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Spin determination from the angular distributions of identical colliding nuclei
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We are concerned here with collisions involving two identical nuclei either in the entrance or in

the exit channels (or in both) for which the differential cross section reads d o /d 0
~
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'+2a Re[f (8)f "(m —8}]. We propose a simple graphical method for ob-

taining the parameter a directly from the measured angular distribution.

Consider a collision involving two identical particles ei-

ther in the entrance or in the exit channels (or in both)
for which the angular dependence of the differential cross
section reads
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(ii) inelastic and transfer reactions involving identical
nuclei under particular conditions. The parameter a is
then related to the angular momentum transferred (see
the following).

The aim of the present Brief Report is to propose a
simple graphical method for obtaining the parameter a
directly from the measured angular distributions, i.e., in a
model-independent way.

To achieve this we shall use the "envelope method, "'
which has proved accurate in decomposing oscillatory
angular distributions into interfering components.

Let us consider a collision experiment involving two
identical particles and giving rise to an angular distribu-
tion with well-defined oscillations resulting from the in-
terference between the forward and the backward ampli-
tudes (see Fig. 1). Equation (1) tells us that d o /d 0 oscil-
lates between two limit curves or "envelopes" E+,
defined by

ln (1), p(8) is the phase difference between the forward
and the backward reaction amplitudes, and a is a param-
eter determined from the symmetrization procedure, ac-
cording to the Pauli relation between spin and statistics.

Equation (1) applies to various collision processes:
(i) elastic scattering of identical spinless particles, or of

nonzero spin particles if spin-dependent forces are
neglected;
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Furthermore,
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To apply this result to the determination of
I

a I, one
should be able to draw the limit curves E+ from the ex-
perimental data. There is no unique and rigorous way to
do so. However, a reasonable criterion for drawing such
curves is to assume that

I f (8)
I

is smooth enough so
that the stationary points of do. /dQ lie very close to the
maxima and minima of costp(8). Then the "envelope"
E+ (E ) should be the "simplest" smooth curve passing
through (or very close to) the maxima (minima) of the ex-
perimental angular distribution. The smoothness condi-
tion for

I f (8)
I

is well satisfied in nucleus-nucleus col-
lisions (at least in a broad angular range around 8=90')
when the Sommerfeld parameter is large,
g=(Z, Z2e /RU) » l.

To illustrate the applications of the method, one first
considers the elastic scattering of Mg on Mg
(E, =17.37 MeV). As a is well known (a=1), this ex-
ample also provides a test of the method.

Figure 1 shows the experimental data as well as the in-
terpolated "envelopes" E+. To obtain

I
a

I
from Eq.

(4a), one should determine E+ and E for 8=90' where
the two interfering amplitudes become identical. Howev-
er, as seen in the diagram the lower "envelope" cannot be
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lo' - Mg + Mg E, =17.32MeV
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and (4a) holds approximately.

So, for 8-90' and taking into account (4b), one has
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With this criterion in mind one takes the values of E+
and E for the angle corresponding to the minimum in-
dicated by the arrow in the diagram.

One obtains (E+ E—)/(E+ +E ) =0.98, and (5)
gives

Ia I
~0.98 . (6)
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From (2), the only possible value of a compatible with (6)
is a = I, i.e., s=0.

Consider now the reaction ' N( '"N, ' N) ' N ( E, =9
MeV) (Ref. 3) in which a neutron is transferred from a
pl/2 (l, =l,j, = —,') ~t~te ln ' N to a p, /2 (l, =l,j,=-,')
state in ' N. The angular momentum transferred is re-
stricted by the usual triangular rules,

FIG. 1 . The points are the experimental data of the elastic
scattering of Mg on Mg, E,= 17.37 MeV (from Ref. 2). The
curve through the points is to guide the eye. Also shown the
"envelopes" of the oscillatory pattern, E~ .

drawn for 8=90'
~ In such cases one should take the

E+(8) values for the angle nearest to 90' for which both
curves E+ and E can be accurately drawn. In fact
as long as 8 remains close to 90', one has
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which allow two values l =0, 1 . However, if recoil effects
are ignored, i.e., if the ratios of the neutron mass to that
of the ' N and ' N nuclei are neglected, an additional
rule emerges. l, + 12 +1=even. In that case, the angular
dependence of the cross section is given, within the
DWBA, by (see Ref. 4 for details):
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where (a, =a2), c„and c2 are the spin of the ' N, ' N and ' N nuclei, respectively. So, for nonrecoil, only 1=0 is al-
lowed and (7) reduces to (1) with a = ——,'.

There are many heavy ion transfer reactions involving identical nuclei for which Eq. (1) holds. This occurs either be-
cause I=0 is the only possible value, or because other allowed values of I are strongly inhibited. Examples of these are
as follows:

Si( Si, Si) Si, s /2(l, =0j
1

———,
' )~s /2(12 ——0 j2 ———,

' ), I =0 .

Equation (1) holds with a = + 1.

15C(16O 15N)15N and 13C(13C 12C)14C

(Refs. 6 and 7),

Pl 2(/l, =l,j,= )YPl/2(12 —l, j2= —,'), 1=0, 1 .

If?= 1 is inhibited, Eq. (1) holds with a = + 1.
Now, what can be learned from the angular distribu-

tion of Fig. 2, using the relations (4)'?

We note first that, as in the preceding example, there is
one "envelope" (E+ ) which cannot be accurately extra-

polated for 0=90'. We shall again take the angle nearest
to 90' for which both curves E+ and E can be drawn.
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FIG. 2. Same as for Fig. I for the one-neutron transfer reac-
tion ' N(' N, ' N)' N, E,=9 MeV (from Ref. 3).

This angle is indicated by the arrow in the diagram. One
obtains (E+ E)l(E—+ +E ) =0.33 and (5) gives

a
~

~0.33 .
Furthermore, since da jdQ is minimum for 8=90', a

must be negative.
One may wonder whether the results obtained by the

"envelope method" are reproducible. To answer this
question six people were asked to draw (for different an-
gular distributions) the limit curves, and to read, for
several angles, the corresponding E+(8) values. The
mean deviation found in this "draw and read experi-
ment" was less than about 6%.

This makes us confident in the results obtained. Furth-
ermore, in the present case the value

~

a
~

~0.33 is a
clear indication that the 1=1 component, although al-
lowed, is strongly inhibited.

Concerning the practical applications of the method, it
should be pointed out that in general for 8=90' one can-
not accurately interpolate both curves E+ and E
Therefore since the angle which is used to determine the
ratio (E+ E)l—(E+ +E) sh. ould be as close as possi-
ble to 90', the method works better if the period 58 of the
oscillatory pattern is small, particularly near 90'. In the
case of nuclear-nucleus collisions under the condition
rl&&1, this period is roughly given by b9-n/rl, for.
0-90'.
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