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Functional integral approach to the Lipkin model
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A quantum-mechanical formulation involving both collective and independent-particle motions
in many-fermion systems is proposed by using the path-integral technique. A semiclassical method
of evaluating the functional integral over both fields is described. As an illustration, the Lipkin
model is utilized.

The complex interplay between collective and
independent-particle motions has played an important
role in the description of nuclear structure. The author
has recently proposed a quantum-mechanical treatment'
by using the path-integral technique for the description
of such an interplay from the viewpoint of the mean-field
theory. The path integral was then written as a function-
al integral over collective (Bose) and independent-particle
(Fermi) fields, with constraints due to the elimination of
the double counting of the degrees of freedom. If the
independent-particle degrees of freedom were frozen, it
was reduced to the path integral proposed in Ref. 2.
Therefore our formulation was a natural extension of
their attempts. However, a direct path integral over the
Fermi fields is difficult, because the Lagrangian is not
quadratic in the Fermi fields and the path integral in-
cludes some constraints. In this paper, I present another
functional integral treatment to overcome these serious
difficulties. With this aim, we employ a well-known
Gaussian method which makes the Lagrangian quadra-
tic in the Fermi fields. We have no need to require the
constraints in this method. Then the path integral over
the Fermi fields is evaluated by using the quantum adia-
batic approximation, ' and then the eft'ective Lagrangian
of only the collective fields is obtained. As an illustra-
tion, we use the Lipkin model. There are several works '

on the semiclassical quantization for this model. Shan-
kar has shown that the energy levels obtained by the
Bohr-Sommerfeld quantization condition agree well with
the exact ones. However, he has not included the
independent-particle degrees of freedom. Therefore it is
interesting to have the quantum-mechanical understand-
ing of the independent particle.

The Hamiltonian of the Lipkin model with spin j is
given by

H=2eJ, —
—,
' V(J J +J J ),

~

c ) =exp g [(a a —a'it )+(b b b'b )—]

a ic)=a ic), b ic)=b ic), (4)

where (a~, a~ } and (b,b*) are Grassmann numbers
which obey the following anticommunication relations:

QmQn —Qn Qm~ QmQ„= —QnQm

b b„*= —b„'b, b b„=—b„b

Q b„=—b„Q

Here the fermion coherent state satisfies the completeness
relation,

f dlM(c}
i
c)(c

i
= 1,

where the invariant measure djM(c) is given by

de(c)=g da da'e g db db'e

(6)

Following the standard procedure of Feynman's path in-
tegral with the use of completeness relation (6), the trace
of the time evolution operator can be represented by the
Grassmann path integral,

K(T)=tre

= fdp(c)(c i
e '~T

i
c )

DQDQ'DbDb'

where the operators 8 and b create the particle in the
upper level and the hole in the lower level, respectively.
The quasi-spin operators (J+,J,J, ) satisfy the algebra
of SU(2):

[J+,J ]=2J„[J„J+]=+Jp.

Let us now introduce the fermion coherent state,

J,= —,'(8' —2Q)= —,
' g (tl it +b b ) —2Q

(2)

Xexp i f L(t)dt
0

where N is a normalization constant and D denotes the
functional integral. The Lagrangian is written as
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where the overdot denotes the time derivative. As the
Lagrangian L(t) is not quadratic in the Fermi fields, a
direct path-integral treatment is diScult. It is, therefore,
useful to introduce an equivalent Lagrangian which is
quadratic in the Fermi fields. As is well known, a Gauss-
ian method2 leads to the Lagrangian that is quadratic in
the Fermi fields. We introduce the collective fields

(p+,p, p, ) and multiply Eq. (8) by

L(t)= —g[(a'a +a d')+(b"b +b b')]
2

m

—2sJ, + —,
' V(J+J++J J ), (9)

J+ =pa'b*=(J )

J,=—,
' g (a*a +b'b ) —20

m

D p+ D p D p, exp ~ ——V t p+ —J+ + p —J =constant .

Equation (8) then becomes

K(T)=N' fD[p+]D[p ]D[p, ] exp ——f V(p~++p2 )dt It, (T}, (12}

K;(T)=fD[a]D[a']D[b]D[b']exp i f L,dt (13)

E;(T)=f did(c)&c
I
e '

I
c) =trewhere N'=N Xc onst ant, and the Lagrangian L, (t) is

given by (16)
0=2eJ,—,(g'J++gJ ) .

1+Pg
In the trace of Eq. (16), we use the other fermion
coherent state

I r ) instead of
I
c ):

&;(T}=

fdic(r)&r

Ie ' 'Ir&

= fD[a]D[a']D[P]D[P'] exp i f Ldt . (17)
0

The fermion coherent state
I r ) is given by

Ir)=exp g[(a a —a'a )+(p p —p'p )]

L, (t)= —g [(a'a +a a')+(b'b +b b')]
m

(14)—2eJ, + V(p+J++p J ),
which describes a many-fermion system coupled to the
external fields (p+,p, p, ). The Lagrangian l.; is quadra-
tic in the Fermi fields but contains the new fields (collec-
tive fields). In connection with the mean-field theory, it is
convenient to parametrize auxiliary fields as follows:

p+ =2p'
1+0'0

(18)
a =u& —vbp =2T

(19)
P =ub +vu

where a and p are Grassmann numbers and the
coefficients are u =(1+/'g) '~2, v =(1+/'g)
Here the Lagrangian L(t ) is given by

where g is the complex variable and r is the real variable.
The fermion propagator E,(T) is rewritten as.

(20)
where the coe%cients A and B are

I+0*0 1+0'0 (I+&'0)'

I+0'0 I+0'0 (1+0*0)'

(21}

L, (t)=2QA+2eQ+ —g [(a'a +a a' )+(p'p +p p* )]—A g(a' a +p' p )+8 pa' p*+8' gp a
m m m m
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Path integral (12) can then be written as

K ( T) =N' fD [r]D [( ]D[(']exp i f Lo(t)dt Kf ( T),

Kf( T) = fD[a]D[a*]D[P]D[P*]exp i f Lf (t)dt
p

Here the Lagrangians are defined by
Ill 2+ 2

Lo(t) =2Q A +2EQ 2V—r
(1+g'g)'

Lf(t)= —g [(a"a +a a* )+(P'P +P P' )]—2 g(a'a +P'P }+Bga" P~+B' QP~a~ .
m Ol

(22)

(23)

(24)

(25)

If the degrees of freedom a, a", P, and P' are
frozen in Eq. (22), the propagator K(T) can be reduced
as

proximation, the Grassmann functional integral is evalu-
ated as

Ko(T)=N'f D[r]D[g]D[g"]exp i f Lo(t)dt . (26)
0

( T) cia/2( 1 +e —ia)f
a= f A(t}dt .

(31)

(32}
Let us now examine the classical limit. The classical
propagator E~' is obtained through the stationary phase
approximation (SPA):

Ko' cc exp(iSO' ), (27)

where the classical action Sp' satisfies the variational
equation 5Sp =0 and then the classical equation of
motion becomes

r=Q,

Substituting Eq. (31) into Eq. (22), we obtain the propaga-
tor,

K ( T) =g ' fD [r]D [g]D [g'] exp(iSdt ),(2Q )!

n

(33)

(IR2+g2
S,tt i f ——2(Q n}3 2—Vr — +2eQ dt . (34)

(1+('g)'
i (=2E( 2Vr—

p43
i g' = —2E(*+2 Vr

1+0'0
Under the parametrization

(=tan(8/2) exp( if), —

the preceding equation is rewritten as

8= —2VQ sin8 sin(2$),

(28)

K'(T) ~ g ', exp(iS;&),
2Q —n !n! (35)

where the classical action S',z satisfies the variational
equation M, )t

——0:

r =0—n. ,

Thus the contribution of the Fermi fields is entirely ab-
sorbed in the effective action S,z. We can now apply the
SPA to Eq. (33), and get the semiclassical propagator

$=2s —2VQcos8cos(2$) .
(29)

B=O, B*=O . (30)

We will find that these conditions coincide with classical
equation (36) later on. Under the quantum adiabatic ap-

This is nothing but the conventional time-dependent
Hartree-Fock (TDHF) equation. Thus the TDHF equa-
tion is involved as the classical solution of the collective
field g in the functional integral Ko(T). Therefore we
can see that the Lagrangian Lf of Eq. (25) describes a
system of independent particles moving in the collective
field.

Next let us proceed to the semiclassical quantization'
for such a system. We first set up the following condi-
tions for Eq. (23):

'(=2eg —2V
2Q 2n rg' —g——

Q n 1 +—g'g

2Q 2n rg——g—
Q n—

(36}

The above result agrees with condition (30) for r =Q n-
Therefore we find that condition (30) is self-consistent
with the semiclassical approximation. Equation (36) is
just the classical equation of path integral (22}. By com-
paring with TDHF equation (29), we see that the preced-
ing equation involves the contribution from the indepen-
dent particles. For this reason, Eq. (36} is just an exten-
sion of the conventional TDHF equation (28). Substitut-
ing Eq. (35) into the propagator

K(E)=if e' K(T)dT, (37)
p

and using the SPA about T, we find the classical propaga-
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tor

20!
K"(E)~ g ' e'

(20 —n )!n!

(39)

Following the standard procedure of the semiclassical
quantization, the propagator K (E) has poles about

This condition is essentially equivalent to the semiclassi-

cal quantization condition derived by Shanker, except
that it includes the independent-particle degrees of free-
dom. Furthermore, we notice that the energy levels
given by Eq. (40) are characterized by two integers m and
n. The quantum number m represents, in semiclassical
language, the number of full waves fitted along the classi-
cal orbit satisfying Eq. (36), while n labels the excitations
of the independent particles and denotes the seniority
numbers.

This model is quite familiar and soluble. Although we
are dealing with the Lipkin model, we can easily make an
extension to more complicated systems. The formulation
of the general case will be given in a subsequent paper.
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