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Using a modified Lee model for the nucleon-nucleon interaction we show the equivalence of this
model to an interaction based on the quark compound bag model recently proposed by Bhasin and
Gupta. It is found that their choice of the sign of the parameter coupling the hadronic to quark de-
grees of freedom leads to unphysical results. By investigating the model with the correct sign and
more general form factors, we observe that elementary degrees of freedom in terms of the elementa-
ry particle (e.g., six-quark or dibaryon) eigenstate components of the two-nucleon system, will not
be resolved by studying the on-shell behavior of the T matrix, but may be seen by studying effects
that depend on the detailed structure of the two-nucleon wave function.

I. INTRODUCTION

The correct theory of strong interaction is now be-
lieved to be quantum chromodynamics (QCD). Although
it is difficult to derive (low-energy) nuclear physics from
QCD, it ought to be consistent with the fundamental as-
sumptions and results of QCD. Since at higher energy
the properties of the nucleons can be understood in terms
of their quark-gluon structure, it is expected that the
nucleon-nucleon interaction also depends on quark de-
grees of freedom. A correct derivation of the nuclear
force would therefore include the quark and gluon con-
stituents of the nucleons. It is not clear however to what
extent the quark degrees of freedom influence low-energy
scattering (and low-energy nuclear physics) and the ex-
tent to which the low-energy phenomena can be ex-
plained solely in terms of the hadronic properties of the
nucleons.

It is well known that the long-range part of the
nucleon-nucleon potential is described quantitatively by
the one-pion-exchange potential (OPEP) and there should
be some way that this aspect of the nuclear force is relat-
ed to QCD. It has been found that in the limit of
infinitely many colors, QCD is equivalent to a meson
theory in which baryons are topological solitons. Thus
for low energy at which QCD cannot be treated perturba-
tively, one has in recent years attempted to derive the
nucleon-nucleon interaction using the Skyrme model. It
is nevertheless still an open question whether quark de-
grees of freedom are more directly involved in the short-
range part of the interaction. In nonrelativistic potential
models,! the repulsion seen at higher energy in S,
scattering is obtained by including a short-range, soft or
hard, repulsive core. It is of interest therefore to study
the relationship between such short-range behavior of the
interaction and the quark degrees of freedom which are
also expected to be effective at higher energy.

Recently a number of authors®>~> have attempted to ex-
plain the inner region of the nucleon-nucleon interaction
by means of general properties of the quark structure of
the system when the two nucleons are a small distance
apart. Although such discussions do not involve the pre-
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cise dynamics of the six-quark system, they make use of
the fact that six-quark eigenstates dominate the scatter-
ing process at short distances and hence lead to strong
short-range repulsion.

We wish to point out that these results can also be ob-
tained using a model derived from the Lee model and ap-
plied to the two-nucleon system. In this model the nu-
cleons couple to elementary baryon states with the same
quantum numbers as those of the two-nucleon system. In
order to compare this and previously derived models to
the experimental data, one needs to take care in the
choice of parameters for the effective nucleon-nucleon in-
teraction. In particular, the interaction derived by
Bhasin and Gupta® displays some unphysical properties
because of their choice of the strength parameter associ-
ated with the energy-dependent part of the interaction.
In this paper it is not our intention to provide an accu-
rate fit to the data, but rather to discuss some properties
of the interaction when elementary particle states are in-
corporated. To focus on these properties we employ the
modified Lee model which leads to analytic solutions but
does not incorporate complicating features such as the
boson exchange potential tail and the tensor force. Nor
are processes such as NA, AA, etc., scattering and meson
production included. All these processes need to be con-
sidered when a detailed comparison with experimental
data is made.

A similar model has been applied to the two-nucleon
system to discuss the elementary particle component of
the deuteron.® In contrast to earlier results we now find
that the elastic scattering data can be adequately de-
scribed by an interaction that gives a large elementary
particle component in the deuteron. The model is de-
scribed in Sec. II; its application to the 3S, state of the
deuteron and the ensuing consequences are discussed in
Sec. III, which is followed by a brief concluding section.

II. MODEL INTERACTION

The model which we employ is a modified Lee model
which has been used in a number of contexts.”~ ! We
will generalize an earlier derivation® which was also ap-
plied to the two-nucleon system.
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In this model the two nucleons, besides interacting
with each other directly, couple to one or more elementa-
ry particle states. The latter simulate the six-quark or di-
baryon states which lie at considerable energy above
threshold.!! The Hamiltonian describing the system is

H=H,+H, (1)
with
Hy= 3 m.D/D;+ [ d’kenim, 2)
i=1
and

H=S d3ku,(k)[D;q} +7,D;)
I—Z‘,gif u;(k)[Dymi +m,D; ]

i=1

—G [ [d*kd k' ug(oug(k nhmye . 3)

The operator D; annihilates the ith elementary particle
state of which we have assumed that there are n, and 7,
annihilates the two-nucleon state with relative momen-
tum k in the center-of-mass frame and energy
€, =2(m%+k*!?, where my stands for the nucleon
mass. The noncommuting field operators are

[D,,D]1=8,, [me,mk1=8(k—k'); @)
all other field operators commute. Since the operator

n 3
=3 DiTDi+ fd3k77}mk (5)

i=1

commutes with H, it is a constant of motion. For the
two-nucleon system Q, is 1. As is the case with the Lee
model, this Hamiltonian allows one to obtain exact alge-
braic bound and scattering state solutions.

The states created by 17}; and D,-T will have baryon num-
ber equal to 2. Because of baryon number conservation
no other combination of nucleons and elementary particle
states will be possible provided we stay with the two-
nucleon sector and do not include particle-antiparticle
pairs. The form factor u, controls the direct interaction
between nucleons; the term of the Hamiltonian including
this form factor simulates the hadronic interaction be-
tween the nucleons. In a realistic calculation this term
would include the boson-exchange part of the potential.
The term involving the form factors u;(k), i=1,...,n,
couples the hadronic states to the elementary (e.g., six-
quark) states.

We define |0) to be the state for which 7, |0)
=D,;|0)=0; since Hy|0)=H;|0)=0, |0) represents
the physical as well as the bare vacuum. We normalize
the physical eigenstates so that (0|0)=(y|y¢)=1 for
bound states and (¥ | ¥ )=8(k—k') for scattering
states. For notational convenience we label the bare par-
ticle states as | k) =1} |0) and | D;)=D; | 0).

In order to study the scattering in the two-nucleon sec-
tor we introduce the T matrix which satisfies the operator
equation

T(z)=H,+H, T(z) . (©)

z—1Hy

In our representation, upon insertion of a complete set of
states, the matrix elements of T are

(k| T(2)|K)=(k|H |K)+ [dk"

and

(D;| T(2) |k )={D; | H | k') + [ dk"

(k| Hy | k" )K" | T(2)| k") N

é (k|H;|D;){D; | T(2) k")

" (7)
Z—€, i=1 zZ—m;
(D; | Hy | k" )K" |T(2)| k")
. (8)
Z—€yn
We have used the fact that (D, | H; | D; > =0. The effective interaction potential in the nucleon-nucleon channel is
(k|H;|D;){D; | H,|k') ©)

(K| Vgl2) |[K) =k | Hy [K)+ S,

i=1 z—m;

1

By inserting (D, | T(z) | k') of Eq. (8) in Eq. (7), we ob-
tain an expression for the two-nucleon T matrix. It has
the form

(k| T(2) | k)= a;(2)u;(k)B,(z,k') , (10)

i=0

where

8i
ag=—G, a)z)= o
i

fori=1,...,n (11)

and

i(k”) ku T( ) kl)
Bz, k) =u, (k") + [ %%k~ <z 'e 2K
— €
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Substitution of the expression for the T-matrix element of
Eq. (10) in Eq. (12) yields a set of linear algebraic equa-
tions for the B;’s. Formally we write

Bi(z,k")= 3 [A7'(2)]u;(k"), (13)
j=0

where the matrix A4 (z) is defined by its entries,

Alj=8,]—aJ(Z)J,j(Z) (14)
with
3, Ui (k)u;(
Jj(2)= [ d*k——L— p— (15)

The determination of the (in general, off-shell) T matrix is
equivalent to the inversion of an (n +1)X(n +1) matrix.

If the form factors depend only on the magnitude of
the vector k, the interactions will occur in the S state
only. The S-state scattering phase shifts, 8(k), are deter-
mined from the on-shell T matrix since

(k,‘T(€k+ln |k>|k|—]k| eia(k)sinﬁ(k).

7T €
(16)
The scattering wave function is
1
z)=|k)+ | d3k’ - k')
|2 | f € +iN—€y |
X{k'| T(e,+in)|k) . (17)

In order to solve for the bound states, we define the state
vector

|¥p)=3 ;D] 10)+ [dkXp(k)n} |0),  (18)

i=1

so that | ¢ ) satisfies the equation
H|yp)=¢€p|¢p) . (19)

Taking the scalar product of Eq. (19) with (0| D ;» we ob-
tain
[ d*ku(k

C:=

J (k)X (k) . (20)

€p — m

Similarly we form the scalar product of Eq. (19) with
(0| m, to obtain

Xp(k)= S a;(ep)u;(k)B; , @1
€p — €y i=0
where
Bi= [d’k'u (k" X5(K) . (22)

By inserting the expression of Xz(k) of Eq. (21) into Eq.
(22), we get a homogeneous system of linear equations for
the B;’s, i.e.,

z A;ep)B;=0, i=0,...,n. (23)

j=0

Bound states exist when det 4 (ep)=0. For each such €,
there exists an eigenvector B so that the corresponding
X (k) and ¢;’s can be determined.

Apart from a volume part of the optical potential
which varies linearly as the energy, this model is
equivalent to calculations by Simonov,'? who employs the
quark compound bag model. This becomes evident when
it is observed that the scattering amplitude (for a single
elementary state) is identical to that obtained by Bhasin
and Gupta® who derived the scattering amplitude from
the quark compound bag model. The term of the Hamil-
tonian with coupling constant G corresponds to the ha-
dronic interaction, whereas the other terms are derived
from the quark-quark interaction by means of the
resonating-group method. Even though the quark-
hadron coupling, leading to the nucleon-elementary-state
coupling can, in principle, be obtamed from the quark-
quark interaction, Simonov>!? and Bhasin and Gupta®
have parametrized the interaction assuming that the sur-
face part is nonzero only for a single value of the separa-
tion distance of the nucleons. This simulates the surface
interaction of two quark bags that approach one another.

Simonov? showed that the quark compound bag model
is a natural basis for the P-matrix analysis of Jaffe and
Low.!> By assuming a surface interaction in coordinate
space at r =b and a cutoff for the hadronic interaction so
that it is zero for r <b, the poles of the P matrix evalu-
ated at b correspond to the elementary-state energies. It
can be shown, however, that when the quark-hadronic in-
teraction is smeared over a range of separation distances
peaked at b, the P-matrix poles shift and are no longer ex-
actly at the elementary-state energies. The poles of the T
matrix occur at the NN bound-state energy and at
scattering resonances. Although the introduction of an
elementary state introduces a resonance, the energy at
which it occurs is not necessarily the same as the energy
of the elementary-particle state. The results described in
Sec. III bear this out.

III. CALCULATIONS AND RESULTS

The form factors are chosen so that the nucleons cou-
ple to a single elementary-particle state by means of a 6-
function interaction in coordinate space at separation dis-
tance r =b. For the nucleon-to-nucleon coupling we
choose a separable Yukawa-type interaction for r > b.
The form factors in momentum space are

e ~P°[cos(kb)+ B sin( kb)/k]
BZ+k2

sin(kb) . (25)

uo(k)—

(24)

1
ui(k) mV'2k
For this interaction n =1 and B is the range of the separ-
able Yukawa potential. This interaction is the same as
that of Bhasin and Gupta.> However, these authors have
used a negatlve value for the parameter corresponding to
our g2 This means that the fundamental Hamiltonian
[Eq. (1)] is non-Hermitian.

Although an underlying non-Hermitian Hamiltonian is
unacceptable, one might consider the effective energy-
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dependent interaction, which is derived from the theory
and which is to be inserted in the Schrodinger equation,
as one in which the parameters are to be adjusted to ob-
tain a fit to the data. From this point of view and
without recourse to the underlying Hamiltonian, are
there unphysical features when a negative value for g2 is
used?

A modified form of Levinson’s theorem®!* states that
8(0)—8( o0 )=(m —n)m, where m is the number of bound
states of the total Hamiltonian H and n is the number of
discrete eigenstates of H,. In Fig. 1 the S, phase shifts
calculated with the parameters of Bhasin and Gupta® are
plotted as a function of the logarithm of the laboratory
energy. These phase shifts give a reasonable fit to experi-
ment up to 400 MeV (see Fig. 2 of Ref. 3), but beyond
400 MeV the phase shifts decrease very quickly and
asymptotically approach —m. According to Levinson’s
theorem this implies that there are three bound states,
whereas a careful search gives only one at the deuteron
energy. Since Levinson’s theorem is a consequence of the
poles and zeros of the logarithmic derivative of the
Fredholm determinant in the physical sheet, cut along
the positive real axis, we searched for other than bound-
state zeros in the physical energy plane. In the upper half
k plane, onto which the physical energy plane maps, we
find besides the bound-state zero at k =45.71i MeV, two
zeros at k =1613.32+36.01i MeV. The fact that the
Fredholm determinant has a zero in the first quadrant of
the k plane, makes the S matrix nonanalytic there, which
implies a violation of causality.!* In connection with this
we examined the Wigner condition!® for the rate of de-
crease of the S-wave scattering phase shifts, viz.

dd sin2(kR +9)

a0 22t Tol 26
ik >—R + 2k ) (26)
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FIG. 1. S, phase shifts as a function of the logarithm of the
laboratory energy obtained by using the parameters of Bhasin
and Gupta (Ref. 3), ie., b=0.647 fm, B=457 MeV,
m,—2my=411 MeV, G=82720 MeV? and g=—44.06
MeV3,

where R is the range of the interaction. The minimum
range of interaction consistent with the rate of decrease
of the phase shifts shown in Fig. 1 is 4.7 fm. This clearly
exceeds the range of the interaction actually used, indi-
cating a violation of the Wigner condition or equivalently
a violation of causality.

Killén and Pauli!’ have investigated a Lee model
which upon renormalization yielded an imaginary cou-
pling parameter. This led to an additional “ghost” bound
state with a negative probability. The model that we (and
Bhasin and Gupta®) are studying is similar to the Lee
model except for the additional interaction term. One
might conjecture the existence of the ghost state in this
model with an imaginary g. However, the additional
zeros of the Fredholm determinant were not found at real
negative energies, but rather at complex energies.

With the same form factors but now with a positive
value of g2, it is possible to fit the S, phase shifts and the
deuteron binding energy. A reasonably good description
of the scattering can then be obtained up to a laboratory
energy of 500 MeV (see Fig. 2). However, as shown in
Fig. 3, at larger energies the phase shift shows a sudden
rise resulting in a resonance which is not found experi-
mentally.'® In this case the elementary-particle com-
ponent of the deuteron, i.e., | c, | % is high at 34%. This
feature can be ascribed to the fact that the hadronic part
of the interaction is repulsive, and the binding is due to
the coupling of the NN system to the elementary-particle
state.

The value of b obtained from P-matrix calculations and
from fits with realistic interactions®> ranges from 1 to 1.5
fm. Our value is lower; it is like that of Ref. 3. Jaffe and
Low!? related b to the radius of the quark bag. Since
there are different versions of the bag model whose radii
are not all the same, b is not unambiguously deter-
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FIG. 2. 3S, phase shifts calculated with parameters b =0.800
fm, =244 MeV, m;—2my=205 MeV, G =-—7.289x10*
MeV?, and g?=153.5 MeV>. The crosses represent the experi-
mental phases from Ref. 18. The scattering length is 5.30 fm
and the effective range is 1.63 fm. The bound-state energy is
2.225 MeV with an elementary-particle component probability
of 34%.
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FIG. 3. 3S, phase shifts as a function of the logarithm of the
laboratory energy with the same parameters of the interaction
as found in the caption of Fig. 2.

mined.!® In all our calculations the results are rather in-
sensitive to the precise value of m .

In order to increase the flexibility of the interaction to
describe the two-nucleon system and to avoid a singular
surface interaction, we choose instead of the §-function
interaction a narrow square barrier of width 2a. Then
the form factor corresponding to a transition from ha-
dronic to elementary-particle state in coordinate space is,

#,()=—L—6(b+a—rbr—b+a), 27)
2aVirr
where O(x) is the usual theta function. In momentum
space the form factor is

u, (k)= [cosk (b —a)—cosk (b +a)] . (28)

27V 2ak?
The integrals can still be evaluated analytically. This
form factor represents a smearing of the surface interac-
tion. The surface width parameter a introduces greater
freedom in describing the scattering and consequently it
is possible to push the resonance to higher energies. The
set of parameters given in the caption of Fig. 4 yield
phase shifts that describe qualitatively the triplet S-wave
elastic scattering up to 1000 MeV laboratory energy, but
eventually they become positive again and approach 180°;
they pass through 90° at around 1500 MeV as shown in
Fig. 4. The wiggles seen at high energy in Fig. 4 are due
to the sharp boundaries of the surface smearing function.
The elementary-particle component of the deuteron given
by this interaction is 25%. In the numerical calculations
the scattering length and effective range fix the two pa-
rameters specifying the strengths of the interaction. The
value of a needs to be nonzero in order not to have a res-
onance below 1000 MeV, leaving parameters b, m,, and f3
to be adjusted so that the phase shift is zero at the ap-
propriate energy. The last three parameters relate to the
range of the surface interaction, the energy of the elemen-
tary particle, and the range of the hadronic force. Be-
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FIG. 4. S, phase shifts for the interaction with a square bar-
rier calculated with parameters b =0.600 fm, ¢ =0.100 fm,
B=316 MeV, m,—2my =300 MeV, G = —3.236X 10° MeV?,
and g2=362.4 MeV>. In this case the scattering length is 5.30
fm and the effective range is 1.63 fm. The bound-state energy is
2.228 MeV with an elementary-particle component probability
of 25%.

cause of the simplifying assumptions made in our model
we cannot interpret the values obtained strictly in terms
of fundamental physical processes. Nevertheless the
values of b and m are consistent with those obtained in
different calculations.*!!

In the calculation on the singlet S-wave scattering by
Fasano and Lee,’ a similar energy dependence of the
phase shifts was observed when the hadron-elementary-
particle coupling was reduced in the absence of an in-
teraction term depending linearly on the energy. In their
case the unobserved ‘“‘dibaryon resonance” was eliminat-
ed by introducing an energy dependent term in the in-
teraction.

In a previous calculation® we demonstrated that, con-
trary to an assertion of Weinberg,?® one cannot conclude
from the values of the low-energy scattering parameters
and the smallness of the deuteron binding energy that the
deuteron is a composite system or even nearly so. How-
ever, in that calculation when the phase shifts were con-
strained to change sign at some energy between 300 and
400 MeV, the elementary-particle state probability be-
came small again. Our present work shows that by
choosing a (smeared) surface-type nucleon-elementary-
particle-type interaction this reduction of the
elementary-particle-state probability need not occur. The
elementary-particle component of the deuteron can be
high for interactions giving a reasonable 3S| elastic phase
shift up to 1000 MeV. It is not meaningful to consider
much higher energies since then the nonrelativistic nu-
clear potential model breaks down and inelastic processes
and relativistic effects begin to grow in importance. It is
well known that the scattering and bound-state data of
the 3S| wave can be described by interactions that do not
include any elementary particle component. Such poten-
tials can be obtained by fitting the data to parametrized
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forms of the interaction or by using procedures of the in-
verse scattering problem. This means that the
elementary-particle component of the deuteron cannot be
determined from the on-shell behavior of the nuclear T
matrix at low energy?® or at any energy of relevance in
nonrelativistic nuclear potential models. It is a property
that depends on the off-shell rather than on-shell charac-
teristics of the 7 matrix in this energy range.

A recent analysis of the deuteron root-mean-square ra-
dius and its value predicted by nonrelativistic potential
models?! shows that such potential models are unable to
explain the experimental rms radius simultaneously with
the low-energy scattering parameters of the neutron-
proton data. In fact, for the correct scattering length, the
predicted rms radius turns out to be too large. Calcula-
tion of the rms radius of the deuteron with an elementary
component will involve knowing the precise nature of
this component, e.g., confinement radius, quark wave
functions. However, since six-quark eigenstates are ex-
pected to have a radius that is smaller than the deuteron
radius, the deuteron rms radius would be reduced when
such a state is included as a component of the deuteron
wave function. Kondratyuk et al.?? claim that the deute-
ron radius cannot be modified noticeably by a substantial
admixture of a six-quark state. They have considered
however a case in which the nucleon-nucleon wave func-
tion is highly suppressed at small distances, whereas
Fasano and Lee’ show that the hadronic wave function
need not be suppressed at energies far from the
elementary-state energy.

IV. CONCLUSION

Using the modified Lee model one can derive simple
nucleon-nucleon interactions such as proposed by Bhasin
and Gupta® for which there are analytic solutions. How-
ever there are restrictions on the choice of parameters in
the effective potential which is used in the Schrodinger

equation. Parameters which lead to a non-Hermitian un-
derlying Hamiltonian result in unphysical behavior in
terms of causality violation.

From the examples with acceptable parameters it is
clear that quark degrees of freedom in the form of six-
quark or other multiquark eigenstates as simulated by the
elementary particle states, will not be discerned by con-
sidering on-shell properties of the T matrix. This aspect
of the nuclear force can be investigated only by using
properties that depend on the details of the wave func-
tions rather than their asymptotic form.

It has not been our intention to give a detailed fit to the
scattering data but rather to use this analytically solvable
model to discuss certain features of the nucleon-nucleon
interaction. The interaction used here acts over the short
and intermediate range of the nuclear force. The com-
plexity of the potential can be increased by using a higher
rank separable potential and including a greater number
of elementary particle states or by adding an OPEP tail
and a tensor component to describe the two-nucleon sys-
tem accurately. One loses then the simplicity of algebraic
solutions of the Schrdodinger equation. Such modifi-
cations will not alter the conclusions of this paper. Of in-
terest for future work is to study such a “realistic”
nucleon-nucleon interaction with a specified form of the
six-quark state in order to investigate the effect on the
calculated rms radius of the deuteron, as well as on the
magnetic moment and magnetic form factor of the deute-
ron which appear to be sensitive to the elementary-
particle admixture in the deuteron.*??
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