
NUCLEAR PHYSICS

THIRD SERIES, VOLUME 38, NUMBER 2 AUGUST 1988

Electron scattering form factors of stretched transitions using Woods-Saxon wave functions

B.L. Clausen' and R. J. Peterson
Nuclear Physics Laboratory, Uniuersity of Colorado, Boulder, Colorado 80309

R. A. Lindgren
Institute ofNuclear and Particle Physics and Physics Department, Uniuersity of Virginia, Charlottesville, Virginia 22904

(Received 15 September 1987; revised manuscript received 29 April 1988)

Electron scattering form factors for stretched transitions are computed using radial wave func-

tions from realistic nuclear potentials, including the unbound nature of 6nal states above particle
decay thresholds. The calculated form factors are compared to data for 4 states in ' C, ' C, and

0, 6 states jn Mg, Mg, and Sj, 8 states jn 48Ca, Fe ssNj, and ~Nj, the 10 state jn ~Zr,
and the 14 state in ' 'Pb. We assess the fraction of the single-particle sum rule strengths using
these realistic nuclear potentials in place of the standard results using harmonic oscillator wave

functions. Appreciably greater fractions are obtained for low mass nuclei in the present work, total-
ling 105% of the sum strength for "C and 81% for ' O. Much less damping of the magnetic
strength is thus experimentally observed than is the case when oscillator wave functions are used for

comparison. The results of including meson exchange currents in the analysis are also discussed.

I. INTRODUCTION

The systematic failure of theory to account for the ob-
served quenching of the transition strength for magnetic
nuclear excitations is an important unresolved problem in
nuclear physics. ' The loss of magnetic strength at low
multipoles such as observed for 1+ states in Gamow-
Teller (p, n) reactions and in electron scattering ' has
been partially accounted for by including core polariza-
tion, ground-state correlations, and mixing with the
delta-particle nucleon-hole states in the nucleus. Recent-
ly, discrepancies between theory and experiment for
magnetic excitations were related to the role of the occu-
pation number distributions in the nuclear ground states.
For high-spin magnetic rnultipole excitations, it was ex-
pected that fewer diSculties would stand in the way of
more completely understanding the magnetic strength to
stretched excitations because mixing with the s~ibnucleon
degrees of freedom is negligible and nuclear configuration
mixing may be minimal due to the uniqueness of the max-
imally stretched particle-hole configuration. However,
systematic quenching of the transition strength to
stretched states is observed. Systematic shell-model stud-
ies, which include configuration mixing in the ground and
excited states, predict too much cross section by at least a
factor of 2 for many of the observed transitions. Includ-
ing meson exchange currents in the analysis of the elec-

tron scattering data to stretched states results in yet fur-
ther disagreement between experiment and theory. '

The principal means of investigating high-spin
particle-hole states has been by inelastic electron scatter-
ing. The fraction of the single-particle strength exhaust-
ed by the data has been evaluated most commonly by
comparing the experimental transverse (magnetic) form
factor to the form factor calculated in the extreme
single-particle shell model. For simplicity, and to pro-
vide systematics over a wide range of nuclei, strengths
have been previously extracted using harmonic oscillator
radial wave functions. "' For example, see the
(f7/zds/z) 6 states in the sd shell' and the (g9/2f7/2)
8 states in the fp shell. "

The states of interest lie at fairly high excitation ener-
gies, sometimes above the proton andlor neutron separa-
tion energies, and thus the radial wave functions for the
final states may extend greatly beyond those computed
for a harmonic oscillator (HO). Even the isospin symme-
try that is usually assumed in HO calculations is in
doubt, since neutron and proton wave functions may
differ substantially due to their differing decay probabili-
ties. These effects are accounted for in bound-state
Woods-Saxon (WS) well calculations, extended in this
work to states unbound to particle decay. Consequently,
overlap integrals used in computing the form factors will
differ for protons and neutrons, which could significantly
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influence the total strength extracted from the data.
In this paper we calculate the neutron and proton tran-

sition densities to 52 stretched states in 12 different nuclei
using radial wave functions computed for nucleons in a
WS potential by the computer code DwUCK. 4. ' For cases
where the nucleon is unbound, the excited nucleon is
treated as a resonance by a method well-established for
single-nucleon stripping reactions. ' Comparisons are
made to results from HO potentials. We also discuss the
influence of meson exchange currents' (MEC) on the ex-
tracted single-particle strength.

II. (e,e') SCATTERING THEORY

The inelastic electron scattering differential cross sec-
tion for magnetic transitions is given by'

do
dQ

2

1+2(Eo/Mz. )sin (8/2)

+t (~/2)
I
F1 q

2

2 q

where Z denotes the nuclear charge, O.
M the Mott cross

section, Eo the incident electron energy, Mz. the target
mass, 8 the scattering angle, q„ the four momentum
transferred from the electron to the nucleus, and F~ the
transverse or magnetic form factor. The q and the
three-momentum transfer q are related by q„=q —co,
where co is the difference between the incoming and out-
going electron energy. The relation between the cross
section and the form factor in Eq. (1) has also been

defined with Z replaced by 4m.
The transverse form factor squared can be written

as1, 18

2

, (2J + 1) g [ 'g', pJ-,(q) 2g,'—pJ,(q))Z2 2Mc
(2)

where M is the nucleon mass, ~ is an isospin index equal to 0 or 1, g', and g,' are the spin and orbital g factors, PJ, is the
diagonal current transition density, and pJ,(q) is the transverse spin density written as'

1/2 1/2

'( )=p PJJ —1

J
2J+1

$7
PJJ+1 . (3)

In a shell model picture, the PJL transition density can be written as the sum of products of one-body density matrix ele-
ments and single-particle matrix elements as

PJL(q) = 2 ZJ,(i.ib)~&j.~ &j.Iljl (qr)l IL (&)xr) Ijlb ~

Ja Jb

(4)

where j=v'2j+ 1, j, is for the hole state, and jb is for
the particle state. ZJ, is the "Z coefficient" given by the
one-body matrix element'

zJ,(iaJb)=&~f'rf III(&~ x&J )"ll~ =or &

which has the maximum value of unity for an isoscalar or
isovector pure particle-hole excitation from a closed
shell.

In this work we consider 1%co stretched transitions of
the type (jbj, )J,„where J,„=j,+jb, j,=I, + —,',
jb=lb+ —,', lb=i, +1, and j, and j& are the largest angu-
lar momenta found in the last filled shell and first open
she11, respectively. This configuration is unique, if we as-
sume that there are no contributions from 2A~ excita-
tions in the ground state or from 1p-1h excitations with
E & 3Rco. Of course, the stretched configurations can mix

with multinucleon-multihole configurations within the
same shell. Such mixing produces physical ground and
excited states that are not pure closed shell and particle-
hole wave functions, respectively; however, the additional
components in the wave functions will not be connected
by the one-body spin and orbital current operators. The
main effect is to reduce the transition strength to each
state with the cross sections remaining proportional to a
single-particle matrix element corresponding to the
stretched configuration.

A further simplification is that the convection current
transition density PJ, and also PJJ+1 vanish as a result of
angular momentum restrictions on the single-particle ma-
trix element. Combining Eqs. (2)—(4), evaluating the re-
duced matrix element for the stretched particle-hole
configuration, including the center of mass and nucleon
finite-size corrections, and using either a =0, 1 or a =n, p
we get'

r(q) I

'= f. ff, z
1/2 2

i.ib&i.ibp 2 I
Jo& y lc.z.gp. ]v'2
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This uses:

f, (q) =exp[(bq/2) /A],

C =&2 for a=0, 1 and C =1 for a=n, p,
Z„=(Zo+Z) )/&2 and Z =(Zo —Z) )/&2 (Ref. 20),

go=Ijl +P s gi =Pn Pp~ gn =2Pns and gJ =2PI ~

The center-of-mass correction, f, , although based on
the HO model, was used in both the HO and WS calcula-
tions. The finite-size correction, ff„was made by using
the four-pole expansion of Simon et al. ' The radial in-
tegral is

I (q)= f P, (r)j J )(qr)gb (r)r dr . (7)
0

Using the fact that g, [C Z,g,I ] is the same for
a=0, 1, and for a=n, p, we can write the isoscalar and
isovector integrals in terms of neutron and proton in-
tegrals (since we will deal with neutron and proton states)

g P,(q) = [g„'I„+(—1)'gr'Ir ]/2 .

The radial integral I depends on the radial form of the
single-particle and single-hole nucleon wave function, P .
For a HO potential well the proton and neutron wave
functions with the same radial quantum numbers are usu-
ally taken to have exactly the same form. In that case
I~=I„=I and I has the simple form'

(bq} 'exp[ —(bq/2) ]
2(J —))/2[( J + 1)))(J 1 }))])/2

or

F2/M
Mo
M' Z0+ Z1

l

2

(9)

Since we will mention the results of comparing electron
scattering to pion scattering, we include a similar equa-
tion for pion scattering

M0—(M") Z +Z
dQ & M

0+
1

2

(10)

The isovector M; matrix element and the Mo/M; ra-
tio tabulated in Table I are

More realistically, the proton and neutron radial wave
functions can be quite different as a result of Coulomb
forces on the proton. Consequently, we expect to see
differences in Fr(q}, and therefore, the form factor will

take on different shapes and values depending on the
specific choice of radial wave functions. In fact, the two
terms in Eq. (8) should be weighted by the neutron and
proton content of the transition. In cases where the tran-
sition is known to be mainly neutron or proton, g,I, for a
pure neutron or proton transition was used (see Table I).
However, in other cases where the content of the transi-
tion was not known or poorly known, no weighting was
used.

To emphasize the separate dependence on the reaction
dynamics in Mo and M& and on the nuclear structure
effects in Zo and Z„Eq. (6) can be written as

F2=(MoZo+M', Z, )

1 qR'=f' ff'Z 2M

1/2J+1 j.jb &J.jb 2

and

Mo goIo g: In+gpII,
M ) g 1I1 g„I„—gpI

(12)

Note that when I0 ——I&, as is usually assumed when using
HO wave functions, we have the ratio Mo /M)
= —0. 187.

Using the experimental form factors and the theoreti-
cal matrix elements, we can determine Zo and Z, as
fitting parameters for each stretched state. If only elec-
tron scattering data are available for a nucleus, the two Z
coefBcients cannot both be determined. For magnetic
electron scattering, Mo /M; is small ( —0. 187 when
Io ——I)) and thus this reaction probes mainly the isovec-
tor transitions; we thus neglect the expected small iso-
scalar contribution to the cross section and from Eq. (9)
we use F /M, =(Z, ),„.For T states, only the isovec-
tor amplitude contributes, so this assumption is correct.
For T states our analysis will incorrectly yield too small
a Z, if the Zo/Z, ratio is positive and too large a Z& if
the ratio is negative. If these constructive and destruc-

tive interference effects cancel over all states, however,
the g(Z, ),„z will be correct. (If pion scattering data are
also available, the Zo/Z, ratio can be found by compar-
ing m and m. + cross sections. For pion scattering
Mo/M) is approximately two near the delta resonance
and thus probes mainly isoscalar transitions. )

The structure effects embodied in Zo and Z, are
diScult to predict for individual states, although calcula-
tions have been done for ' C, Mg, and Fe (Refs. 22
and 23). Upper limits for the Z coefficients can, however,
be determined from simple nuclear models. These sum
rules can be found for T states (where the magnetic
transition, T, ~Tf, is for nuclear states of isospin
To ~To), for T states (where the transition is for
To~ To+ 1), and for the sum of the two.

The method we use for including structure effects is
given by Holtkamp et al. Here we define n„and n as
the number of neutrons and protons in the orbital j„and
n as the total number of nucleons in that orbital. First,
we look at a T stretched transition of multipolarity J
induced by an isovector one-body operator to a state
which has the form

~

core )o+ X
~j," jb )J, where
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TABLE I. Listed here are the results of the present analysis comparing experimental form factors [F as defined in Eq. (l)] to
theoretical matrix elements [M~ as calculated from Eq. (11)]. No MEC effects have been included. A least squares fit was used to
match the theory to all the experimental data points, although theoretical values at only the peak of the curve are listed in this table.
The binding energies used in the calculations are listed for each stretched state. Where only one binding energy is listed for a state, it
was treated as a pure neutron or proton transition in Eq. (8). Note that the 19.5 MeV state in ' C has mixed isospin. The Mo/M1 ra-
tio from WS wave functions is calculated using Eq. (12), whereas Mo/M, = —0.187 when HO wave functions are used. Sums of
(Z1),„~ for each nuclide and comparison with theory are given in Table III. The energies in the table have units of MeV; all other
quantities are unitless.

State
Binding energy

n (HO)
M', ( X 10-')

(WS) (WS/HO)
Mo /M1

(WS)
/M1 (Z1 )ex

(HO) (WS)

19.5 +0.78 +3.54

12C Jn 4—

264.0
(j,= —' jb ———'+) Ref. 24

113.0 0.43 —0.248 0.422 1.045

11.7
17.3
24.4

17.8
17.9
18.6
19.0
19.8
20.5

—0.16

—4.05
—3.96
—3.21
—2.87
—2.04
—1.33

—3.53
+3.57

—0.66
—0.57
+0.18
+0.52

+ 1.35
+2.06

14C Jn 4—

257.0
257.0
257.0

160 J77 4—

136.0
136.0
136.0
136.0
136.0
136.0

(j 3—

164.0
216.0
119.0

(j 3

105.0
104.0
88.7
87.1

82.4
78.6

jb ———', +) Ref. 25

0.64
0.84
0.46

jb= 2+) Ref. 26

0.77
0.76
0.65
0.64
0.61
0.58

—0.187
—0.187
—0.195

—0.173
—0.173
—0.116
—0.115
—0.111
—0.111

0.0871
0.102
0.215

0.0161
0.0226
0.0334
0.411
0.0003
0.0539

0.105
0.104
0.424

0.0199
0.0280
0.0489
0.618
0.0004
0.0921

15.0 —1.94 +2.91

' Mg J =6 (j.=-', ' jg ——
2 ) Ref. 17

47.8 34.8 0.73 —0.111 0.195 0.247

7.5
9.2

12.5
12.9
13.0
14.0
14.5
15.4
15.5
16.5
18.0

—3.55
—1.92
+ 1.41
+ 1.79
+ 1.91
+2.88

+3.41
+4.27
+4.37
+5.41
—0.83

—6.60
—4.97
—1.64
—1.26
—1.14
—0.17
+0.36
+ 1.22

+ 1.32
+2.36
+ 3.90

Mg J~—6

48.2
48.2
48.2
48.2
48.2
48.2
48.2
48.2
48.2
48.2
48.2

(j 5+

45.5
44.0
36.4
35.9
36.0
34.6
29.3
29.2
29.4
29.2
32.7

jb=-, -) Ref. 23

0.94
0.91
0.76
0.74
0.75
0.72
0.61
0.61
0.61
0.61
0.68

—0.216
—0.221
—0.301
—0.301
—0.298
—0.306
—0.243
—0.234
—0.224
—0.208
—0.112

0.0030
0.0325
0.0417
0.0189
0.0101
0.0152
0.0230
0.0246
0.0444
0.0535
0.146

0.0025
0.0324
0.0533
0.0246
0.0133
0.0193
0.0380
0.0416
0.0765
0.0865
0.220

14.4 —2.81 +2.78

"Si J"=6- (j, =-', ' j,=-', ) Ref. 12

35.3 25.4 0.72 —0.110 0.330 0.427

9.1

9.3
10.0

8.3
8.9

10.0
10.7
13.3

—0.80
—0.66
+0.04

—5.07
—4.43
—3.41
—2.67
—4.38

—0.54
+0.10
+1.12
+1.83
+4.41

48C Jn g—

14.2
14.2
14.2

54F Jrr g—

8.26
8.26
8.26
8.26
8.26

(j, =-',

13.0
12.9
9.79

8.25
6.96
6.90
6.19
6.82

jb ———', +) Ref. 16
0.92
0.91
0.69

Ref. 27

1.00
0.84
0.84
0.75
0.83

—0.187
—0.187
—0.187

—0.191
—0.123
—0.126
—0.187
—0.115

0.0249
0.0752
0.0268

0.0301
0.0358
0.0330
0.0358
0.159

0.0266
0.0803
0.0383

0.0294
0.0418
0.0383
0.0471
0.190

7.9
8.8

10.2
11.2
12.5

—3.21
—2.34
—5.34
—4.29
—3.03

+0.99
+1.86
+3.24
+4.29
+5.55

58N Jn g—

7.02
7.02
7.02
7.02
7.02

(j.=27- jb ——92 )
~ 9+

5.90
5.85
5.95
5.87
5.78

Ref. 28

0.84
0.83
0.85
0.84
0.82

—0.129
—0.133
—0.118
—0.119
—0.122

0.0443
0.0485
0.0305
0.0478
0.0859

0.0515
0.0573
0.0354
0.0565
0.103
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TABLE I. (Continued. )

State
Binding energy

n (HO)

M'( x 10-')
(WS) (WS/HO)

Mo /M
(WS)

F /M](zl )p
(HO) (WS)

7.5
8.4
9.0
9.2

12.3
12.5
13.9
14.8
15.5
16.1

—7.77
—6.86
—6.28
—6.12
—6.41
—6.24
—4.83
—3.90
—3.24
—2.66

—2.01
—1.12
—0.57
—0.36
+2.80
+2.97
+4.38
+5.31
+5.97
+6.55

NiJ =8
6.97
6.97
6.97
6.97
6.97
6.97
6.97
6.97
6.97
6.97

jb=—
7.18
7.10
7.06
7.04
5.98
5.97
5.85
5.74
5.65
5.57

Ref. 11

1.03
1.02
1.01
1.01
0.86
0.86
0.84
0.82
0.81
0.80

—0.188
—0.187
—0.187
—0.187
—0.117
—0.117
—0.118
—0.116
—0.115
—0.115

0.0497
0.0199
0.0262
0.0244
0.0155
0.0266
0.0448
0.0300
0.0238
0.0107

0.0476
0.0192
0.0258
0.0240
0.0181
0.0311
0.0529
0.0363
0.0289
0.0131

7.4

6.7

—4.61

—2.26

"Z~ J =10- (j.=-,'+ j,= —", ) Reft. 29»d 1

2.99 3.16 1.06

"'Pb J =14- (j.= —",
+ j,= —", -) Ref. 30

0.579 0.657 1.13

—0.187

—0.187

0.259

0.179

0.246

0.163

J =j,+jb ——2j, + 1 for a stretched state. Then the square
of the isovector Z coefficient summed over all observed
transitions is given by

(Z', ),„„= n, , for T
2J To+1

The sum rule is also valid when the ground state (or ex-
cited state) contains admixtures of other orbital
configurations such as j," so long as j,+j, &J. The max-
imum value of the sum occurs when n is evaluated in the
extreme single-particle shell model as above, and this is
used as our standard for comparison.

For T stretched magnetic transitions, the maximum
isovector strength is given by

(14)

The sum of the two gives

g(ZI),„„= [n„+n ]=, for T„, .
l

(15)

Note that in general 2n„=2n =n =2J for a full orbital.
Equation (15) is also true for g, (Zo ),h, .

III. CALCULATING WAVE FUNCTIONS
AND FORM FACTORS

We will treat M4 excitations in ' C, ' C, and ' 0,
M6 excitations in Mg, ' Mg, and Si, ' M8 excita-
tions in " Ca, ' Fe, Ni, and Ni, "one M10 excita-
tion in Zr, and one M14 excitation in Pb. A range
of both bound and unbound excitations is treated for
each nucleus, matching those states examined by electron
scattering.

Form factors have usually been calculated using HO
wave functions. Fits to the experimental momentum-
transfer dependence q for each transition are obtained by

varying the length parameter b. This 7 fitting procedure
was redone here, varying the b and the normalization.
The "best fit" value of b for each nucleus is listed in
Table II. The value listed is the same within uncertain-
ties as has been previously found.

In this paper we use WS wave functions, in which case
there are more input variables to adjust. Here we discuss
the binding energies and potential parameters used to cal-
culate hole- and particle-state wave functions and the
sensitivity of M, to these choices.

As is usual, the binding energy (Es) of the hole state is

assumed to be the separation energy (Es) of the nucleon
in that state, and the binding energy of the particle state
is that for the hole state plus the excitation energy (Ez) of
the stretched state. Although other schemes may be con-
sidered, the results are highly insensitive to this assump-
tion. For simplicity all hole states and particle states use
the same WS potential geometry.

For many of the nuclei, the ground state of the (A —1)
nucleus does not have the proper spin j, and isospin.
When the ground state does not have the proper spin, the
excitation energy (Ez) of the lowest state in the (A —1)
nucleus with the proper spin is added to the separation
energy. The case where the ground state does not have
proper isospin is for T stretched states in (N —1) nuclei
where To&0. For these T =To+1 stretched states, the
proper isospin of the neutron hole state or particle state is
To+ —„since this is the only decay allowed if the isospin
rules are strictly obeyed. Because isospin rules are not
strictly obeyed, however, the neutron state should be
weighted by the lower isospin To ——,

' also. In our calcula-
tions for the particle state, the excitation energy (Er) of
only the state with proper isospin was added to the sepa-
ration energy. For the hole state, however, very little
sensitivity to the binding energy of the hole state was
found, so for simplicity, no adjustment was made for the
proper isospin. The binding energies can then be written
as Ea, hoie = —E~ —EJ and EB,part

=EE —E~ —EJ. This
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TABLE II. The parameters listed here were used in calculating the wave functions for the best g fit. The b is the oscillator length

for calculating HO wave functions. The potential used in calculating the WS wave functions is
U= —Vof+ VOX(A/2m c) (m /M) (rr l)r 'df/dr, where f =

I 1+exp[(r —roA' )/a]) '; (m /M) =1/45. 2, and

VOX, I45.2= V, , A Coulomb radius of r, =1.25/ 3 ' fm was used for all nuclei. The "fit" values were used for the calculations in
Table I and the plots in Fig. 4. The final column shows how much the experimental g(Z, ),„~ in Table III changes if potential param-
eters from the literature are used instead of the "fit" parameters.

Nucleus

12C

14C

16p

Mg

Mg

28Si

"Ca

54Fe

'Ni

"Zr

zosPb

b (fm)

1.52+0.03

1.49+0.06

1.55+0.04

1.83+0.04

1.76+0.06

1.73+0.02

1.92+0.04

1.91+0.03

1.93+0.05

1.95+0.04

2.08+0.04

2.23+0.04

ro (fm)

1.01%0.04
1.20
1.25
0.84+0. 11
1.16
1.25
0.96+0.06
1.23
1.22
1.30+0.04
1.25
1.21+0.07
1.25
1.42
1.16+0.02
1.25
1.20
1.24+0.04
1.17
1.22+0.02
1.23
1.19+0.04
1.11
1.22+0.03
1.11
1.17
1.26+0.03
1.27
1.18+0.02
1.20

a (fm)

0.65
0.65
0.5
0.65
0.78
0.5
0.65
0.6
0.6
0.65
0.65
0.65
0.65
0.5
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65

A, /V, , (MeV)

A, =25
V, , =24

A. =25
A, =25
V, , =24
A, =25
V, , =24
V, , =29
X=25
A, =25
A, =25
A, =25
V, , =24
X=25
A, =25
A, =25
A, =25
V, , =28
A, =25
V, , =28
A. =25
V, , =24
A, =25
V, , =24
V, , =28
A, =25
V, , =28
A, =25
V, , =28

Ref.

fit
35
24
6t
38'
23
6t
35
26
fit
39
fit

39
23
6t
40
41
fit
34
fit

34
6t
35
fit
35

34,37
fit

34
fit

34

g(Z, ) /g(Z) )st

1.0
1.39
1.14
1.0
0.94
0.91
1.0
1.27
1.27
1.0
0.99
1.0
1.07
1.12
1.0
1.07
1.04
1.0
0.80
1.0
1.01
1.0
0.88
1.0
0.88
0.96
1.0
1.00
1.0
1.00

'Binding parameters were misprinted.

changes to E~ ~„,=EE —Es —E~ for the neutron binding
energy in T stretched states in To&0 nuclei. See Table
I for the binding energies for each state.

We now discuss how the results differ depending on
what isospin state is used for the special case mentioned
above. The T stretched states in nuclei where To&0
are the 24.4 MeV state in ' C, the 18.0 MeV state in

Mg, the 13.3 MeV state in Fe, three states in Ni, and
six states in Ni. The particle state shows a definite sen-
sitivity to the isospin used. If the proper upper isospin is
used, the neutron in all the above states is bound except
the one in ' C, whereas, if the lower isospin is used only
the neutron in the state in Fe is bound. Any kind of
weighting of the two isospin states decreases the calculat-
ed M, from what we use in Table I, and if only the lower
isospin is used the decrease is up to 20% for any indivi-
dual state. The 24.4 MeV 4 state in ' C was too un-
bound when the lower isospin was used and our method
failed to converge. The hole state, on the other hand,
shows very little sensitivity to the isospin used. For ex-
ample, the T= 3

f7/2 neutron hole s—tate in Ni has a

binding energy of —15.29 MeV [Es„——11.389 MeV and
EJ ——3.9 MeV (Ref. 31)], while the T = —,'f7~& hole state
has a binding energy of —18.74 MeV [Es„=11389
MeV and Er ——7.35 MeV (Ref. 32)]. The calculated M,
computed with these two extremes differ by less than 1%.

For unbound states we used the option in the computer
code DwUcK4 (Ref. 13) which treats the unbound level as
a resonance. ' The unbound wave function is normal-
ized by forcing it and its derivative to be zero at the ra-
dius picked for the limit of integration. This method is
commonly used for computing the appropriate wave
functions for a nucleon stripping reaction.

The radial integrations were performed with a step size
of 0.1 fm and a maximum outer radius of 40 fm. This
was found to be adequate to obtain stability in the pre-
dicted decay-particle widths. For the 14.4 MeV T=1
state in Si the method we use yields a single-particle
proton width of 10.5 keV which is close to the 10.8 —17.4
keV range of widths found by Nelson et al. in compar-
ing R-matrix and g-matrix methods in detail. (They give
I, =11.9 keV. ) This comparison demonstrates the reli-
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' C our method yields a single-particle proton wi t o
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state has an observed width of 1.7 MeV which is the
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The shape parameters for the potentials may be deter-
mined by elastic magnetic electron scattering from the
valence nuc eon, ese p1 th arameters have been determined

It is also advantageous to use thein several cases.
same potential well to generate wave functions for strip-

d f magnetic electron scattering;
thus, we include several examples of stripping parame-

This should yield a more consistent compar-ters. is s ou
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There have been other references suggesting the need
for using smaller radii. Although the ground state of ' C
is not t'he hole state for stretched excitations in ' C, it is
interesting to note that a value of ro ——0.9 fm for ' C is
given by Donnelly and Sick as the best fit to the mag-
netic elastic data. In a recent reference that calculates
the mean field for negative and positive energy neutrons
in Pb, the radius of the real potential was found to de-
crease for more positive (unbound) single-particle ener-
gies, and for more negative (deeply bound) single-hole en-
ergies. 2 This decrease in radius amounted to about 3%
at +10 MeV, however, which is much less than the de-
crease in radius (from the radii found for ground-state
distributions) detailed in Table II of about 20%, even for
states close to the nucleon binding energy.

To understand better how the matrix elements are
dependent on the wave functions used, we have plotted in
Fig. 2 the integrand of the radial integral [see Eq. (7)] for
several states. These were evaluated at a value of q where
the matrix element is a maximum. The less bound nu-
cleon extends to a larger radius, and thus the overlap of
the particle and the hole states decreases, yielding smaller
matrix elements. This is particularly true for the final
states at higher energies, as seen for Mg and Ni. The
results in Table I are the clear result of the amount of

q (fm )

FIG. 3. The results of including meson exchange current
(MEC) effects are shown for the 9.17 MeV state in Mg. The
data are to be compared with the solid line which includes MEC
effects. These effects are made up of the non-MEC term (dot-
dashed line), the seagull term (dashed line), and the pionic term
(dotted line). The curves can be assumed to come from either
HO or WS wave functions.

overlap seen in Fig. 2.
The effect of meson exchange currents (MEC) was also

computed, and the inhuence of WS and HO wave func-
tions was compared. The expressions of Dehesa
et al. ' ' were evaluated with both sets of wave functions
for the isovector mode. The entire ensemble of initial
states (not just that for the hole state) was computed us-
ing the WS potential. The results of including MEC
effects are shown in Fig. 3 where Mg is used as an ex-
ample. This figure includes the curves for the seagull and
pionic terms which enter with opposite signs. The effect
is the same to within 3% (usually 1%) whether HO or
WS wave functions are used. The inclusion of MEC
effects increases the theoretical predictions between 15
and 20%. This would decrease yet further the fractions
of single-particle strength obtained by comparing data to
calculations, as shown previously. ' The results shown
here will not include MEC effects.

IV. RESULTS

In Fig. 4 theoretical form factors calculated from both
HO and WS wave functions are compared to some
representative electron scattering data. For several states
the WS matrix elements were calculated separately for
neutrons and protons and these are included in Fig. 5.
Neutron and proton WS curves were each normalized to
the data by the same factor as was the combined WS
curve. For the states in Fig. 5 where neutron and proton
matrix elements were plotted, we notice the results of iso-
spin asymmetry. As expected, the theoretical form factor
is smaller for the less bound nucleon as already discussed
for Fig. 2.

Using HO wave functions with a constant b results in
the theoretical form factor peaking at the same momen-
tum transfer q,„ for all stretched states. When the value
of b is allowed to vary from state to state, as in Ni for
example, the variation in b is +0.02 fm with no systemat-
ic dependence on the excitation energy. When WS wave
functions are used instead, the stretched states at higher
excitation energies have wave functions that extend fur-
ther out and the theoretical form factor peaks at a small-
er q,„. However, this change in q,„between the lowest
and highest stretched state of a given nucleus is in gen-
eral only 0.03 fm ' or less. In the extreme case of Mg
the 18.0 MeV state peaks 0.07 fm ' lower than the 7.5
MeV state, but even this shift is diScult to detect in the
data.

Table I gives the results of the analysis using WS wave
functions and compares these to results using HO wave
functions. The HO theoretical matrix elements have not
taken into account the excitation energy of the state,
whereas the WS matrix elements have. As a result, the
HO form factor curves are the same for all states for the
constant value of b used for each target. The ratio be-
tween WS and HO calculations shows that the theoretical
M

&
for WS wave functions decreases with respect to HO

wave functions as the excitation energy increases. The
ratio abruptly decreases at energies where a nucleon be-
comes unbound. This is as expected since the overlap be-
tween initial and final wave functions decreases; this
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FIG. 4. Electron scattering data are here compared to predictions. Solid curves use HO wave functions and dot-dashed curves use

WS wave functions. The magnitudes of the theoretical curves have been normalized to the data. These plots do not include MEC
effects. For ' C, 'Ca, Zr, and ' 'Pb the (dotted) curves use only the neutron part of the WS wave function.
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FIG. 5. Electron scattering data compared to predictions as
in Fig. 4, but with neutron (dotted curve) and proton (dashed
curve) WS wave functions shown separately. The solid curves
use HO wave functions and the dot-dashed curves use (total)
WS wave functions. The magnitudes of the theoretical curves
have been normalized to the data. No total WS curve is given
for ' C because the 11.7 MeV state is the result of a neutronlike
transition.

effect was also pointed out by Siciliano and Weiss. The
Mo/M, ratio from WS wave functions is in many cases
much different than —0. 187. Again, the ratio changes
abruptly when the nucleon becomes unbound. In some
cases the ratio is as large as —0.3 at the peak of the curve
and as large as —1 above q,z ——3.5 fm '. This could
make neglect of the isoscalar term a poor approximation.
The ratios Mo/M; and F /Mf can be used in conjunc-
tion with pion scattering data to calculate Zo and Z& by
solving Eqs. (9) and (10) simultaneously. The resulting
changes in Z& are discussed in the next section.

The sums of F /M, from Table I are given in Table III
for T states, T states, and the total. The isospin as-
signments in the literature are assumed to be correct, al-
though untested in most cases. The (Z, ),h, in Table III
are calculated using Eqs. (13)—(15). Experimental data
are compared to theoretical predictions for T and T
states separately, as well as the total. Using WS wave
functions, the ' C data exhaust 105% of the sum expect-
ed and the ' 0 data exhaust 81%. These would be
15—20% smaller if MEC effects had been included. In
general the data exhaust a large fraction of the sum rule
for light nuclei, but exhaust a decreasing amount for
heavier nuclei. Also listed are the comparisons between



B.L. CLAUSEN, R. J. PETERSON, AND R. A. LINDGREN 38

TABLE III. Sums of (Z, ),'„~ from Table I for each nuclide are listed as g(Z& ),„~. Theory calcula-

tions use Eqs. (13), (14), and (15) for g(Z, ),'h, . Note that 4'Ca, ~Zr, and ~osPb are pure neutron transi-

tions. The HO results are in agreement with those presented previously where comparisons to previous
extreme single-particle model calculations could be made.

Nuclide, J
12C 4—

g[F /Mi =(Z, ),„p]
(HO) (WS) g(Z, ),h,

g(Z, ),„p/g(Z( ),h,

(HO) (WS) (WS/HO)

14C 4—
total

0.422

0.422

0.189

0.215

1.045

1.045

0.208

0.424

42%
42%
38%

43%%uo

105%
105%%uo

42%

85%

2.48

16O 4—

M 6g

26Mg

Si 6

total

total

0.404

0.016
0.521

0.537

0.195

total 0.195

0.267

0.146

total 0.413

0.632

0.020

0.787

0.807

0.247

0.247

0.388

0.220

0.608

1

3

1

3
2
3

1

2

1

3

5
6

40%

52%
54%
0%

58%

29%%uo

53%

44%

50%

63%

79%
81%
0%

74%

37%

78%

66%

73%

1.56

1.50

1.27

1.47

48Ca 8-
total

0.330
0.330
0.127

0.427

0.427

0.145

33%
33%
25%

43%
43%
29%

1.29

'Fe 8

total 0.127

0.135

0.159

0.145

0.156

0.190

25%%uo

27%

42%

29%%uo

31%
51%

1.14

total 0.294 0.346 34% 40% 1.18

Ni 8

Ni 8

Zr 10

total

total

0.093

0.164

0.257

0.120

0.152

0.272

0.259

0.109

0.195

0.304

0.117

0.180

0.297

0.246

19%

33%

26%
18%

46%

27%
52%

22%

39%%uo

30%
18%

54%

30%
49%

1.18

1.09

Pb 14

0.259

0.179 0.163 36%%uo

49%

33%

0.95

total 0.179 0.163 36%%uo 33% 0.91

HO and WS calculations for each nucleus. The WS cal-
culations strongly enhance the amount exhausted for
light nuclei compared to HO calculations, but leave ap-
proximately unchanged the amount exhausted for heavier
nuclei.

V. DISCUSSIQN

The distinction between results with HO and WS wave
functions is most dramatic for the light nuclei, diminish-

ing for heavier nuclei. This can possibly be understood in
terms of the increasing role of the centrifugal potential
term retarding the extension of the unbound radial wave
function. Using R = l. I)& A '/ fm and I for the particle
state, this potential

lq(lq+ 1)A'

V, =
2MR2

is 18, 22, 24, 26, and 27 MeV for ' C, Si, Fe, Zr, and
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Pb, respectively. The particle angular momentum in-

creases faster than does the nuclear size, decreasing the
decay probability and decreasing the binding energy
effects for heavier nuclei.

Several comments can be made about the fraction of
the sum rule strength exhausted by the data in Table III.
Including MEC effects decreases all fractions by
15—20%. Including the ground-state isospin when cal-
culating T state wave functions in To&0 nuclei could
increase the fraction of the sum rule up to 20%%uo. Using
the larger ro (near 1.2 fm), as listed in the literature for
' C, ' C, and ' 0, could substantially increase the frac-
tion of the sum rule in some cases as seen in Table II.

For nuclei on which pion scattering has been done, the
results of including isoscalar transition effects in Eq. (9)
can be seen in several cases. (These effects will be in-

dependent of whether HO or WS wave functions are
used. ) The Zo/Z& ratio can be calculated directly from
the pion scattering o+/cr ratio with no need to assume
any particular wave function. Using the Zo/Z& ratios
from the literature, the fraction of the total sum strength
changes by less than 2% for ' C, ' ' 0, Si, and

Fe. For the isospin mixed 19.5 MeV state in ' C,
~
Zo

~

=0.62 and
( Z,

~

=0.57. Depending on whether
the ratio of Zo/Z, is negative or positive, the fraction
will decrease by a factor of 0.62 or increase by a factor of
1.9, respectively. For the neutron transitions in Ca,

Zr, and Pb, Zo/Z& ——1, in which case the fraction
will increase by a factor of 1.5.

An analysis of pion scattering to stretched states using
WS wave functions (especially for unbound states) should
be even more revealing than this analysis of electron
scattering. The electromagnetic probe interacts with the
whole nuclear volume, but the strongly absorbed pion is
particularly sensitive to the nuclear surface. In neutron
excess nuclei such as ' C the neutron component of the
transition density extends beyond the proton component
and enhances negative pion scattering. This effect has
been demonstrated for giant quadrupole resonances, but
shown to be slight for the nearly bound stretched state of
isosymmetric ' C. An analysis using WS wave func-
tions is now in progress on new Ni(tr, tr') data as well as
previously published data on other nuclei.

VI. CONCLUSIONS

The result of this work is a substantial increase in the
fraction of the expected stretched magnetic transition
strength for light nuclei when existing data are compared
to new theoretical predictions. For ' C and ' 0, the M4
strength fractions are increased by factors of 2.5 and 1.5,
respectively. The other light nuclei also have significant
increases. The increase is less dramatic for heavier nu-

clei, and in fact for Zr and Pb there is a slight de-
crease. It is not unreasonable to expect that unobserved
weak states in these nuclei could account for the
difference from 100%%uo, or that a lack of closure of the
hole orbital hampers the excitation. A recent calculation
of the quenching expected with a momentum-dependent
residual particle-hole interaction found quenching effects
of 10—20% (from the pure particle-hole shell-model pre-
dictions) for a 6 excitation in Ca at the momentum
transfer corresponding to the peak of the electron scatter-
ing form factor. This is very similar to the results
found in the present analysis for ' 0, for instance.

The present analysis treats all known cases of magnetic
electron scattering to stretched states in doubly even nu-

clei, and it spans a wide range of hole states
(I, =1,2, 3,4, 6) and particle states (lb ——2, 3,4, 5, 7). Real-
istic radial wave functions have been included, and the
results of including meson exchange currents have been
discussed. For light nuclei, where experimental results
are most complete, we conclude that there is no
significant quenching of isovector stretched magnetic
strength from the simple single-particle sum rules, and in-
vocation of exotic effects does not appear to be appropri-
ate.
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