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Angular correlation function as a detector for two-step processes
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The reaction ' C( Li, Li')' C ( Li,d)' 0 (a)' C proceeding via the quasibound 42+ (E*=11.09
MeV) state of ' 0 has been suggested to proceed via a two-step process. We reinvestigate this case.
Computing the angular correlation function $V(Qd, Q ) it is confirmed that the previous suggestions
are indeed correct. Furthermore, our results indicate that the comparison of calculated 8'(Qd, Q )

with experimental phase shifts may be used as a detector for two-step processes.

I. INTRODUCTION

The ( Li,d) reaction on ' C with an a transfer into the
quasibound 42+ (E'=11.09 MeV) state of ' 0 as studied
in Ref. 1 could be due to a two-step process of the type
' C( Li Li')' C'( Li,d)' 0'(a)' C. We would like to
discuss this case in some detail to present evidence show-
ing that this interpretation is indeed correct.

Let us first recall that the reaction
' C( Li,d}' O~' C+ a has been shown to have (for
8d ——0') such a geometry that a related angular correla-
tion function 8'of the form of a Legendre polynomial of
second order implies that the ( Li,d) reaction proceeds
via a direct process. In the case under consideration the
measured' angular correlation function 8' as a function
of angle 8 does have the form of a P& (cos8} polynomial
so that the ( Li,d) reaction mechanism is indeed a direct
one. However, it has been noted' that there is a large
shift of 58=15' between the respective polynomials
W(8a)-P4(cos8) of the 4i+ (10.35 MeV) and 4&+ (11.09
MeV} states. Since the energy difference between the two
levels is rather small (i.e., -750 keV) such a large shift
58 can neither be understood in terms of the DWBA
(since the differences in the kinematics are negligible), nor
can it be explained by differences in the structures of the
two levels.

Microscopic considerations are expected to lead to a
correct interpretation of the observed discrepancies. To
start with, let us recall that the resonating group method
(RGM) with coupled channels has been applied to a
discussion of the T=O states in ' O. The formalism used
allows us to account for the collective properties exhibit-
ed by the core ' C. Its first excited 2+ state at 4.43 MeV
is easily activated in inelastic scattering processes. From
the point of view of Ref. 4 the 42+ (11.09 MeV) state un-
der consideration appears as the ground state of an a par-
ticle orbiting in the field of the excited core ' C (2+ ). In
terms of the complete set of wave functions u„I with the
weights yr I „,the spectroscopic structure of this 42+ state
is given by the following numbers: yo 4 )

——0.095;
y2 2 2

——0.575; y242 ——0.016; y262 ——0.001. It is obvious
that the dominant contribution corresponds to an a par-
ticle orbiting around the excited core ' C (2+), i.e., to
y222 ——0.575. In this connection the ratio of the mea-

sured reduced widths is also of interest: The one of the
42 under consideration is very small, —10, indicating
that it relates to a clean a-cluster state.

The traditional DWBA cannot properly account for
the excitation of the core in transfer reactions. Hence, it
is suggestive to resort to the method of (strongly) coupled
channels within the DWBA, which was originally
developed in the context of (d,p) reactions. It leads to a
system of coupled differential equations implying that the
corresponding computations will be rather laborious.

In a somewhat different approach to the problem, two
approximations of the adiabatic type ' have been pro-
posed to account for the effect of the excited core in (d,p)
reactions. The discussion of these approximations is not
just to help us in the qualitative determination of the na-
ture of the process under consideration, but also to pro-
vide us with a pictorial view of the reaction mechanism.
In Sec. II we will discuss the gist of the method to derive
the formulas required for the computations to be dis-
cussed in Sec. III. The final section is devoted to a short
summary.

Before going on to the details, let us recall that weakly
bound states Inay well be interpreted within the finite
range DWBA; however, it does not allow for an adequate
treatment of quasibound or resonance states with such
high excitation energies as of the order of 10 MeV.
Hence, one has to resort to the zero-range DWBA which
will also be applied in here. Since we do know that the
zero-range DWBA does provide a good approximation to
this particular reaction, ' " there are no serious objec-
tions against its use in exploring the role of two-step pro-
cesses in such reactions.

II. FORMAL CONSIDERATIONS
AND APPROXIMATIONS

The first approximation put forward in Ref. 7 assumes
that the scattering in the reaction channel involves a
"frozen" target. Formally that implies the factorization
of the total channel wave function 4'+'(r, g) depending
on the internal variables g and the relative coordinate r:

4(g) represents the internal wave function of the respec-
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tive channel and P'+'(r, g) the distorted wave. However,
this g'+' does not just depend on r as within the usual
DWBA, but also on the collective variables. Approxima-
tion (1) becomes more exact, the higher the energy of rel-
ative motion E in the reaction channel. This is readily
appreciated by the aid of simple physical considerations:
Let E' be the energy of the collective state excited in the
scattering; t-2R/v is then the approximate collision
time and T-A/E* the period of the internal motion.
The condition

t » T or E »(KR)E' (2)

is then sufficient for (1) to be justified. Practice shows
that condition (2} is more restrictive than necessary, i.e.,
even at lower energies of relative motion (1) turns out to
work nicely.

The second approximation amounts to assuming that
the angular part of the wave function of relative motion
g'+'(r, g) depends only weakly on the internal variables

Consequently it is possible to represent it in the form
of the traditional partial wave expansion for spherically
symmetric fields. Generally speaking, this approximation
is sensible if the main contribution to the cross section
stems from the partial waves with I-lo ——KRO»LO,
where Lo is the characteristic change of momentum dur-
ing the excitation. More rigorous estimates show that
for the scattering amplitude such a picture is justified up
to a precision of order O(I/(KR)'~ ).

We are going to consider only such collective excita-
tions of the nucleus A which involve motions of nuclear
surfaces of the type

R (P)=R [1+5(r)]with b(r)= g g~„Yg„(P) . (3)
A,p

The coordinates g&„are then the corresponding collective
variables. Under these approximations the wave func-
tions of relative motion in entrance and exit reaction
channels may be written (ignoring spin-orbit interactions
and using j for Li and d for the deuteron) as

theory in respect to the deformations:

XI(r,R(r))= 1+6(r)R X&(r,R) .

It is self-evident that the contributions to direct processes
are generated by the first term in (7}. Two-step processes
arise if the second term is different from zero.

Let us draw attention to some points of note for fur-
ther consideration: The expression for b, (t) appears as
an operator acting on the collective variables, whence the
functions g' '( r, R (r ) ) also become operators. Therefore
it is important in the formula for the amplitude in which
sequence they appear relative to the other functions of
the collective variables. That is, the latter should appear
at the "outer parts" of the matrix elements sandwiching
the f' 'stand—ing inbetween.

For the sake of simplicity we do not discuss the super-
position between the amplitudes of one- and two-step
processes (as would be required within a more general
treatment). Such a simplification is justified if the states
under consideration are (at least almost} clean states. In
the present case this is guaranteed (see above) because the
ratio of the reduced widths for the decay of the 4&+ state
in ' 0 into the ' C (g.s.) state relative to the one of a de-

cay of the 4&+ state in ' 0 into the ' C (g.s.) is about 1000.
Since we are interested in those states which decay via

a particles, i.e., into a single reaction channel, the angu-
lar correlation function is determined by

0'

dE~d Q d Q~

0
dE dQg

with the normalization

J W(Q~, Q )dQ =1 (9)

for the registration of an a particle in the solid angle 4~.
Relation (9) is the formal statement for the fact that we
have only a single decay (exit) channel. For the threefold
differential cross section we have

g'+'(K r)= g i 'XI (r, R(r))
4m.

I.
l.m.

d'0-

dE dQ dQq

~L' ~~~ 4~~ a ~ ~
~

T
I( K

(2m) A
(10)

x Y( (Q„)YI* (Qx ), (4)

1 md d

x YI (Q„)Y,* (Q~ ) . (5)

Now the radial functions in (4) and (5) are expanded in
terms of a Tailor series which may be cast into the com-
pact form

where T is the amplitude of the process
A + Li~ A +a+d. The other symbols have their con-
ventional meanings. The summation implies an averag-
ing over the angular momentum projections of the initial
state and a summation over the projections of the final
states.

For the evaluation of 8'we follow the notion put for-
ward in Ref. 12. It suggests that it is sensible to represent
the amplitude of the process A ( Li,d)8'(a)A in a fac-
torized form, i.e.,

T ', ,
" (Q~, Q ) = T(Q„,Q )

Xl(r, R(r))=exp b(r)R XI(r, R) .a
BR =T(Qq) T(Q )

We shall ignore a11 terms except for the first two, i.e., we
are going to work in the framework of perturbation =gT I "(Qq)T, (Q ).

m
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The schematic representation of this reaction displayed
in Fig. 1 helps to specify the notation used. The physical
picture implied by (11) is rather simple. There are two
independent processes occurring one after the other:
First the a particle is transferred from Li into a reso-
nance (quasibound) state of the nucleus B, and then the
nucleus B decays into the target nucleus A plus an a par-
ticle, both being in their respective ground states. Bear-
ing in mind that the spin of the a particle is zero, we have
in the case of a spin-zero target (I„=I„'=0) the relation

and

a a
GII(8d )= RL;

~
+Rd

~RBRLi

GLl(8d } g Pl, ld Jl,. ld lPId (cos8d )

l d

GL.i(8d»

where N is the normalization constant with

&= & I GLI(8d} I

(15)

T l(Qd, Q )= g T I (Qd)T (0 ) .
m

(12) Pl g
dr XI Ed" uI(r)&i, (+ ".}

On the other hand, condition (9) implies that we do not
have to worry about normalization factors in the ampli-
tude T (0 ). Hence, we may use the proportionality
T (0 )- YL (Q ) (where L is the angular momentum of
the respective state in B, e.g., here L=4} to proceed to-
wards the evaluation of 8'.

Taking, within the zero-range approximation, the exci-
tation of the core into account, the amplitude of the first
of the two partial processes for the transfer of an a parti-
cle from the projectile Li into the nucleus B is represent-
ed by

(+d)=DO&+d, a'(r k) I
+'A, Li(r k))

I

(13)

(Ref. 13). Do is due to the zero-range approximation for
the a-d interaction, and %L+;z and '0d z' are the complete
channel functions. The use of the zero-range approxima-
tion for the interaction V d(r d } is in the case under con-
sideration justified (see also Ref. 10). This is due to the
process being a peripheral one with 8d ——10' (lab) and the
reaction amplitude containing the tail of the wave func-
tion of relative motion between a particle and deuteron.
The difference in the respective tails of the 1s state of the
deuteron and of the 2s state of Li are not important.

Some standard manipulations lead us now to the
correlation function for a pure two-step process, namely

' 1/2

I'I (
——(2ld+1)i '

I d Id+ m !

(16)

X (ld010
I
I;0)(ld mL —m

I l, 0) .

W(9 9)
(sr )

O. i 0

Q. O 1

The differentiations in (15) have to be performed in
respect to the radii of the real parts of the optical poten-
tial in the Li and d channels and one has to include the
contribution (of at least one) of the states of the orbiting
a particle, u„&(r ). In principle one has to sum over all
the u„I in respect to I. However, as already discussed, we
are here dealing with a clean state so that there is no need
for such a summation.

W(8d, 8 ) =N ' Q GLI(8d ) &L (8 ) (14)

L i (i, m;)

A(IA, mA)

d(i', m )

0.0 )

0.5 0

A (IA'~A

i

O, o)

FIG. 1. To specify the notation for the rnomenturn algebra a
schematic representation is given of the reaction
A (6Li,d)B*(a)~.

0.0 5

I i I i I ) I

40 120~ 9~
FIG. 2. For different quantum numbers I and n, the angular

correlation function for the reaction ' C( Li,d)' O*(a)' C (via
the 42+ state in ' 0 at 11.09 MeV; EL; ——34 MeV; 6d ——10 lab) is

plotted versus the scattering angle of the emitted a particles.
From top to bottom the angular momentum I increases from 2

to 6; full curves correspond to n = 1, dotted ones to n =2, and
the broken one to n =3.
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TABLE I. The optical model parameters are given. The ones for the elastic scattering of Li off ' C
stem from Ref. 14 and the ones in the deuteron channel from Ref. 15; in all cases rc& ——1.3 fm.

Vo (MeV) r„(fm) a„(fm) W, (MeV) 8'q (MeV) r~ (fm) a ~ (fm)

6L1+ 12C

d+ "0
245.0
101.4

1.20
1.00

0.800
0.717

12.50
8.75

1.75
1.58

1.000
0.625

III. DISCUSSION

Crudely speaking, (14)-(16) demand that we evaluate
four versions of the conventional breakup. Since we
would then also be obliged to perform the summations
over all n and I, this would lead to a rapid increase in the
required computer time. To circumvent this problem, we

try to explore the characteristics of the "one-channel"
angular correlation functions with different n and l in u„I
to thus arrive at a qualitative picture of the physics in-
volved.

An example of such a qualitative analysis is given in
Fig. 2. It displays the functions 8'(Q&, Q ) for the 4&+

states of ' 0 with different values of the quantum num-
bers n and I of the u„&(r ) of the weakly bound ( ——500
keV) a particle in the field of the excited core ' C
(I =2+}. As usual, u„l is evaluated by adjusting the
depth of a Saxon-Woods potential (R=2.98 fm; a=0.5

fm) so as to provide the appropriate binding energy The.
related optical model parameters are displayed in Table I.

In the case of transfers involving quasibound states it is
in general necessary to regularize the respective radial in-
tegrals. However, in the given case of the reaction
' C( Li, Li')' C'(6Li,d}' 0'(a)' C involving the 42+

(11.09 MeV) in ' 0 there is no need to do so. Due to the
binding of the a particle in the field of the excited core
this is automatically done by the two-step process.

Figure 2 nicely demonstrates the strong dependence of

W (ed, eg
(sr )

8'(Q&, Q } on the quantum numbers of the wave func-

tion of the captured a particle; compare in particular the
dot-dash curve (two-step} for l=2 with the solid curve
(one-step) for l=4. Seemingly this is related to the
specifics of the given case explicitly involving the bound
state of the a particle. As already discussed, the state
with u„&(r }=ut2(r } is the only one of note for the com-

parison to experiment. Indeed, the calculated W(Q&, Q, )

for the two-step process agree rather nicely with the ex-

perimental data see the full curve in Fig. 3. The dash-
dot curve contrasts this result for the two-step process
' C( Li, Li')' C'( Li,d}' 0'(a)'~C with the characteris-
tics of the one-step process (involving the 4t+ state at
10.35 MeV; the details of the curves depend very little on
smaller variations in the energy, say from 10.35 MeV to
11.09 MeV}. Thus we have a clear indication that the re-

action mechanism is governed by a comparatively clean
two-step process.

The small shift in the theoretical function W(Q&, Q )

in respect to experiment with b,8-3' tnay be attributed
to the following:

(1) The suppression of effects of second, third, etc. , or-
der in b, (P); see Eqs. (6) and (7);

(2} The somewhat incorrect transfer form factor of
u„l(r }. Strictly speaking it is necessary to evaluate the
form factor within the coupled channel RGM. The one
we relied upon does not sufFiciently accurately account
for the microscopic structure of the respective state and
for the effects of antisymmetrization [both of which are of
importance when the details are of interest (see Refs. 10
and 11) and references therein]. However, varying the
parameters of the Saxon-Woods potential for
u„l(r ) =uz2 also gives rise to a sitnilar shift of the order
of 68-2' —3'.

0 ' 2 IV. SUMMARY

0. l

e/i

40O 80o )204

FIG. 3. The angular correlation function for the same reac-
tion as in Fig. 2 is plotted versus the scattering angle of the em-
itted a particles. The experimental points have been taken from
Ref. 1. The calculations represented by the full curve corre-
spond to a pure two-step process [i.e., to an u„l (r) with l= 2 and
n=2]. The dash-dot curve illustrates the effect of a one-step
process involving the 4&+ state (10.35 MeV; 1=4, n= 1).

Our results unambiguously confirm the notion' that
the reaction ' C( Li,d)' 0'(a)' C proceeds via a two-step
process of the type

' C( Li, Li')' C'( Li,d}' 0'(a)' C.
But it is even more important to recognize that in general
the angular correlation function is so sensitive to the de-
tails of the reaction process that it does not just tell us
that the process is a direct one, but even more explicitly
what type of a direct reaction. For the experimentalists it
is of note to realize that phase-shift measurements in
liaison with computed angular correlation functions thus
help to determine the particular type of a reaction pro-
cess.



38 ANGULAR CORRELATION FUNCTION AS A DETECTOR FOR. . . 769

Present address: Department of Higher Mathematics, Len-

ingrad Polytechnical Institut Kalinina, Leningrad, U.S.S.R.
tPresent address: Department of Physics, Faculty of Science,

Tanta University, Tanta, A.R.E., Egypt.
&Permanent address: Springer-Verlag, Tiergartenstrasse 17, D-

6900 Heidelberg 1, Federal Republic of Germany.
'A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti, and

N. Saunier, Phys. Rev. C 21, 2345 (1980).
K. P. Artemov and V. Z. Goldberg, Nucl. Phys. A320, 479

(1979).
H. Horiuchi, Prog. Theor. Phys. 51, 745 (1974); Y. Suzuki,

ibid. 55, 111 (1976).
4Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976).
5V. Z. Goldberg, V. P. Rudakov, and V. A. Timofeev, Yad. Fiz.

19, 503 (1974) [Sov. J. Nucl. Phys. 19, 253 (1974)].
B. Kozlowsky and A. De-Shalit, Nucl. Phys. A35, 215 (1966);I.

McCarthy and D. Pal, Phys. Rev. C 1, 2000 (1970); P. J. Iano
and N. Austern, Phys. Rev. 151, 853 (1966); H. Wiebicke, V.
K. Lukyanov, and H. Schulz, Fiz. Elem. Chastits At. Yadra
3, 993 (1972) [Sov. J. Part. Nucl. 3, 494 (1973)].

7C. I. Drozdov, Zh. Eksp. Teor. Fiz. 28, 734 (1955) [Sov.
Phys. —JETP 1, 588 (1955)]; 28, 736 (1955) [1, 591 (1955)];

30, 786 (1956) [3, 759 (1956)].
sE. V. Inopin and A. V. Shebeko, Yad. Fiz. 6, 279 (1967) [Sov. J.

Nucl. Phys. 6, 202 (1968)]; E. V. Inopin and Yu. P. Melnik,
ibid 9., 982 (1969) [9, 575 (1969)].

V. E. Bunakov, Nucl. Phys. A140, 241 (1970).
' V. M. Semjonov, K. A. Gridnev, E. F. Hefter, H. M. Omar, S.

M. Saad, and V. B.Subbotin, Nuovo Cimento 84A, 89 (1984).
V. B. Subbotin, V. M. Semjonov, K. A. Gridnev, and E. F.
Hefter, Phys. Rev. C 28, 1618 (1983).
E. F. de Silveira, Ph. D. thesis, Centre National de la Re-
cherche Scientifique Orsay, 1977; A. Strazzeri, Nuovo Cimen-
to 34A, 229 (1976);39A, 193 (1977).

' V. K. Lukyanov, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 870
(1972); K. A. Gridnev, V. K. Lukyanov, and V. M. Semjonov,
Acta Phys. Pol. B 4, 167 (1973);V. K. Lukyanov, V. M. Sem-
jonov, and J. Czejpek, Yad. Fiz. 19, 583 (1974) [Sov. J. Nucl.
Phys. 19, 295 (1974)].
V. V. Davydov, B. G. Novatsky, and A. A. Ogloblin, Izv.
Akad. Nauk SSSR, Ser. Fiz. 35, 2399 (1971).

' C. M. Percy and F. G. Percy, At. Data Nucl. Data Tables 17,
1 (1976).


