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The hypernucleus formation probability in nuclear collisions is formulated with a coalescence
model and is calculated for p +Ne and Ne+Ne collisions at 2.1 GeV/nucleon and 5 GeV/nucleon.
It is found that the probability of the hypernucleus formation at 5 GeV/nucleon is about a few
times larger than at 2.1 GeV/nucleon and also that the probability of the hypernucleus formation in
the Ne+Ne collisions is a few times larger than that in the p +Ne collisions. The cross section of
A-hypernucleus formation is of the order of pb in the Ne+Ne collisions at 5 GeV/nucleon. The
formation probability of multi-A hypernucleus is also discussed.

I. INTRODUCTION

The formation of hypernuclei has been undertaken by
proton-, electron-, pion-, and kaon-nucleus collisions.
Meanwhile, we have known from the experiments that
production cross sections of kaons' and A particles are
considerably large in high-energy heavy-ion collisions
even at 2. 1 GeV/nucleon. We can expect, therefore, that
high-energy heavy-ion collisions become also a possible
tool for the formation of a hypernucleus and moreover
for the formation of exotic hypernucleus with multi-A
particles. The possibi1ity of creating hypernuclei in
heavy-ion collisions was first suggested by Kerman and
Weiss. They obtained a rather unrealistic large amount
of formation cross section using a crude model without
the momentum distribution of a A particle produced by
nuclear collisions. However, the formation probability of
a hypernucleus depends strongly on the momentum of
the A particle, since the produced A particle has to stay
in a nucleus.

The purpose of this paper is to apply the coalescence
model to a description of the hypernucleus formation
and to estimate cross sections of single and double A-
hypernucleus formation in nucleus-nucleus collisions and
also in proton-nucleus collisions. Asai and two of the
present authors (H.B. and M.S.) (Ref. 5) have estimated
single A-hypernucleus formation cross sections at 2. 1

GeV/nucleon with the coalescence model, employing the
available experimental and theoretical information on
high-energy heavy-ion collisions. The calculations were
further extended by the present authors to higher energy
of 5 GeV/nucleon, taking account of various possible ele-
mentary processes. However, the effect of temporal dis-
tributions of a nucleus and a A particle, which coalesce
with each other, was not considered. In the present
work, we formulate the probability of hypernucleus for-

mation based on the coalescence model by using a time-
dependent density matrix and estimate the hypernucleus
formation cross sections in nuclear collisions at 2.1 and 5
GeV/nucleon.

The basic formulations are presented in Sec. II. The
formation cross section of a hypernucleus is expressed by
the product of the A-particle cross section, the nuclear
fragment cross section, and a coalescence factor. We em-

ploy reasonable theoretical evaluations for the A particle
and the nuclear fragment cross sections presented in Secs.
III and IV, respectively. In Sec. V the coalescence factor
is estimated assuming spatial and temporal distributions
of a A particle and a nuclear fragment. The results and
the discussions are presented in Secs. VI and VII. The
final conclusion summarized in Sec. VIII.

II. FORMATION CROSS SECTION
OF HYPERNUCLEUS

We assume that a hypernucleus is formed through the
coalescence between a nuclear fragment and a A particle
proceeded in high-energy nuclear collisions. The proba-
bility of emission of the hypernucleus is given by the
probability of finding its component in a highly excited
many-body system. The probability for finding a particle
at a given momentum k and at time t is given by

1 I

P, (k, t)= drdr'e '"'p(r;r', t)e'"',
(2m. )

where p(r;r', t) is the single-particle density matrix
defined by the relation

(2)

Here P r and P(r) are single nucleon creation and de-
struction operators, and %(t) is the full wave function for
the system and is normalized as follows:
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f ]p (r, ,r„.. . , r]v, t }%'(r„rz, . . . , r]v, t)d r]d rz . . d rN ——1 .

The probability of finding a particle at a momentum k is obtained by taking a limit of the time variable.

(3)

P, (k)= lim P](k, t)= 3 f dt fdr dr'e '"'p(r;r', t)e'"", (4)
(2n )

where p(r;r', t) expresses the time derivative of the single-particle density matrix. The expression {4)can be general-

ized to the case of emission of two particles moving with momenta k& and kz and the probability is expressed with the

two-particle density matrix p(r„r2, r], rz, t) as

P2(k], kq) = lim Pq(k], k2, ~)
t —+ oo

«]«&«]«&@]',], (r, , r, )p(r], rz,'r], rz, t)4], ], (r'„r2) .
(2m )3

(5}

In the case of hypernucleus formation, the wave function 4 can be factorized into wave functions of center of mass and
relative motions, and the relative wave function f(r ) is described as bound states of a nuclear fragment and a A particle.
Equation (5) is then rewritten as

P2 '(K)=
3 f dt fdr, drzdr', dr2exp( —iK R)g (r)p(r], r2, r], rz, t) exp(iK R')P(r'),

(2n }
(6)

where r=r] —r„R=(M~r]+MFr, )/(M„+MF),
K=k, +k2, with k, and k2 being conjugate to r, (for A

particle) and r2 (for nuclear fragment), M„and MF are
masses of the A particle and the nuclear fragment F, re-
spectively, and w (AF) is a statistical weight factor due to
spin s.

We assume that the two-particle density matrix in Eq.
(6} is approximately given by a simple product of two
one-particle density matrices p' ' and p' ', i.e.,

p (r„r2,r], rz, t) =p (r];r„t)p (r2, r2, t),(AF) . & & (A) . & (F)

The extension of the spatial distribution of the source
matter, D(r, t), is much larger than that of the {AF}
bound system, g(r). In momentum space, the extension
of D(q, t) is smaller than that of f(q). In Eq. (11},there-
fore, the extension of F2(k} is of the same order of magni-

tude as that of f 'P. When PI"]P]"]var]es slowly within

the extension of F2(k), we can approximately write

P]"'(k]+k)P'] '(k~ —k)=g~~(k)P]"'(k])P] '(k2) .

(12)

which implies that the correlation between the A particle
and the nuclear fragment F is negligible. We further as-
sume that the one-particle density matrix, for instance,
p' ', can be written as

p' '(r r' t)

Then expression {10)becomes

Pq" '(K)=S~FPI '(k])P'] '(k2),

where S„Fis the coalescence factor defined by

s„,= fdkF2(k)g„F(k) .

(13)

(14)

=D'~] ' ', t f dk, exp[ik] (r, —r'])]P']"'(k]) .
2

Here D describes the spatial and temporal distributions
of the A particle and is normalized to unity as

lim fdrD(r, t)= f dt fdrD(r, t)=1 .

Thus we can obtain the expression for the probability of
hypernucleus formation as

P'" '(K)= fdkFq(k)P']"'(k]+k}P' '(kq —k), (10)

where k, =M~K/(M~+MF) and k2 MFK/(M„——
+MF ). The function F2 is defined by

F2{k)=]]](AF}f dt fdq [D' ](q, t)D' '—
( —q, t)j—00

X p '(k+ —,'q)1{(k——,'q),
where P and D are Fourier transforms of g and D, re-
spectively.

The effect of temporal distribution of the A-particle and
the nuclear fragment F is included in the coalescence fac-
tor S„F through the function Fz(k) given by Eq. (11).
(See Fig. 1).

The probabilities P"(k) in Eq. (13) are related to the
corresponding cross sections as P"(k)=(y, /cr„)d o"/
dk (i =A, F), where y, =(M, +k )'~ /M, is the Lorentz
factor and o, is the reaction cross section. Therefore, the
formation cross section of a hypernucleus is expressed by

Rapidity

FIG. 1. Schematic picture of rapidity distribution of A parti-
cle and nuclear fragment E.
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'3
mA+mF y

SAF
m AmF

" o.„
y d'O'F'

dk,'

where m A =MA/M„, mF =MF /M, ~ }'=[I+(ke/
M„)z]'~2, and M„ is the nucleon mass.

Following the procedure mentioned above, we can also
obtain a general expression for the formation cross sec-
tion of a n A hypernucleus such that

y d 0["A

dk,'

~m„+mF y d
'3 'n

SnA, F 3m AmF &r dk

d3 (F)

dk,'

An explicit expression of the coalescence factor S„A F will
be given in Sec. V for the case of a double-A hypernu-
cleus (n =2) together with that of a single-A hypernu-
cleus (n =1).

Thus if we had sufficient experimental data of the A-
particle and nuclear fragment F production cross sec-
tions, we would calculate the formation probabilities with
Eq. (16). However, due to the lack of experimental infor-
mation, we employ reasonable theoretical evaluation of
the A particle and the nuclear fragment production cross
sections and the coalescence factor discussed in Secs. III,
IV, and V.

III. INCLUSIVE CROSS SECTIONS OF A PARTICLES

the product of the A-particle and nuclear fragment F
cross sections, and is given by using the momentum k,
per particle [k, =K/(m A+mF )] as follows:

d 3~(AF)

dk,'

range, the possible types of particle production process
are limited to

N+N~N+N+a~ (a=0, 1,2, . . . } (17a}

~N+ Y+K, (17b)

cr „s(M,N) =o „(M)os(N)/crNN,

where

(19)

o „(M)=,f d s[M„(s)] exp[ —M„(s)],

M„(s)=aNN f dz pa(s, z) .

Here p„(s,z) denotes the nuclear density distribution and

+AN is the total N-N cross section which is taken to be 40
mb.

The momentum distribution PMN(p) is given as fol-
lows:

~MN(p} g ni~MN(n')@L(p} . (20)

where I'denotes a hyperon (A or X particle}. In conjunc-
tion with the experiments, theoretical studies have been
made by many authors. According to the statistical
phase-space model, ' '" the inclusive cross section of a
particle emitted with the momentum p is written as

d 0E
3

——y cr gs(M, N)8MN(p) . (18)
dp MN

Here A and B denote the projectile and target nuclei, and
o „s(M,N) specifies the cross section for a subprocess in
which M projectile nucleons interact with N target nu-
cleons. The function d"MN(p) denotes the momentum dis-
tribution of the observed particles emitted in the subpro-
cess (M, N).

The cross section cr„s(M,N) is factorized into the
respective nucleon-nucleus cross section in the straight-
line geometry.

Inclusive kaon and A-particle cross sections have been
measured at 2. 1 GeV/nucleon for several projectile-target
combinations. In the 2.1 GeV/nucleon beam energy

I

PMN(n "A "x}

The probability PMN(n;) for producing n„pions, n~
lambdas, and nz sigmas in the subprocess (M, N) involv-

ing vNN collisions is given by

V V V P j n np [q„(a)] q„"qz*5 v n„nz —g j-—
g j !nA!n&! a=O

a=O

MN —vX5 n„gaj —e(M+N nA nz)—+ —5 p5 p5 p (21)
a=1

In Eq. (21), the q; are the branching ratios for the respective processes given by Eq. (17). The normalized momentum
distribution @L(p) of the respective products is

L dp. L L

/f g 5 gp —P 5 gE E. (22)—
j=1 j j= 1 j=1

dp. L L
@( p)=f g '5' gp, —P „5 yE, E—

j=2 J j=1 j=1



38 HYPERNUCLEUS FORMATION IN HIGH-ENERGY NUCLEAR. . . 751

The subscript L denotes a set of M+X —nz —nz nu-

cleons, nA lambdas, nz sigmas, n pions, and n„+nz
kaons.

At the energy of about 5 GeV/nucleon, the following
elementary reaction channels should be taken into ac-
count in addition to those in Eq. (17):

N+N N+ Y+K+nvr (n =1,2, . . . ) (23a}

(23b)

(24)
I

%e neglect various hyperon production processes such as

m+N~F+K induced by the secondary particles be-
cause the probability for those processes is considered to
be very small compared with the branching ratios of the
processes in Eqs. (17) and (23).

The set of branching ratios, q (a), for the process (17a)
is taken from empirical formulas fitted to the experimen-
tal data of N-N scattering up to 5-6 GeV, that is,

q (0)=0.354, q (1)=0.412, q (2)=0.192, and q (3)
=0.046 at 2.1 GeV; and q (0)=0.350, q„(1)=0.228,

q (2)=0.215, and q (3)=0.207 at 5 GeV. The isospin-

averaged cross section for the combined process of
N+N~N+A+K and N+N~N+X+K in Eq. (17b)
is given by

~(N +N ~N + Y+K)=0.144',„(K)/rnid(mb)

(Ref. 12) where p,„(K) is the momentum of the pro-
duced kaon at maximum energy in the center-of-mass
system. The isospin-averaged cross section for the pro-
cess (23a) is also given by

o(N+N~N+A+K+n)= 0 988p,„( .K)/m x(m b).

The cross section for the kaon pair production (23b), in

the energy range of interest, are rather sparse. %e use a
simple linear parametrization of the cross section

0 (N +N~N +N +K +K }=0.0175p,„(K)/mx(mb) .

The efFect of the nuclear Fermi motion on the g~~(p) is

taken into account by using the Fermi-averaged branch-
ing ratios for the particle production processes (17) and
(23), for instance, defined as follows:

I id pgd'paf (p~ )f (pa )
+NN

&&o(N+N~N+A+K+an) .

The functions f(pz) and f(pz) describe the Fermi
momentum distributions of the nucleon in projectile A

and in target 8, respectively.
The calculated K+ cross sections in the case of Ne-Ne

collisions at 2. 1 GeV/nucleon are shown in Fig. 2(a) and
compared with the experiment. ' Figures 2(b) and 2(c)
give the calculated A-particle cross sections at 2.1 and 5

GeV/nucleon, respectively. In Fig. 3(a) the calculated
E+ cross sections in the case of p-Ne collisions at 2. 1

GeV are shown and compared with the experiment. Fig-
ures 3(b) and 3(c) represent the calculated A-particle
cross sections at 2.1 and 5 GeV, respectively.

IV. CROSS SECTIONS OF NUCLEAR FRAGMENTS

The main production of nuclear fragments comes from
peripheral heavy-ion collisions. The nuclear fragments
show typical factorization of cross sections into a target
and a projectile, typical momentum distributions and iso-
tope production ratios. ' In the projectile rest frame for
projectile fragmentations (or in the target rest frame for
target fragmentations), a fragment has the form of a
Gaussian distribution in momentum space, exp( —p /
2u ) where o is the dispersion about the mean and is
given by croAp(Ap AF)/(Ap 1) with the projectile
and fragment mass number A~ and AF. The value of o 0
is related to the Fermi momentum of nucleons as
no pf'/5 ——An alte. rnative interpretation for the limiting
value of o. comes from the antithetical statistical model,
in which the fragments are emitted from a source at an
excitation energy determined by a temperature T and o 2

is given by TM„Az(Az —Az)/Az. Additional support
for the thermal interpretation of a limiting temperature
comes from the observation that isotope production cross
sections are explained by the statistical formula
exp(Qss'/'r} where Q~' are the threshold Q values of
the various breakup channels of the projectile into the ob-
served fragments. The agreement between the values of
T deduced from the momentum and isotope distributions
could be regarded as strong evidence in favor of the
thermal interpretation. In the case of target fragmenta-
tions, A~ in the expressions mentioned above should be
replaced by A&.

In the rest frame of the projectile (or the target), the
cross section is given in the nonrelativistic approximation
by

d3 (F)0' c Q
(F)
ff

dp 7T
p exp

2pF T 2pFT g p, exp (25)

whe~e pF=Mn Ap( A~ —AF)/Ap and o.=neo( Ap
+ Ar —5) with 5=1.6. In Fig. 4 the calculated results
of the isotope yield in ' 0+ nucleus collisions at 2.1

GeV/nucleon are shown and compared with the experi-
ment. It is seen that the behavior of relative yield as a
function of Q is well reproduced with the temperature

T =8 MeV. %'e will also apply Eq. (25) to target frag-
mentations induced by proton beams.

V. COALESCENCE FACTORS

Here, we have to show how to estimate the coalescence
factor. The coalescence factor SA+ includes terms corre-
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FIG. 2. K and A energy spectra in Ne + Ne collisions at 2.1 and 5 GeV/nucleon. The solid lines represent the cross sections cal-
culated with v=MX.

sponding to the spatial and temporal distributions as
shown in Eqs. (11) and (14). We first consider only an
effect of the spatial distribution of a A particle and a nu-
clear fragment F on the coalescence factor assuming the
time independency of D(r, t) In Sec. VB, w. e discuss
effects of the temporal distribution.

A. Effects of spatial distribution

In the limit of neglecting the effect of the temporal dis-
tribution, the single-particle density matrix in Eq. (1)
should be independent of time, that is, p(r;r', t =0) and
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FIG. 3. E and A energy spectra in p+Ne collisions at 2.1 and 5 GeV. The solid lines represent the cross sections calcnlated
with v=MN.

the probability for finding a particle at a given momen-
tum k is given by P&(k, t =0). Similarly the probability
of hypernucleus formation at a momentum K is given by
P2 '(K, t =0) and then the function Fz(k) in Eq. (10)
should be F2(k, t =0) defined as

F~(k, t =0)
=w(AF)

X fdq D '"'(q)D' '( —q)|/ '(k+ —,'q)f(k ——,'q) .
(26)
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The function g AF in Eq. (14) may be taken as gAF(k) = 1

for the case of weak k dependence of P&. Then we have

S„F=w(AF)(2n)f dr .
~
11(r)

~
(„F(r), (27)

where

I I I I I I I

-10-20 -30-40-50-60 -70-80-90

Q (Mev)
FIG. 4. The relative isotope yield produced by ' 0 projectile

fragmentation. The solid line corresponds to the cross sections
calculated with the temperature T =8 MeV.

FIG. 5. Coalescence factor S'~F(n1) plotted as a function of
atomic mass number of hypernucleus.

30 MeV, only the Os level becomes a bound state for light
nuclei with mass number less than A =8, and two levels
of Os and Op orbits become bound states for 8( A ~20.
The calculated values of S~F(nl) are plotted as a function
of the hyperfragment mass number in Fig. 5. The results
depend on the choice of PAF which represents the extent
of the spatial distribution of the source matter and de-
creases with increase of P~F. In the case of weak momen-
tum dependence of P, , the coalescence factor in a double
A-hypernucleus formation is given by

S2„„——w(2A, F)(2n. )6fdrdR
~
g(r, R)

~ (2„F(r,R),

g„F(r)=f dr'D'"'(r+r')D' '(r') . (28) (31a)

S~F= (2m ) g (21 + 1)S„F(nl )
nl

(30a)

from Eq. (27). The sum runs over bound states of A par-
ticle moving in a potential well with depth of about 30
MeV (i.e., the states having higher energy than 30 MeV
are unbound). 4„F(nl) is given by

(&na). for Os state
(nl)= .

(v'm. a) 3(p„F/a)2 for Op state, (30b)

where a=(b„+P„F)',P„F=(P~+l3F)', and b~ is the
harmonic oscillator size parameter given by
[(A /Mz)/fico„]' . In the numerical calculations, we
employ a parameter value of b~ associated with the fre-
quency AcoA=30A ' MeV. For the potential depth of

Assuming the harmonic oscillator wave function 11„1,(r)
for the A particle in the hypernucleus and a Gaussian
form for the spatial extent D (r), i.e.,

DI "(r ) = ( &m P, ) exp[ —(r/P, ) ](i =A or F), (29)

we obtain the expression

where

The coordinate r represents the relative coordinate be-
tween two A particles and R is the one between the
center of mass of two A particles and the nuclear frag-
ment F. Assuming the properly antisymrnetrized
harmonic-oscillator wave functions for the A particles in
the hypernucleus and a Gaussian form for the spatial ex-
tent D, Eq. (31a) is readily evaluated. For example, the
contribution of the (Os) "configuration is given by

S f ,'(2') (&na) (&——7r—I ) (32)

where a=(b, +.2PA)', I =(ba+2l3~+l3F)', b, and

bz are the harmonic oscillator size parameters corre-
sponding to the coordinates r and R, respectively. A

2A F(r, R)

= fdxD'"'(x+R+ —'r)D'"'(x+R —
—,'r)D' '(x)

(31b)
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general formula of the coalescence factor for the double
A-hypernucleus formation is given in the Appendix.

B. Effects of temporal distribution

The density of produced particle is related to space-
time quantities. However, we have so far assumed that a
hot spot formed in the collision of two identical nuclei
stays at the origin of the center-of-mass frame and emits
A particles immediately after its formation. The overlap-
ping part of two identical nuclei, however, changes time
dependently. Therefore, the emission of two A particles
is also time dependent. Then, to estimate the effect on
coalescence factors, we take a simple assumption on the
time dependence of D' ' as follows:

Figure 6 shows the formation cross sections of hyper-
nuclei in Ne + Ne collisions, obtained by using Eqs. (18),
(25), and (30) for the right-hand side of Eq. (15). Here we

~ r
I

~

h
I

~

(a)

tropical with keeping Eq. (29) as a good approximation
for the expression of lim, „D' '(r, t).

VI. RESULTS

(33a)

Here v denotes the velocity of the hot spot where two
identical nuclei overlapped during the collisions, which is
assumed to be constant and parallel to the beam direc-
tion, and P, is the dispersion of the emission time of the
A particle. For simplicity, we first ignore the time depen-
dence of D'"' in the following discussion, in order to esti-
mate the order of magnitude of the time dependence of
D'"'. By integrating Eq. (33a) and by taking t= ~, we

get the expressions for SAF as follows:

10:

Ne+ Ne AF+ X

S~~——(2n) g (21+1)$'A~,
nl

where

(33b) 4 I l I S R

5 10 15

F

eFqt:(Os) =eVA+(Os)(1+ v P, /a2)

Szp(OP)=twF(OP)(1+v P, la )

2P2b 2

X 1+—
3 P' (tr'+ 'p')

(33c)

10 .—

I
'~ % ~

I I

&A+(ttl) is given by Eq. (30c). The reduction factors seen
in Eq. (33c) come from the distortion of D'"' from the
spherical distribution, which makes the overlap between
the fragment and the A particle smaller. It seems to be
not unrealistic to assume that the hot spot finishes the
emission of A particles before the separation from the
spectators. The above assumption leads to an estimation
of vP, =R, where R is the radius of the target (or the pro-
jectile).

With the values P„t; —5. 39 fm, b~ = l. 1 A ' fm,
R =3.5 fm (in the case of the Ne+ Ne collision), we get
the reduction factors of about 0.5.

Even if we taken into account the time dependence of
D'"', the coalescence factor between fragments and A
particles is not reduced, because the direction of the dis-
tortion of D' ' is the same as that of D'"'. Nuclear frag-
ments are produced mainly as a result of the decomposi-
tion of the projectile (or the target) at peripheral col-
lisions. Since the center of mass of the fragment system
may stay rest in the projectile (or the target) rest frame
after the collisions, emissions of the fragments are iso-

1Q

10

Ne+ Ne - AF+ X

10

R I I I R

5 1Q 15

F
FIG. 6. The hypernucleus formation cross sections in

Ne+ Ne collisions at 2.1 and 5 GeV/nucleon as a function of
nuclear fragment mass number AF. The number on the inside
of parentheses indicates an atomic number.
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3
1lm A+ mF

SnA, F
m "„mF

The po values are shown in Table I for a few hypernuclei
and are generally smaller than those of light nuclei d,
t, He, 4He, etc.

VII. DISCUSSION

take the parameter value of P„F——5.39 fm which comes
from the choice Pz ——Pz (=3.81 fm). This value corre-
sponds to the extent of the normal compound nucleus
consisting of the projectile and target nucleons. In the
case of P~~ =7.0 fm, the calculated cross sections reduce
to about half of the magnitudes shown in Fig. 6. It is
seen that the formation cross sections in Ne+ Ne col-
lisions at 5 GeV/nucleon [Fig. 6(b)] become a few times
larger than those at 2.1 GeV/nucleon [Fig. 6(a)] because
of the increasing elementary A production rates. The re-
sults predict appreciable amount of cross sections, al-
though these are smaller than the values predicted by
Kerman and Weiss.

The hypernucleus production cross sections in p +Ne
collisions are shown in Figs. 7(a) and 7(b) for 2. 1 and 5

GeV, respectively. The production cross section in
nucleus+nucleus collisions is smaller than the projectile
mass number times that in proton-nucleus collisions. The
rate of the hypernucleus production in nucleus+nucleus
collisions to that in proton-nucleus collisions is mainly
determined by the ratio of the A-particle production in
both the collisions. This ratio is reasonable since experi-
mental kaon energy spectra in Ne+Ne and p+Ne col-
lisions at 2.1 GeV/nucleon are reproduced with the
present method.

Figures 8(a) and 8(b) show the double A-hypernucleus
formation cross sections in Ne+ Ne and p +Ne collisions
at 5 GeV/nucleon. It is seen that an increase of one A
particle in a hypernucleus reduces the cross section by a
factor of about 10 .

The explicit relationship between the coalescence ra-
dius po in momentum space and the coalescence factor
S„A F is given by the equation

'n

(34)

(,K )
m +m+ '3

mK mF

y d a(K )
K F 0

d cT
(35)

dk,

I I

2.1 GeV

p+Ne AF+ X

(a)

10:

10:

: 0)

10:

10

5 GeV

p Ne pF+X

10:

We thus expect an additional contribution to Eq. (15)

Let us make a brief discussion of the hypernucleus pro-
duction by the secondary particles. The nuclear collision
produces E mesons, whose inclusive cross section has
been observed and can be basically reproduced by the
model of Sec. III consistently with those of K+ and A.
(The calculated K cross sections will be reported else-
where. ) The K has a chance to coalesce with nuclear
fragments and form a E atom. The absorption of K
from the atomic orbits leads to hypernucleus formation
via (K,n ) reactions.

10:
(1

1Q .

Hypernucleus

&He
13C

TABLE I. Coalescence radius po.

po (GeV/c)

0.084
0.108
0.105

R R I I S I

10 15

F
FIG. 7. The hypernucleus formation cross sections in p +Ne

collisions.
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where S and R ~z
' represent the coalescence factor

of K and F to form a E atom and the capture rate per
E to form the hypernucleus (AF), respectively. The
K can be trapped in different E atomic orbits P„ IK K

and therefore

with

Sx F(nxlx )=(2m. ) (21x+1)$ (n&lx),

x F(n„/x)= fdr~4„1 (r) I'0 „(r), (37)

Rzz 'Sx F
——g R'„F '(nxlx)Sx F(nxlx)

nKIK

(36)

and

F(r)= fdr'D' '(r+r')D' '(r'), (38)

~ f ~ 5 W ~ I
l I 5 I

5 GeV/nucleon

Ne+ Ne p,AF+ X

(a)

I ~ a I a a s a I I a a s I s a I

5 10 15

F
~ ~

$
0 ~ f 0 ( t I ~ I

~
s ~ ~ ~

5 GeV/nucleon

p'Ne -MF X

I. . . . I

5 10 15

FIG. S. The double-A-hypernucleus formation cross sections
in Ne+ Ne and p +Ne collisions at 5 GeV/nucleon.

R AF (nK!K ) R(E n ~A~ }R/F (nx/x )

+R(K p~An )R'g~'(n&lx, ), (39)

where R (E N ~An)ar. e the branching ratios
among various absorption processes, and
R AF "'(nxlx)[R'gP '(n&lx)] is the capture rate per A
for hypernucleus (AF) formation through conversion of
n (p).

We estimate Eqs. (37) and (38) by using D "(r) of Eq.
(8} with P&

——Pz ——Pz ——3.81 fm (hence P =5.39 fm)

and $„1 (r) obtained by taking account of the absorp-
K K

tion effect, the finite-size effect, etc., with the aid of the
Y3/GA01 code due to Seki, Yazaki, and Masutani. ' For
' C, the calculated 4' (nxlx) are 1.5X10
5.6&(10, and 9.6)&10 ' fm for (ls), (2p), and (3d)
orbits, which are to be compared with the values —10
fm in Fig. 5. The coalescence factor for K -atom for-
mation is very small as expected, because E must have
almost exactly the same momentum as the fragment.

The branching ratios R (E N ~An ) are known exper-
imentally; R (K n ~An)=0. 2.0 and R (E p~Amo)
=0.03. The capture rates per A, R~~ "'(nxlx}, have
been studied and known to be about a few percent.

Combining the above numbers, we obtain an estimate
of R ~~ 'S of Eq. (36), which is smaller at least by a
factor of 10 than the direct coalescence of A and F.
While we can also consider the X-hypernucleus forma-
tion, where R'zF '(nxlx ) defined analogously to Eq. (39)
can be by 1 order larger than R ~~

'(nally),

we can ex-
pect that their contributions are still not significant.

The secondary pions, which are produced abundantly
in nuclear collisions, may contribute to hypernuclear pro-
duction through (m, E+) reactions. The most desirable
momentum of pion is about 1 GeV/c relative to the frag-
ment. However, since the momentum distributions of
pions and fragments overlap very small, we cannot expect
too much contribution from this secondary process.

The effect of temporal distribution of the source func-
tions has already been discussed in Sec. VB. It reduces
the cross sections given in the figures by a factor of about
2.

In our treatment, we take account of all possible
coalescences of fragments and hyperons from arbitrary
origins with consideration of the time-dependent effect.
Concerning the so-called impact-parameter effect, we did
not explicitly take account of one to one correspondence
between the production cross section and an impact-
parameter value of the collisions. The production proba-
bilities of a fragment and A particle depend on the im-
pact parameter b. Then the formation probability of a
hypernucleus for Eq. (13) should be written as
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Integrating over the impact parameter and using the
Schwartz inequality, we get the following relation:

(P(AF)(K)) &S (P(A)(k )z)1/z(P(F)(k )z)1/2 (41)

where (P) is defined by f P(b)b db and b,„ is the
0

maximum value of the impact parameter. In general, an
equality is not realized because the nuclear fragment and
the A particle have different production probabilities. In
the present work, we take S„~(p')"'(k)))(PI '(kz)) as
for the production probability of a hypernucleus. If
(P()"(k) )' is nearly equal to (PI'(k)), we can say
that the calculated results give only the upper limit of the
production cross sections of hypernuclei. There is need
for improvement of the calculation based on the coales-
cence model taking into account the impact-parameter
effect.

Ko has also studied the formation cross section of hy-
pernucleus in terms of the participant-spectator model
taking into account the temporal distributions of the
fragment and the A particle and the impact-parameter
dependence. Ko obtained the cross sections smaller by a
factor of about 10 than ours. However, it is not clear
whether his model can reproduce the available experi-
mental cross sections of nuclear fragments or not.

Recently, an experimental group in Dubna succeeded
in finding five events of AH production in a He beam (3.7
GeV/nucleon) and one event of ~Li in a Li beam (3.0
GeV/nucleon) on polyethylene target. ' The derived
cross sections are -0.2 pb for „H and &1 pb for ALi.
These magnitudes are quite consistent with our predic-
tions and seem to support the hypernuclear production
mechanism adopted in the present paper.

VIII. CONCLUSION

We have formulated the hypernucleus formation prob-
ability in nuclear collisions with a coalescence model and
calculated production cross sections of hypernuclei in

p +Ne and Ne + Ne collisions at 2. 1 and 5
GeV/nucleon. The production cross sections of single-A
hypernucleus are of the order of pb in Ne + Ne collisions
at 5 GeV/nucleon. It is found that the hypernucleus pro-
duction cross sections at 5 GeV/nucleon are about a few
times larger than at 2.1 GeV/nucleon and also found that
the hypernucleus production cross sections in Ne+ Ne
collisions are a few times larger than those in p+Ne col-
lisions. The production cross sections of double-A hyper-
nucleus become smaller by a factor of about 10 than

I

those of single-A hypernucleus. In Ne+ Ne collisions,
we find that the measurement of double-A hypernucleus
turns out to be hard. In heavier nucleus collisions, how-
ever, number of N+N collision increases nonlinearly and
hence double-A hypernuclei may have more chance to be
produced.

We have briefly studied the hypernucleus production
by the secondary particles, K and ~, produced in nu-
clear collisions. However, we cannot expect too much
additional contribution from the processes such as (K, n )

and (m, i(').
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APPENDIX A

Let g„( be the harmonic-oscillator wave function of a
A particle in a hypernucleus. The wave function of two
A particles with the angular momentum (A)M) is expressed
as

Qzp(rl rz) I
n 1 i) ~ nzI2 ~p ~

=[4.
, (, (r) )4. ,(,(rz)]„"' (Al)

r'=(r, —rz)/v'2=r/v'2 .

Total antisymmetric wave functions are given by

f)„„(r',R')=Pz„'(r', R')~s=)(o') &2)

gp (r R )=(t)zp (r R )&s o(o') &z) .

The wave function P(z
—' is defined as follows:

(A3)

The coordinates r& and r2 are transformed to those be-
tween the center of mass of two A particles and the nu-
clear fragment F and between two A particles, respective-
ly. Then Eq. (Al) is rewritten as

Pz„(R',r')= g ~
nl, NL, 7(p)(nl, NL, A

~
n)l„nzlz, A), ,

(A2)

where (nl, NL, A,
~

n l)„n lzzA, ) is the Talmi coefficient
and

R'=(r, +rz)/&2=&2R

and

P')„*„'(r',R')= —f(+)+[1+(—1)']
~
n!,NL, Ap)(n!, NL, A,

~

n l„)n l ziz, ),
2

where f'+' ——1 for (n 1))+)(n lz)z, in the case of (n, l, )=(nzlz)f'+' ——I/&2 for A, =even integer, f'+' ——0 for )(, =odd in-
teger. Substituting the wave function (A3) into Eq. (31), we can get the expression for the coalescence factor of the
double-A-hypernucleus formation as

SzA F ——(~P„) '(2P~+P~) ' gf(+) [1+(—I)'](nl, NL, A
~
n)l„nzlz, A)(n'I, N'l, A,

~
n)l), nzlz,j),

—(r'/P& )dr'r' R„((r')e " R„((r')
0

0
(A4)
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