more in accordance with
the model values, but the predictions in the Po sequence
would still be incorrect. That the higher mixing parame-
ters are then predicted better is probably caused by the
fact that the model values differ more from OPE.

The conclusion to be drawn from the tests with poten-
tial models, as displayed in Fig. 4, is that OPT and
OPT(rr) work well if there is a definite trend in the phase
parameters or in the deviation from OPE of the phase pa-
rameters.

The importance of the differences in the higher p.w.
phase parameters can probably best be measured via the
g;„reached when compared with the experimental data.
In a phase-shift analysis as discussed in the next section,
roughly the phase shifts up to and including I =4 and the
mixing parameters c2 and c4 are parametrized. There-
fore, we have computed for several models for the higher
p.w. phase parameters, the 7;„reached on the 874
scattering data that we have between 30 and 350 MeV.
The nuclear interaction in the lower partial waves was
taken to be the Nijmegen soft-core potential. ' The X;„
obtained in each case is given in Table III.

The results in Table III are not what one would expect.
It is clear that no interaction in the higher partial waves
is the least realistic model, but here it appears that all
OPT predictions (not only when the difference with the
OPE phase parameters is predicted) are better than the
OPE and even the NSC phase parameters. From Fig. 4
one would have expected the OPT method to be worse
than OPE. In the next section we will see that the perfor-
mance in a phase-shift analysis of the OPT methods is
somewhat differen. There the lower partial waves will be
adjusted when taking different prescriptions for the in-
teraction in the higher partial waves. Furthermore, the
X attained in the analysis will be much closer to the ex-
pected X;„/Naf 1.

V. TESTS IN THE PHASE-SHIFT ANALYSIS

A realistic application of OPT is its use in a phase-shift
analysis. %e present here some results of an analysis of
all pp scattering data in the energy range 0& T&,b &350
MeV. Analogous to our previous analyses of pp scatter-
ing data ' ' we used an energy-dependent P-matrix pa-
rametrization to parametrize the short-range interaction.
The long-range interaction is described by a potential
tail. The electromagnetic part consists of the modified
relativistic Coulomb potential and the vacuum polariza-
tion potential. For the nuclear part of the potential tail

TABLE III. g;„onthe 874 scattering data between 30 and 350 MeV of the NSC potential model
plus the point-Coulomb interaction, with di8'erent models for the higher p.w. phase parameters. OPE:
with fo

——73 X 10;s, signature mapping; C, Cutkosky and Deo mapping.

Model for
higher phase
parameters

2.
+min

None

3636.2

OPE

1937.4

NSC

1855.1

OPT

1806.0 (s)
1820.7 (C)

OPT(%)

1771.5 (s)
1768.4 (C)
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we chose either the OPE potential or the OPE potential
plus the heavier boson exchange parts of the Nijmegen
potential. ' As the OPE potential is only needed here for
r & b, we can neglect the form factor that enters Eq. (12)
via Pc and Pz. The parameters in the phase-shift
analysis are the pion-coupling constant and a number of
P-matrix parameters.

One can parametrize only a finite number of phase pa-
rameters in an analysis. Those that are not parametrized
are what actually interests us here. We compare three
different choices for these higher p.w. nuclear phase pa-
rameters (i) OPE phase parameters, computed in
Coulomb-distorted-wave Born approximation, (ii) the
OPT(n) predictions, as described earlier, and (iii) the
phase parameters of the Nijmegen soft-core potential.

For these three choices, we made fits to the data using
different numbers of parameters. In Table IV we show
how the P-matrix parameters were distributed over the
different partial waves. For each total number of param-
eters the same parametrization was used in the lower par-
tial waves, independent of how the higher p.w. phase pa-
rameters were taken. This guarantees that every effect
seen is due to the choice of higher p.w. phase parameters,
although it does not ensure the lowest possible 1;„with
a given total number of parameters for all three choices.

The obtained X;„/N~&, where for the lower partial
waves the OPE potential tail was taken is shown in Fig.
5(a), that for the OPE plus NSC potential tail in Fig. 5(b).
Since we consider two descriptions of the potential tail,
we test in fact the OPT(n) prediction scheme for two
different physical models. In order to make visible both
the large differences in X~;„for few parameters and the
much smaller differences for about 30 parameters, the
vertical scale in Fig. 5 is chosen as log(X;„/Ndf 1).

Apart from the simple observation that with more pa-
rameters (and therefore more parametrized phase param-
eters) a better treatment of higher partial waves grows
less important, we can draw several conclusions from the
results in Fig. 5. OPT(m) is better than OPE for the
higher partial waves. The Cutkosky and Deo and signa-
ture mappings are comparable in predictive power. The
Nijmegen potential model provides better higher p.w.
phase parameters than OPT(n. ). For the 29 parameter
fits, the higher p.w. phase parameters of the Nijmegen
potential give 7;„about 20 less than the OPE higher
p.w. parameters, and the OPT higher p.w. parameters
give a 7;„in between. Also, in the lower partial waves
the tail of the Nijmegen potential is seen to be better than
the OPE tail, Ag;„=30for the 29 parameter fits.

Guided by the results of the preceding section, we also
investigated whether OPT(m ) can be seen to mispredict
the phase parameters in certain sequences of partial
waves. In the theoretical tests of Sec. IV, OPT(n. ) failed
to predict the Po sequence, and the quality of prediction
of the mixing parameters was at best meager. In the oth-
er p.w. sequences OPT(m. ) correctly predicted the higher
p.w. phase shifts. To have an analogous test in a fit to the
data, we used OPT(n) only for four of the five p.w. se-
quences, thereby excluding each p.w. sequence one at a
time. This has been done for the 29 parameter fit with
the OPE plus NSC potential tail. The results are given in

}('/d.o.f

1.05
I

20

I

30
Npar

X/d. o.f.

1.5-

1.05
I

20 30

Npgr

FIG. 5. X;„/d.o.f. (degree of freedom) vs number of parame-

ters. (a): lower partial waves described with the OPE potential
tail. (b): lower partial waves described with the OPE plus NSC
potential tail. Dashed: higher p.w. phase parameters OPE.
Dotted: higher p.w. phase parameters OPT(~) (signature map-

ping). Dashed-dotted: higher p.w. phase parameters OPT(m. )

{Cutkosky and Deo mapping). Solid line: higher p.w. phase pa-

rameters of the Nijmegen potential.

VI. DISCUSSION

We have analyzed the importance of the use of optimal
mapping techniques to describe the higher partial wave

Table V, from which one can see that predicting the 'SD

and P, sequences and not predicting the PD sequence
improves the fit, which is in agreement with the result of
the theoretical test.
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TABLE IV. Distribution of the parameters over the different partial waves. The total number of parameters also includes the

pion-coupling constant.

's, 3p 3p 3p F2 F3 F4 H4 Total

13
15
18
22
25
28
29
32
33

phase parameters in the analysis of 0-350 MeV pp
scattering data.

Tests within a potential model as well as tests in the
phase-shift analysis show that OPT can in principle
correct for a substantial part of the error made due to the
truncation of the p.w. series. For the P0 sequence, and
for the mixing parameters, the method fails to produce
good results. Within the potential model this can be re-
lated to the nonsmooth behavior of the expansion
coefficients (phase parameters).

Inclusion of OPT in the phase-shift analysis (at least
for a subset of the p.w. series) gives a good and model-
independent description of the higher p.w. phase parame-
ters. The higher p.w. phase parameters of the Nijmegen
soft-core potential' appear to be even better than those
predicted by OPT. This indicates that the non-OPE part
of the Nijmegen potential contains valuable physics,
which cannot be described adequately enough by OPT.
The quality of the higher p.w. phase parameters of other
NN potentials could be tested in the same way.

For a high-quality phase-shift analysis the inclusion of
OPT techniques in its simplest form, as employed here,
appears not to be very important for low-energy pp
scattering (hX;„=10}. Clearly, in an analysis where less
partial waves can be parametrized, the use of OPT can
improve the description of the scattering data dramati-
cally. Therefore, the use of OPT will certainly be impor-
tant in the analysis of higher-energy data or incomplete
data sets. A more refined and sophisticated application
of OPT, based on Cutkosky's theory' ' on the represen-
tation of scattering data by analytic functions might im-

prove the phase-shift analysis. This we leave for a future
combined phase-shift analysis of the pp and np data.

TABLE V. Change in g;„when OPT(m. ) is used for a subset
of the partial waves.

Partial wave
sequence excluded

7.6

3p

4.4

p

0.8 —0.2

3p

—9.0

APPENDIX

In our applications we used the optimal mapping for
two different singularity structures. The mapping for an
x plane with two cuts, along ( —00, —x, ] and [x„aa),
will be denoted as z,„(x,;x } and the mapping for the x

where F(g, k } is the incomplete elliptic integral of the
first kind. They also pointed out that using repeated
Gauss transformations leads to a very simple computa-
tion scheme. We only summarize the results. First define
v0(x ) =x and ka = 1/x, . Then use repeatedly

1+(1—k )'
v„+,(x)=v„(x)5+1 n

1 [1 k2 2( )]]/2

and
k~

k„~,= 1+(1—k )'

Now one obtains lim„„v„=z,„(x,;x). It is easily seen
that the convergence is very rapid, since k„converges to
zero quadratrscally.

The mapping z» can be expressed in z,„mas
T 1/2 1/2 ' 2

x, +1
2

'
2z„(x,;x ) = —1+2 z,

„
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plane with only the right-hand cut as z„(x,;x ).
From the theory of conformal mappings it is known

that the function that maps a specific region on to a
specific image contains three arbitrary real constants.
The image of our mappings is only demanded to be a uni-
focal ellipse, of which the size can still vary. To make the
mapping unique, we have to supply four real, or two
complex constants. This is done by requiring that
z(x =+1}=El.The whole problem has complex conju-
gation symmetry. Therefore, the mapping will be a real-
analytic function and the interval [—1, 1] will be mapped
on to itself, since its endpoints are invariant.

For the construction of the mapping z,„(x)we follow
Cutkosky and Deo, where it is given as

~ F(sin 'x, 1/x, )
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