
PHYSICAL REVIEW C VOLUME 38, NUMBER 2

S-matrix pole trajectories for Yukawa potentials
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Using the two-body I( matrix extended to the whole complex-momentum plane, we construct the

S matrix as a function of the strength A, of attractive Yukawa potentials. By varying A, we study

pole trajectories for the s, p, and d waves.

In potential scattering theory, bound states are associat-
ed with poles of the on-the-energy-shell (on-shell) S ma-
trix on the physical sheet of the complex energy plane.
The so-called physical energy sheet corresponds to the
upper complex momentum (hereafter, k) half-plane,
where poles can occur only on the imaginary axis. How-
ever, on the lower complex k half-plane (corresponding to
the unphysical sheet of energy), the poles can occur either
on the negative imaginary axis (virtual states} or in pairs
of complex conjugate numbers (resonances). If such poles
are close to the real axis, dramatic effects on the scatter-
ing observables like phase shifts and cross sections can be
observed. The above-mentioned properties of the. S-
matrix poles are very well known and are naturally con-
nected with some conditions that the local potential V has
to obey.

If we now define a potential V'=A, V we can relate all
these poles through the variation of the strength parame-
ter A, . By varying A, , we get the trajectories followed by
the poles. S-matrix pole trajectories were first of all treat-
ed by Nussenzveig. ' He studied the scattering by a spher-
ically symmetric rectangular potential with depth Vo and
range a. The appropriate strength parameter for the
square-well potential is iL= Voa . We present briefly here
his main conclusions for the s-wave case. For
A, = Voa ~0 the S poles reside at +n~ —i 00,
n =0, 1,2. . . . With increasing A. the poles move upwards
in the complex k plane. The pole for n =0 has no partner
and moves faster than the pairs of complex poles (n&0).
This pole (n =0) alone becomes the first bound state,
crossing the origin for A, =ir /4. Increasing A, further, all
pairs of poles (n&0) collide before they reach the origin
(at the same point) on the negative imaginary axis for dif-
ferent critical values A,,(n). After each pole collision one
pole goes down the imaginary axis while the other moves
upwards, becoming first a virtual state (before it crosses
the origin) and later an additional bound state (excited
state). For p waves ( I = 1) all the complex pole pairs meet
at the origin for critical values A,,(n). By increasing A, ,
successive excited states are created. This is in synthesis
the main behavior of the S-pole trajectories for a square-
well potential. . It was important to describe it because
other, not so simple, potentials qualitatively repeat this
behavior. Such is the case of the screened Coulomb poten-
tial and the square well augmented by a spherically sym-
metric r potential. Ii is interesting to point out that
the cut on the negative imaginary axis originating from

Vi(p, k) = f «'d»j i(pr ) V(rj)i(kr), (2)

where V(r) is a local spherically symmetric potential and

ji is the spherical Bessel function. The t matrix satisfying
Eq. (1) has a square-root unitarity cut along the real posi-
tive energy axis. Equation (1}can be solved as written just
on the physical energy sheet, i.e., on the upper half of the
complex k plane. The presence of the unitarity cut causes

r completely destroys the existence of virtual states pre-
viously obtained from the pure square well.

For all the above-mentioned interactions it is possible to
analytically obtain Jost functions from which the S ma-
trix is constructed. This is no longer the case for the Yu-
kawa potential. Perhaps that is why up to now (in spite of
its importance in nuclear physics) no S-pole trajectories
are known for this potential, as has been pointed out by
Newton. In view of this, one has to numerically handle
the Lippmann-Schwinger (LS) equation. This equation is
very well known on the upper half of the complex k
plane, where usually calculations of bound states and
phase shifts can be carried out. For our purposes, howev-
er, something more has to be done, once we intend to dive
into the lower half of the complex k plane. To this aim
the LS equation in momentum space is more convenient
for beginning the necessary analytical continuation from
the physical sheet into the unphysical one. This was first
done by Glockle and afterwards by Fonseca, Adhikari,
and Tomio. The former analytically continues the LS
equation (before the calculation) into the unphysical sheet
of energy, while the latter approximate the solution of the
LS equation (calculated in the first sheet of energy) with
known analytical properties and continue it analytically
into the unphysical sheet of energy.

In this work we develop a E-matrix method in order to
be able to extend it to the whole complex k plane. This
approach is quite equivalent to that mentioned above.
Through the known on-shell relation between the E ma-
trix and the S matrix we obtain the pole trajectories for
the pure attractive Yukawa's potential, for s (1=0), p
( I = 1), and d ( I =2) waves.

We start with the partial wave LS equation (in units
iii=2in =1) in momentum space

q dq Vi(p, q)ti(q, k)

k —q +to
with
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Eq. (1) not to be single valued in the whole k plane (ener-

gy plane). In order to have the desired analyticity in k
one has to map the k values onto two energy sheets,
separated by a cut along the real positive axis. The first
sheet corresponds to the upper half of the complex k
plane and the second to the lower half.

For the sake of illustration we give a simple example.
If one uses the nucleon-nucleon Reid 'So potential in Eq.
(1), no bound state can be found. Definitely no poles of
t(k) arise in the upper half of the complex k plane. If,
however, Eq. (1) is modified (analytically continued into
the lower half of the complex k plane) one pole
k = i —

~
k„~ corresponding to the virtual state E=+k

= —0. 1218 MeV is found.
We present here a very simple method in order to work

in the complete complex k plane. This method is known
as the E-matrix approach, normally used on the physical
energy sheet. The method is constructed from Eq. (1)

through the use of the identity

lim +in5(.k —q )
2 2

0 k2 q2+l6' k2 q2

and the definition

q dq Vi(p, q)Ki(q, k)
Ki(p, k, k }=V((p,k)+ —P f0 k —q

(4)

where P is the principal value of the integral. After that
the relation between the on-shell elements
t&(k, k, k )=ti(k) and Ki(k, k, k ):K&(—k) is given by

ti(k) =K((k) ikKi(—k)ti(k) .

To calculate the K matrix from Eq. (4) one subtracts a
term identically zero and then the principal value
prescription is dropped:

K&(p, k, k )=Vi(p, k)+ —J 2 2 [q Vi(p q)Ki(q, k) —k Vi(p k)Ki(k, k)] .
k —q

Equation (6) is nonsingular, and consequently K does not
possess the unitarity cut. It makes a great difference
whether one starts from Eq. (1) or from Eq. (6) if one in-
tends to dive into the second sheet. While in the former
case one has to deform the path of integration in order to
move across the cut, Eq. (6) allows one to go into the
second sheet just by choosing a complex k belonging to
the lower half complex k plane because now there is no
cut. Of course our argument supposes that the integrands
in Eq. (1) and in Eq. (6) are analytical functions of q ex-
cept for possible singularities coming from the potential.
Summarizing, Eq. (6) is, as written, valid on the complete
k plane and relation (5) is preserved.

Now let us briefly discuss the analytical properties of
Vi(p, k) for the Yukawa potential. If one has
V(r) = —Voe "'Ipr there is a cut beginning on the nega-
tive imaginary axis for p =k = —ip/2. On this segment
Eq. (6) is not defined. However, Eq. (6) involves Vi(p, k}
also for p+k. In such a case there is a branch point for
(p+ k) +p =0, and once the integration variable q is al-
ways real the allowed complex k values cannot have
imaginary parts larger than p. This is the analytical re-
gion where Eq. (6) can be defined. It is interesting to
point out that Eq. (6) is coupled with a similar equation
for Ki(k, k, k ). We notice also that we tested our method
to reproduce some results presented in Refs. 1 and 2.

Before we present our results we indicate how we have
obtained the S-matrix poles. By solving Eq. (6) we obtain
the K matrix. If k is real or pure imaginary, Ki(k) is real,
otherwise Ki(k) is complex. The S-matrix poles that are
the same as the t-matrix poles were calculated through
Eq. (5). If k is a complex number the search of S-matrix
poles is reduced to finding zeros of a function in the com-
plex k plane. This reduces to the search of zero of a func-
tion of two variables (Rek and Imk). It has been done by
the NAcs library programs with a DEC10 computer. The
numerical error was less than 1%, which we verified by
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FIG. 1. S-matrix pole trajectories for p-wave scattering by an

attractive Yukawa potential of strength A, . The values of A. are

shown on the curves. The poles (~} originate the first bound

state for A, &3.64. The other pole trajectories (0, X, and +)

show the formation of excited states. Each trajectory has a

symmetric one for negative values of Re( k).
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FIG. 2. Schematic pale trajectories as A, increases
(A, f (A2 (k3 (A4).

increasing integration mesh points. We made certain that
no poles were missing.

The results for V(r) = AVoe —i'"/, pr, Vo ——41.2942
MeV, and p=0.6329 fm ' are as follows.

(1) For I =0 no poles were found outside the imaginary
axis for values of A, large enough to produce ten excited

bound states. In other words, for A, =0.01 there are no
bound states, no virtual states, and no poles were found in
the analytical region for complex values of k. By increas-
ing p the first pole, corresponding to the first virtual state,
arises from the cut (located in the second sheet of energy
or on the negative imaginary axis of the complex k plane).
By further increasing A, this pole crosses the origin,
becoming a bound state. It occurs for A, =1.05. By fur-
ther increasing A, new poles arise from the cut and move
upwards along the imaginary axis to become excited
bound states. We see that for l =0 the pole trajectories
for the attractive Yukawa potential show no similarity to
those discussed in Refs. 1—3.

(2) For 1=1 the trajectories are presented in Fig. 1.
For A, &0.3, no poles were found in the analytical region.
For A, & 0.3 a pair of symmetrical complex poles leaves the
imaginary axis (still in the cut region) and goes along a
curve towards the positive half k plane. On the origin
both poles collide and one pole goes up the imaginary k
axis while the other goes down. In the meantime by in-
creasing A, another pole arises from the cut (on the imagi-
nary axis) and collides with the one already described (as
presented in Fig. 2). For A, =4.14 they collide, and by in-

creasing l a new pair of complex poles goes on a new
curve towards the origin where these poles collide again.
One pole goes up the positive iinaginary axis (becoming
the first excited state) while the other goes down, and this
process repeats itself successively by increasing A, .

(3) For I =2 the pole trajectories are presented in Fig. 3

and the same discussion as for the case l = 1 applies.
(4) From (2) one can better understand the case I =0. It

is necessary to observe that the curves for increasing I, in
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FEG. 3. Same as Fig. 1, for I =2.
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l =1 are closer to the imaginary k axis. The increase of A.

does not, of course, change the centrifugal barrier. In this
manner I =0 can be seen as the limit case where the at-
tractive part is completely dominant. In this case, as one
can see from Fig. 1, the curves go to the imaginary axis.

(5) Now let us report that we extended our calculation
(l =0) for the Malfiet-Tjon potential where a short-range
repulsive part is present. For this case our conclusion in
(1) is not changed.

Finally let us summarize the main points of our work.
First, we have presented a new way to handle the LS
equation in the whole coinplex k plane. Of course, the
k-matrix approach is already very well known, but its use-
fulness in the search of the S-matrix pole was probably
overlooked. This technique could be important in many
problems in physics. For example, it can be used in the
study of virtual states and resonances of some physical
systeins like e-HC1 (Ref. 3) and proton-deuteron in a
two-body model as recently proposed. S-matrix pole tra-
jectories also have importance if one relates the two-body
problem to the three-body problem. The works of Sofi-
anos et al. and Rupp et al. showed that a class of two-
body nonlocal interactions overbinds the triton. In other
words, by constructing a nonlocal two-nucleon potential
(like Tabakin and Beregi) that fits the two-nucleon observ-
ables one obtains "triton energies" of about 500 and 7

MeV. The latter could correspond to the experimental tri-
ton energy 8.48 MeV, but in the three-body spectrum it
corresponds to no more than an excited state. As no argu-
ment can be presented to invalidate the calculated 500
MeV, it is easy to conclude that such interactions present
a defect. This anomaly is intrinsically associated with
two-body S-matrix poles on the real axis of the complex k
plane of the nucleon-nucleon system, which can only be
detected after a careful study of the S-matrix pole trajec-
tories in the two-nucleon system as has been done in this
paper. (Such poles are also called two-body continuum
bound states. ) If one had studied the S-matrix pole trajec-
tories of Tabakin and Beregi potentials beforehand, one
should have found that such potentials do not have the
behavior expected of a realistic nucleon-nucleon interac-
tion.

In conclusion, we have presented a new approach to the
study of S-matrix pole trajectories which is expected to
have interesting applications in the future.
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