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Deformed nuclear state as a quasiparticle-pair condensate
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The deformed nuclear states, obtained in terms of the Hartree-Fock plus BCS method with the

Skyrme SIII interaction, are approximated by condensates of the low-angular-momentum quasi-

particle and particle pairs. It is shown that the quasiparticle pairs, which are essentially the
particle-hole nuclear excitations, provide for a better approximation than the valence particle
pairs. In both cases, the inclusion of J 0, 2, and 4 components is necessary to reproduce the
Hartree-Fock plus BCS equilibrium deformation and deformation energy.

A description of the nuclear quadrupole states in terms
of the U(6) symmetry has recently been a matter of con-
siderable interest. Two hypotheses have been put forward
to provide for a microscopic foundation of the symmetry.
The interacting boson model (IBM) of Arima and Iachel-
lo' is based on the assumption that the quadrupole collec-
tive states can be built out of the pairs of valence particles
(or holes past midshell) coupled to angular momentum
J 0 and J 2. In the quadrupole phonon model (QPM)
of Janssen, Jolos, and Donau (also called the truncated
quadrupole model) the same is assumed about the pairs of
quasiparticles coupled to J 2. A number of studies have
recently been devoted to a discussion of the former hy-
pothesis. ' It is the aim of the present paper to put both
of them on an equal footing and to check their compatibil-
ity with a mean-field description of the deformed nuclear
ground state.

Let ~%') denote a deformed independent quasiparticle
state, i.e., the vacuum of the quasiparticle annihilation
operators P„,P„(%'& 0. In view of the Thouless theo-
rem, ' the state

~
e) can be expressed in terms of another

independent quasiparticle state
~ e„,t), which we will call

the reference state, and a quasiparticle-pair creation
operator Z, i.e.,

"t .

~
e) -(e„t

~
e &exp fZ'j

~ e„,t&, (1)

where

Z'- —,
' QZJ„a„'a„', (2)

pv

a„~%ref) 0, and Z„„is a complex antisymmetric matrix.
Any independent quasiparticle state can be used as the
reference state, apart from the requirement that it should
not be orthogonal to

~
e). The quasiparticle-pair creation

operator corresponding to the chosen reference state can
be determined from the coefficients of the Bogolyubov
transformation connecting the quasiparticle operators p„
and a„(Ref. 15). The Thouless theorem, Eq. (1), allows
us to consider the deformed state as a condensate of quasi-
particle pairs Z~ added to the chosen reference state

I +,.t&

The pair operator Z can be presented as a sum of
different angular-momentum components:

Z'- g x,Z), (3)
J 0,2,4, . . .

A

where the quasiparticle-pair operators Z transform un-
der spatial rotations as the rank-J spherical tensors and
the expansion coefficients xJ are fixed by the normaliza-
tion condition 2(O„I~ZJZj~~„t) l. Since we assume
here the axial and the parity symmetry of the state

~ W),
the sum in Eq. (3) is restricted to even values of J and the
magnetic quantum numbers (not shown explicitly) are
equal to 0 for every pair ZJ. For different reference states

f) one may obtain different multipole compositions of
the quasiparticle pair Z t.

When analyzing the structure of deformed states of a
given nucleus we will consider here two reference states,
related respectively to the IBM and the QPM, namely, (i)
the spherical ground state of the closed-shell nucleus
nearest to the given one, and (ii) the state of the given nu-
cleus obtained with the imposed spherical symmetry. The
two reference states will be referred to as the IMB core
and the QPM core, respectively. For the IBM core, the
quasiparticle pair Zt is mainly composed of pairs of
valence particles (or holes past midshell), while for the
QPM core, it is predominantly constituted of particle-hole
excitations.

In the present study, ' we have carried out the analysis
of deformed states of '2sBa. In order to determine the de-
formed states ( 4'), we use the constrained Hartree-Fock
(HF) method with the Skyrme interaction SIII. ' The
pairing correlations are included by means of the BCS ap-
proximation with constant gap parameters's determined
from the experimental odd-even mass differences'9 (5„

1.41 MeV and h~ 1.38 MeV). The quadrupole mo-
ment Q P,"-i(2z; —x; —

y; ) is used as the constraining
operator. The reference states are also determined by the
HF+BCS method and are equal (i) to the (unpaired)
solution for the ground state of the doubly magic nucleus

Sn (IBM core) and (ii) to the solution for ' Ba ob-
tained by imposing the spherical symmetry when solving
the HF+ BCS equation (QPM core). The HF equation is
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FIG. 1. Squared amplitudes xP of various multipole com-

ponents, Eq. (3), of the pair creation operators Z obtained for
the HF+BCS deformed states of ' Ba with respect to (a) the
IBM core and to (b) the QPM core. The values of the angular
momenta J are indicated at every line.

solved by expanding the single-particle wave functions in

the spherical oscillator basis up to the No 12 oscillator
shell.

As opposed to the studies done so far, ' we neither as-
sume in our HF+BCS calculations any inert core nor re-
strict the calculations to a limited number of valence
shell-model states. The core-polarization effects are thus
explicitly included in our approach. The use of the
Skyrme force instead of a schematic quadrupole-quad-
rupole interaction ensures the present state-of-the-art
description of the deformed nucleus.

For the deformed states of ' Ba obtained by the
HF+BCS method, we have determined the multipole
components of the quasiparticle pairs Zt with respect to
the IBM and QPM cores. The resulting squared expan-
sion coefficients, xj for J 0,2, . . . , 10, are plotted in

Figs. 1(a) and 1(b) for the IBM and QPM cores, respec-
tively, as functions of the HF quadrupole moment

QHF &%'
~ Q ~

q!'). In both cases, the multipole expansions
are very well convergent. For the IBM core, the J 0 (S)
and J 2 (D) components dominate the quasiparticle pair
Z, as it is assumed by the IBM. At the equilibrium de-
formation of QHF 800 fm the components with J & 2
are roughly an order of magnitude smaller for every
higher value of J. For the QPM core, the J 2 (S) com-
ponent is the dominating one, while the J 0 and J 4
components are both an order of magnitude smaller (at

the equilibrium deformation). The other components are
again an order of magnitude smaller for every higher
value of J.

The dominance of the J=0 and J 2 components (the
S-D dominance) has already been observed for the IBM
core by several authors " in somewhat more schematic
models. The microscopic manifestation of the dominance
of the J=2 component for the QPM core (the 2) domi-
nance) has not been reported previously.

The S-D dominance or the 5 dominance cannot be con-
sidered as an immediate justification for the IBM or the
QPM, respectively, in their efforts to describe deformed
nuclear states. That is so because the independent quasi-
particle state of a deformed nucleus, Eq. (1), is a conden-
sate of many quasiparticle pairs, and hence the Pauli prin-
ciple may change the relative importance of the dominant
and the small components. In order to estimate the
significance of the small components one should study the
properties of the truncated states, i.e., the states which one
obtains in terms of Eq. (I) from the truncated multipole
expansion, Eq. (3), of the quasiparticle pairs.

The truncation can be performed in two ways. Either
one can simply set the high-J expansion coefficients xJ,
Eq. (3), of the HF+BCS pair equal to zero, which is the
truncation after variation, or one can first truncate the
multipole expansion of Eq. (3) and then perform the vari-
ation with respect to the kept multipole pairs, which is the
variation after truncation. In the latter method, one al-
lows the kept components to properly readjust themselves
and to take over, at least partly, the role of the removed
components. In the present study, we have performed
both types of calculations. The projected-gradient meth-
od' has been used to find the variation-after-truncation
solutions.

Let us first discuss the results of the truncation after
variation. Our calculations show that the quadrupole mo-
ment Q of the truncated state is for both cores, the IBM
and the QPM core, equal to the quadrupole moment QHF
(within a few percent), provided that the J 0, 2, and 4
components are kept in the quasiparticle pair. However,
if one keeps only the dominant components, the disagree-
ment between Q and QHF amounts at the equilibrium de-
formation to 6% (11%) for the IBM (QPM) core, and
reaches 17% (37%) at the maximal deformation studied
here (QHF 2200 fm ). When only the dominant com-
ponents are kept, the mean particle number N of the trun-
cated state differs by —0.13 (+0.87) (at the equilibrium
deformation) from the exact value of NHF 128, and by
10(13)at QHF =2200 fm .

These results illustrate the wound given by the trunca-
tion to the HF+BCS state. One should remember, how-
ever, that the quadrupole moment and the proton and
neutron numbers are the constrained quantities and
should be considered as independent variables in terms of
which one investigates the total energy of the system.
Since we are using a constrained variational theory, the
quality of the truncated state should be judged from the
difference between the energy E of the truncated state and
the energy EHF of the HF+BCS state at the same quad-
rupole moment and particle numbers This kind of com. -

parison would require the determination of the HF+BCS
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solutions for particle numbers slightly departing from
those of ' Ba, as such are the particle numbers of the
truncated states. Instead, we have decided to use an ap-
proximate treatment and simply scale the energy of the
truncated state as E' 128(E/N). The scaled energies
are plotted for various truncations in Fig. 2 as functions of
Q (thin solid and dashed lines for the IBM and the QPM
cores, respectively) and compared with the HF+ BCS en-

ergy EHF plotted as function of QHF (thick line).
As seen in the results shown in Fig. 2, the truncation of

all but the dominant components gives a poor agreement
with the HF+BCS energy for both cores considered here.
The results for the QPM core and the S pairs are better
than those for the IBM core and the S+D pairs. Howev-

er, in both cases the deformation energy and the equilibri-
um deformation are both substantially smaller than the
corresponding HF+ BCS values. Addition of the consecu-
tive components with higher multipolarities gradually im-

proves the results. One observes that (i) the energies cor-
responding to the QPM core are for a given truncation al-
ways lower than those for the IBM core, (ii) in order to
reproduce the equilibrium deformation one has to include
more multipole components for the IBM core (up to
J 6) than for the QPM core (up to J 4), and (iii) high
multipolarities must be taken into account to reproduce
the HF+BCS energy in the whole range of the studied
deformations.

Let us now discuss the results of the variation-after-
truncation calculations, which we have performed for
several selected values of the quadrupole moment. The
mean proton and neutron numbers are now properly ad-

justed, and the scaling of energy, which we used for the
truncated HF+ BCS pairs, is not needed any more.

The energies obtained for the optimal pairs are present-
ed in Fig. 2 for the truncation to J 0 and 2 (squares) and
to J 0, 2, and 4 (circles), and for both cores, the IBM
core (full symbols) and the QPM core (open symbols).
For the QPM core, the J 0 component plays an impor-
tant role in reproducing the pairing properties of the de-
formed state, and therefore, we have not performed the
variation-after-truncation calculations for the J 2 pair
alone. The results show that (i) the energies correspond-
ing to the QPM core are for a given truncation and quad-
rupole moment still lower than those for the IBM core,
(ii) the energies obtained for the optimal pairs are for the
QPM core close to those for the truncated HF+BCS
pairs, while for the IBM core the former are substantially
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lower than the latter, and (iii) for both cores, the J 4
component has to be included in order to obtain the
correct equilibrium deformation.

In summary, we have shown to what extent the de-
formed nuclear state, as given by the HF+BCS method
with the Skyrme SIII interaction and with the core-
polarization effects included, can be approximated by a
condensate of small- J multipole components of the coher-
ent fermion pairs. We have found that the quality of the
approximation is better for the quasiparticle pairs intro-
duced in the quadrupole phonon modelz than for the par-
ticle pairs introduced in the interacting boson model. '

The dominant multipole components (J 2 for the QPM
and J 0 and 2 for the IBM) are not sufficient to repro-
duce the HF+BCS equilibrium deformation and defor-
mation energy. The agreement becomes fairly good when
one includes in both cases the J 0, 2, and 4 components.

This work was supported in part by the Polish Ministry
of Science and High Education under Contract No. CPBP
01.09.
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FIG. 2. Energies of the truncated states (thin lines and isolat-
ed symbols) as compared to the energies of the HF+ BCS states
(thick line) presented for '2sBa as functions of the correspond-

ing quadrupole moments. The solid thin lines and the full sym-
bols correspond to the multipole pairs defined with respect to the
IBM core, while the dashed thin lines and open symbols corre-
spond to those for the QPM core. The thin solid and dashed
lines correspond to the truncation after variation. The angular
momenta kept in the multipole expansion are for a given trunca-
tion indicated at every line. The isolated symbols correspond to
the variation after truncation to J 0 and 2 (squares) and to
J 0, 2, and 4 (circles).
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