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Using one of the recent Bonn potentials, an energy- and density-dependent interaction for
nucleon-nucleus scattering is derived by solving the Bethe-Goldstone equation for two nucleons in-
teracting in the presence of infinite nuclear matter at several incident energies below 425 MeV.
Some of the approximations involved in the construction of the effective interaction are discussed
and several of its dynamical properties are examined. Selected properties of the present interaction
are also compared with those of a similar G-matrix interaction based on the Paris potential as well
as with those of a recent r-matrix interaction based directly on nucleon-nucleon phase shifts. The
role of medium corrections as well as the utility of the present interaction are studied by applying it
to a variety of transitions in nucleon-nucleus scattering where important constraints on the transi-

tion densities are available from electron scattering.

I. INTRODUCTION

An understanding of the coupling between a projectile
and the target nucleons is one of the most important ele-
ments required for studying different modes of excitation
of the nucleus. One of the most significant advances' 3
in this general area has been the inclusion of medium
modifications to the nucleon-nucleon (NN) interaction at
low and intermediate energies. In this work we describe
the development of such a G-matrix interaction (HM86)
derived from the Bethe-Goldstone (BG) equation using
one of the recent one-boson-exchange (OBE) potentials
derived by the Bonn collaboration.* Our objective here is
not that of emphasizing differences between our interac-
tion and the one developed by von Geramb? which is
based on the Paris’ potential. A valid comparison of
different potentials by the G matrices they generate re-
quires a common procedure for extracting the G-matrix
interaction and implementing it, typically in a local den-
sity approximation. What we do seek is an effective in-
teraction which is constructed in such a way that we may
easily study its properties and also monitor and test the
underlying assumptions used in its construction. Our
overall objective is that of improving our understanding
of the NN couplings relevant to calculations of nucleon-
nucleus scattering.

In Sec. II we describe in some detail how the G-matrix
elements are calculated in symmetric nuclear matter. We
also outline how the different spin and isospin terms in
the interaction are obtained from these matrix elements.
The procedures for obtaining a parametrized local ap-
proximation to the G matrix are also sketched in Sec. II;
this local form is especially convenient for subsequent
nucleon-nucleus calculations. Also, in Sec. II, some of
the underlying assumptions used in determining the G-
matrix interaction are examined. In the last part of Sec.
I1, several of the dynamical properties of the interaction
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are illustrated and discussed. In Sec. III the G-matrix in-
teraction is applied to a variety of nuclear transitions
which illustrate some of its merits and deficiencies. In
Sec. IV, we summarize our findings and indicate how fur-
ther improvements to the NN interaction may be real-
ized.

II. CONSTRUCTION OF THE POSITIVE
ENERGY G MATRIX

A. The Bethe-Goldstone equation
The G-matrix interaction is the solution of the Bethe-
Goldstone equation which, in momentum space, reads
G(K,k,ko)z V(k,ko)

V(k,k')Q(K,k')G(K,k',k,)
E(K,ko)—E(K,k')+in

(2.1

+ [dk

where K, k, and k; denote center-of-mass (c.m.), final,
and initial relative momenta, respectively. Here, the c.m.
and the relative momenta are defined as

2K, =k;+k;, 2k;;=k;—k; . (2.2)

In Eq. (2.1), ¥V denotes the bare nucleon-nucleon (NN) po-
tential; the Pauli projection operator Q restricts the two-
nucleon intermediate states to those outside the Fermi
distribution, F, characterized by the Fermi momentum
kg. In the energy denominator, E(K,k) denotes the sum
of the single-particle energies of the two interacting parti-
cles
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E=¢+¢ (2.3)  and of the energy denominator, here using Brueckner’s

. . i prescription®
with c.m. momentum K and relative momentum k; 7 is

determined by the boundary conditions. Angle averaging

of the Pauli function | K+k' |2=K?+k"*+2V1/3Q /%K ,k")Kk' , (2.5)
— 1 ~
K,k')=— | dk'Q(K,k"), 2.4 . -
2 ) 4 f Qo ) @4 allows us to use the standard partial-wave decomposition
|
(SM} | G(K k,ko) | SMs) =2 3 3 3 il L'y ™ (B)y} s (k)
TLLT M,

X(SMSL'M;— M} | JM;(SMgLM; —Mg | JM,;)G3H(K  k, k)P , (2.6)

to reduce Eq. (2.1) to a set of one-dimensional coupled-channel integral equations. In Eq. (2.6) J, L(L'), S, and T
represent the total angular momentum, the orbital angular momentum, and the total spin, and isospin, respectively. M,
and Mg (M) are the projections of total and spin angular momentum. Py denotes the isospin projection operator. The

resulting integral equation is

Vi, kNO(K k" )GET(K k', kg)

GL,'SLT(K’k)kO)z Vi?sz‘(k’ko)_}.%z fklzdk:
I

Angle averaging of the Pauli function in Eq. (2.4) is a
standard procedure and may be a reasonable approxima-
tion to the exact Pauli function in the case of bound state
problems, where the magnitude of the c.m. momentum as
defined in Eq. (2.2) is restricted to the region
0< | K| <kg. The angle-averaged Pauli function Q ap-
proaches the exact function Q only when |K| ap-
proaches zero. In scattering problems the relevant c.m.
momenta may be quite large for projectile momenta
much larger than the Fermi momentum; therefore, the
averaging procedure of the Pauli function may become
questionable. In Sec. II B we have investigated to some
extent the sensitivity of our results on Q.

We use a prescription similar (but not identical) to that
of Ref. 7 for the single-particle energies appearing in the
energy denominator, namely:

Zk%
+ ReUl(k;), ReU(k,;)<O
2m
€|=€(k1 )= ﬁzkz (2.8)
L ReU(k,)>0,
2m

where the self-consistent potential
(N =Z) nuclear matter is given by

Ulk))= 3 (12| G | 12-21)
2eF

U in symmetric

=—12—f d’ky 327+ 12T + 1GIT(K, ko, ko) -
4m” O F st
L

(2.9)

In the above equations, ko= | k;,| and K= |K,| as
defined in Eq. (2.2).

The choice of the single-particle energy given by Eq.

(2.8) is an open question. The present choice and that of

Ref. 7 is motivated by the fact that, in nuclei, the

(2.7)

E(K,ky)—E(K,k")+in

[
particle-hole energy gap is very small (of the order of 10
MeV) compared to the corresponding gap (~60 MeV)
obtained using the theoretically well established and stan-
dard “discontinuous” choice. A better and more funda-
mental approach, than the present one, to this problem
may be the model-space method proposed in Ref. 8. In
any case, when the momentum of the particle is larger
than the Fermi momentum, the self-consistent potential
given by Eq. (2.9) becomes a complex quantity whose
imaginary part increases as the single-particle momentum
increases due to the increase of the available phase space.
In particular, the imaginary part becomes larger in mag-
nitude than the real part. In spite of this we have
neglected the imaginary part of the self-consistent poten-
tial in the present work; the sensitivity of our results to
the choice of single-particle potential is considered in a
limited way later.

The Lippmann-Schwinger integral equation for the
scattering of two free nucleons differs from the Bethe-
Goldstone equation given by Eq. (2.1) in two ways. One
important difference arises from the fact that, in the
Bethe-Goldstone equation, the nuclear medium produces
the Pauli exclusion effect (contained in Q) which is absent
from the Lippmann-Schwinger equation. Another
difference appears in the energy denominator where the
single-particle energy in the Lippmann-Schwinger equa-
tion includes only the kinetic energy. Since we have con-
sidered the Bethe-Goldstone equation in nuclear matter
(of constant density) and have also used the angle-
averaged propagator, the essential kinematical sym-
metries of the ¢t and G matrices are the same (apart from
the isotropic K dependence which violates Galilean in-
variance). Consequently, the technique for solving the G
matrix may be carried over directly to the ¢ matrix.
Indeed, the ¢ matrix (associated with V) is just the k=0
solution of the Bethe-Goldstone equation solved in the
NN system. The matrix-inversion method described by
Haftel and Tabakin® has been used to solve Eq. (2.7).
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B. Extraction of the G-matrix interaction

For subsequent calculations it is especially convenient
to determine the operator structure of the G matrix. This
can be done by noticing that the most general two-body
interaction, between identical particles of spin-1, which is
consistent with invariance principles may be written in
momentum space for each isospin state (T =0, 1) as'®~ 12

G=G§Ps_o+GSPs_,+iG (0, +0,) i
+GTS L@ +GTS Q)
+@QGT's,4,Q), p=p/p (2.10)

where Pg denotes the spin projection operator, o, and o,
are the Pauli spin matrices, and S,,(p’,p) and S,,(P)
denote the tensor operators defined by

’

Slz(ﬁl’f’)E%(al'ﬁ’az'ﬁ+al'ﬁ‘72'ﬁ’)—ﬁ ‘po,o,,

(2.11)
and
SlZ(ﬁ)ESlZ(ﬁ’ﬁ) .

In terms of the relative momenta k and k, the three vec-
tors q, Q, and n are defined by

quo—'k, QEkO-‘I-k, nEkoxk-:—;'qXQ, (2.12)

so that q is the (direct) momentum transfer and Q is the
exchange momentum transfer. For the coefficient of each
term in Eq. (2.10) we use the notation GZ, where a=C
(central), LS (spin orbit), and T (T’ and T'’) (tensor).
These coefficients can be derived from the G matrix [Egs.
(2.1) and (2.6)] using the relations'!!2

G§=Tr(GPs_o} ,
G =1Tr{GPs_,} ,

GLS=§17Tr{G(a,+aZ)-ﬁ} :

(2.13)
1 A~ O
GT=mTr{G[ZS|2(q)+(1+ COSZ¢)S]2(Q)
—4cos¢512(ﬁ,6)” ,
. 1 ~ O
GT=mTr{G[(l+Cosz¢)Su(q)+2S12(Q)
—4cos¢S12(a,6)]} ,
" 1 A A
GT =_9_si;1—;¢—ﬁ—Tr G —52(@)—51,(Q)
3cos’+1 ~A
2 cos¢d 5u(6Q) ’

Here the trace over the Pauli spin matrices o, and o, is
implied and ¢ denotes the angle between q and Q. The
last term in Eq. (2.10) vanishes when §-Q= cos¢=0 as a
consequence of time-reversal invariance. (This condition

holds when |ky| = |k|.) Explicit expressions for the
coefficients GZ, in Eq. (2.13), in terms of the matrix ele-
ments G{>/ (K ,k, k) are given in Refs. 11 and 12.

For some purposes it is convenient to have the G-
matrix interaction in the spin and isospin transfer repre-
sentation. Equation (2.10) may be decomposed into iso-
scalar and isovector components; using the explicit form
of the spin and isospin projection operators one obtains

G=G0+GTTI.TZ+G001.02+GUTal.GZTl'TZ
+iG5S (0, +0,)0+iGL (040,11, T, ,

+GgS12(a)+GIS12(a)Tl.T2 N (214)

+Gg’sxz(a)'i’GrTlSlz(Q)Tl'Tz )
+3-Q67's,(4,Q+4-Q6T's,@.Qrry 7, .

The relationship between the new coefficients G in Eq.
(2.14), where B=o,7,0,07,..., and G& in Eq. (2.10)
may be found in Ref. 11.

Equations (2.10) and (2.14) represent the exact operator
structure of the G-matrix interaction. Since the
coefficients G and Gj are expressed in terms of the
partial-wave matrix elements G,{SLT (K,k,kg) (see Ref. 12),
this interaction depends on the initial and final relative
momenta k, and k, the magnitude of the c.m. momentum
| K| and the Fermi momentum k. The dependence of
G on K and kj enters through the angle-averaged Pauli
projection operator Q and the single-particle energies
E(K,k). It should be noted that the G-matrix interac-
tion is a complex quantity, i.e., the coefficients G* and G 3
in Egs. (2.10) and (2.14) contain both real and imaginary
parts.

Before discussing the construction of the effective G-
matrix interaction, we consider two ambiguities/uncer-
tainties encountered in constructing the G matrix; these
involve the choice of the single-particle potential appear-
ing in the energy denominator of Eq. (2.7) and the use of
the angle-averaged Pauli projection operator Q of Eq.
(2.4) as mentioned in the preceding section. The insensi-
tivity of our results to the choice of single-particle poten-
tial is illustrated in Fig. 1 using the earlier Holinde-
Erkelenz-Alzetta (HEA) version'® of the Bonn potential.
The modulus of the spin and isospin independent part of
the on-shell ( |k | = | ky| ) G-matrix interaction is shown
at kp=1.36 fm~! as a function of momentum transfer at
an incident energy of 210 MeV for two choices of the
single-particle potential (U). The “full U curve corre-
sponds to the use of the single-particle energy

k3
+ ReU(k,),

elk,)= Py
with U calculated self-consistently for single-particle mo-
menta k, <10 fm~!. The curve denoted by “U <0” cor-
responds to using the same potential where ReU <0 and
setting it to zero for large momenta where the real part of
the full self-consistent potential becomes repulsive. Even
in this part of G (G,), which is especially sensitive to
short-range correlations, the differences between these
two choices of U are seen to be very small.
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T = 210Mev
——— U<o0
200 - ——  Fully
-
E
> 100
D
= &0
— 6o}
_(2
a0l
20
]o 1 1 1
0 ] 3

_] 2
q(fm’)
FIG. 1. Sensitivity of | Gy | to choice of single-particle po-
tential. The dashed curve corresponds to setting U =0 wherev-
er it is calculated to be repulsive.

In order to discuss the uncertainty in using an angle-
averaged Pauli operator, we illustrate in Fig. 2(a) the re-
gion in momentum space (0 < Q < 1) over which the Pau-
li operator of Eq. (2.4) must be averaged. K denotes the
c.m. momentum [see Eq. (2.2)] and k' the relative
momentum in intermediate states. The values of K and
ko were chosen to be k =k,=1.40 fm~!, values which
significantly sample the 0 < Q < 1 region and correspond
to the incident energy T, =140 MeV at kz=1.36 fm ™!
according to the prescription described in Sec. IIC. At
T; =140 MeV, angle-averaging is required along the
dashed vertical line in Fig. 2(a), where 0.24 <Q <1.0.
We have explored the sensitivity of our G matrix to the
use of the angle-averaged Q (i.e., Q) by evaluating
different components of the G matrix at zero momentum
transfer for fixed values of Q. The results are displayed
for the HM86 interaction in Fig. 2(b) for 0.5<Q < 1.0 at
140 MeV. A 20% change in Q corresponds roughly to a
10%, 15%, 30%, and 2% change in the modulus of G,
G,, G,, and G, respectively; note that the modulus of
G, is very small. The points denote the values of | G |
obtained in the full calculation using the momentum-
dependent Q. These values of | G | define a Q (effective).
The linearity of | G(Q)| reflects the fact that both ReG
and ImG depend linearly on Q and either the real or
imaginary part dominates each component of G. This ap-
proximately linear behavior of G(Q) may be most easily
understood in terms of the integral equation relating
G(p) to G(p=0), where p denotes the nuclear density. In
particular,

1 Q

e(0) elp)

G(p)=G(0)+G(0) Glp), (2.15)

where e(p) is the energy denominator at density p as in
Eq. (2.1). Unlike the Bethe-Goldstone (BG) equation [Eq.
(2.1)] where V is a very poor approximation to G(p), Eq.
(2.15) has as its leading term G (0) which is a reasonable
first approximation to G(p). Moreover, G(p=0) is in-
dependent of Q so that a first iteration of Eq. (2.15) yields
G(p) which is essentially linear in the Pauli operator Q.
The variation of Q (effective) with spin and isospin
reflects the state dependence of the iterated terms. Fig-
ure 2(c) also illustrates the sensitivity of the isovector ten-
sor force to Q at 140 MeV. Above ~ 100 MeV the small
Fourier components of G !(g) which arise from the long-
range one-pion-exchange potential (OPEP) are seen to be
insensitive to the details (strength) of the short-range
correlations. At larger momentum transfers G is sensi-
tive to correlations in a way which has been discussed in
detail in Ref. 14.

C. Construction of an energy-, density-, and
momentum-transfer-dependent effective G-matrix interaction

The nuclear matter G-matrix interaction as derived in
the preceding section is still too complicated to be used
conveniently in nucleon-nucleus scattering calculations.
It is desirable to have an effective interaction which is
simple enough to be manageable in actual calculations
and yet preserves the features of the “exact” G matrix
which are most relevant to nucleon-nucleus scattering. It
should be mentioned that there are numerous ambiguities
in the procedure for determining the effective interaction
from the G matrix and some of these are discussed in
Refs. 1 and 15. Here we will describe briefly the particu-
lar method we have used and discuss some of the ambi-
guities involved.

A physical picture of the scattering problem is that in
which one of the two interacting nucleons in the initial
state belongs to the incident beam (above the Fermi level)
and strikes the other nucleon in the target nucleus (below
the Fermi level) with a given incident energy T, . The in-
cident energy T, is related to the local momentum k, of
the incident particle by

7k

TL= 2m

+U(k,), (2.16)

where U(k,) is the potential energy felt by the incident
particle (with a local momentum k) due to the nucleons
in the target nucleus.

In the present work we will assume that the potential
energy U in Eq. (2.16) is given by the real part of the self-
consistent potential defined in Eq. (2.9). With this as-
sumption the local momentum k,; of the incident particle
can be determined from Eq. (2.16) for a given incident
(and asymptotically kinetic) energy 7;. The momentum
k, of the nucleon below the Fermi level (in the initial
state) which interacts with the incident particle is, in the
present work, assumed to be given by averaging over the
Fermi sphere, giving
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FIG. 2. (a) Domain over which the Pauli operator is and is
not averaged at an incident nucleon energy of 140 MeV. The
dashed vertical line corresponds to one-half the momentum of
the center of mass at 140 MeV and contains the points where Q
is required. The numbers to the right of this line denote the
values of O thereon. (b) Moduli of G(kr=1.36,4=0) as a func-
tion of fixed Q. The points denote the values of | G | obtained
by using the angle-averaged Q. (c) The isovector tensor force at
140 MeV for kp=1.36 fm~' at different fixed values of Q.

(ky)=3kp . 2.17)

Once the moduli and relative orientation of the mo-
menta of the interacting particles in the initial state are
fixed, the initial relative momentum k, and the c.m.
momentum K defined in Eq. (2.2) may be determined. In
order to obtain a more manageable NN interaction, we
have made an unweighted average over the direction of
k, with respect to the local momentum k, of the incident
particle. This yields

k, 1 k%
(kg)=(K)= > tex

>

(2.18)

where k_ (k _) is the larger (smaller) of k| and k,. Al-
though the averaging procedure involved here is less ela-
borate than those used by other authors’? in the con-
struction of the effective interaction, nonrelativistically
this procedure does yield the free ¢+ matrix in the limit
kr—0; indeed, this property of the interaction was built
into the method intentionally. Nonrelativistic kinematics
have been used; nevertheless, we note that if the target
nucleon were at rest, k, in Eq. (2.7) would be
given correctly by ko=1"mT, /2 both relativistically
and nonrelativistically. The error in k; of Eq. (2.8) is less
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than 5% for T; S200 MeV where the effects of Pauli
blocking are most important. This is well within the oth-
er uncertainties such as using an average value of k, as in
Eq. (2.17).

Although Egs. (2.10)-(2.14) give the most general
structure of the G matrix in momentum space, in this
work we derive the effective G-matrix interaction from its
matrix elements on the energy shell, i.e., k =k, in Eq.
(2.7). This procedure represents a simple (but not the
most general) extension of the method used in Ref. 16
where the effective interaction was derived from the free
NN t matrix based on a phase-shift analysis. The on-shell
and near-on-shell matrix elements are expected to be the
most important ones at moderate excitation energies
(E, << T ) due to the relatively narrow spread in relative
collision momenta provided by the momentum distribu-
tion of the initial and final state target wave functions. In
this on-shell procedure §-Q=0 and the G”  terms are ab-
sent. Equations (2.16)—-(2.18) determine k, k, and K in
terms of the incident energy 7, and the Fermi momen-
tum kj, so the G-matrix interaction now depends on the
incident energy T, the Fermi momentum kp, and the
angle 6 between initial and final relative momenta k, and
k. 6 is the scattering angle in the NN c.m. frame and is
related to the momentum transfer defined in Eq. (2.12) by

q=2k, sin% s
0 (2.19
Q =2k, cos> .

In the final stage of the construction of the effective in-
teraction, the complex G-matrix interaction obtained
from Egs. (2.10) or (2.14) by solving Eq. (2.7) in the Pauli
allowed states with the prescriptions given by Egs.
(2.16)-(2.19) was fitted at several incident energies and
Fermi momenta to a sum of antisymmetrized
momentum-space Yukawa (or 72X Yukawa for the ten-
sor force) functions as described in detail in Ref. 16.
After choosing a set of ranges for the Yukawa functions
at a given energy, the complex strengths were adjusted
independently for each value of k.. As in Ref. 16, the
longest range part of the real central part of the G-matrix
interaction was fixed at the value of the OPEP at all ener-
gies and densities considered. In the present work, the G
matrix was calculated at the Fermi momenta &k
(fm~')=0.00, 0.65, 0.95, 1.10, 1.25, and 1.36 correspond-
ing to p/p(kr=1.36)=0.00, 0.109, 0.341, 0.529, 0.776,
and 1.00. The partial-wave G-matrix elements G}~ were
calculated for J <10, 15, and 18 for 7, (MeV) <100,
100<T; (MeV) <270, and 270 < T, (MeV) <425, re-
spectively. The rather large values of J included are dic-
tated by the long range of the OPEP.

The density dependence of the effective interaction
enters through the local density approximation (LDA),
where the density of the target nucleus p(r) is related to
the local Fermi momentum k by
173

(2.20)

2
kp(r)= 3’2’—p(r)

D. Some limitations of the effective
G-matrix interaction

In addition to uncertainties associated with the exact
(numerical) solution of the BG equation as discussed in
the preceding section, there are uncertainties associated
with the approximation used here of constructing the lo-
cal effective interaction as described above. The present
effective interaction yields off-energy-shell (ks£k,) ma-
trix elements which need not agree with those obtained
by solving the BG equation.!” We have estimated the ex-
tent of this off-shell disagreement by comparing the “‘ex-
act” G matrix with that obtained from our multiple Yu-
kawa representation of the effective interaction. Results
for the G, part of the interaction are shown in Fig. 3 at
krp=0 and for an initial relative momentum k, corre-
sponding to an incident nucleon energy of 140 MeV. For
the exact G matrix, the magnitude of the final relative
momentum k was varied while its direction was taken to
be along ko, the initial relative momentum. This choice

10°

L 16 (K, k; Kk =1) ]
HM 86 -140 MeV
Ke =0

IRe G, (K',k; K"k =1)]

———
~d

I
\
|

10!

0 4
k'(fm")

FIG. 3. Momentum dependence of G, at 140 MeV. The
dashed curves were calculated using the local Yukawa represen-
tation of G, described in the text; the solid curves were obtained
from the exact half-off-shell G matrix at k'-k =1 as described in
the text. k and k' denote the NN relative momenta before and
after the collision and ® denotes the on-shell point k' =k.



of kinematic conditions is in sharp contrast to the on-
shell kinematics used to extract the local interaction. As
shown in Fig. 3, there are sizeable differences between
both real and imaginary parts of the exact and local in-
teractions away from the on-shell point near 1.3 fm~1,
particularly for k > 2.5 fm~!. Note, however, that con-
tributions to nucleon-nucleus scattering from such
significantly different relative momenta will be suppressed
by the limited spread in momenta allowed by the nuclear
wave functions. As a result, the misrepresentation of the
off-shell elements, by the present local ansatz, while non-
negligible, is likely much less important than might be
supposed. Off-shell differences in the other central parts
of the force exhibit a qualitatively similar behavior to
that shown in Fig. 3. We are in the process of making a
more precise estimate of these off-shell effects; the results
will be reported elsewhere.

The multiple Yukawa representation of the effective in-
teraction only represents nonlocality via inclusion of the
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Pauli principle. Various sources of nonlocality have been
shown!® to be important for understanding selected spin
observables in nucleon-nucleus scattering. Here we con-
sider briefly some of the nonlocal effects. In order to
disentangle nonlocal (rsr’) from off-shell (kyz#k)
effects, we only consider the G matrix on the energy shell.
In momentum space, a purely local interaction depends
only on the momentum transfer q=ky,—k. Therefore,
one way of gauging the overall nonlocality of an interac-
tion (including exchange terms) is to examine its depen-
dence on Q=k,+k at a fixed value of q. For a local bare
potential (¥) nonlocality will arise from the correlated
(second) term (G =G — V) in Eq. (2.1) even in the absence
of the Pauli principle. In the case of the OBE model, the
bare potential itself is nonlocal (even without the Pauli
exchange terms) so that both correlated and uncorrelated
terms generally contribute to the total nonlocality of G.
For example, the o-, w-, m-, and p-meson exchange con-
tributions yield the bare potential in the NN c.m. frame:'?

1 q’—Q? i ., 1 q*—3Q0% 3i
V(q,Q)= —4rg> 1+ + (0,+0,)n| +4 1— — (0,+0,)n
%Q guq2+mf, 8m? 4m? ! 2 gqu—f—mi 8m? am? ! 2
drg? ’ [o0,+S,(@)]7, T 4rg? l+fp 2 1 —32—[20 o,—S,@))r T
— 21T _ . . -4 —_— . —_ . ,
3 g1r4m2 q2+m31 192 12 1772 3 gp gp 4m2 q2+m§ 192 12 172
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where form factors have been omitted for simplicity and
terms through order k2/m? have been kept; n is defined
in Eq. (2.12). Although the terms from 7 and p exchange
are local, the terms associated with o and w exchange
give rise to (in addition to the spin-orbit terms) significant
nonlocal contributions to V at the potential level.

We have explored, in a limited way, the degree of non-
locality of G,. The imaginary part of the approximate
(Yukawa) representation of the correlated contribution is
shown in Fig. 4 because it arises entirely from correla-
tions when a real bare potential is used as is done here.
In each case, the usual direct momentum transfer and
scattering angle were set to zero. The resulting exchange
momentum transfer Q =2k, was varied by varying k,,
the momentum of the struck nucleon between —1.36 and
+1.36 fm~! along the direction of k,; at a value of k,
corresponding to the local kinetic energy which is shifted
from 140 MeV at k50 by the single-particle potential.
The range of variation of k, was chosen to represent the
Fermi motion of the target nucleons.

Figure 4 demonstrates that, based on the Q depen-
dence, the nonlocality of the bare interaction is much
larger than that of the correlated contribution. At each
value of kr we see that the nonlocality of the modulus of
G, is described better by the multiple Yukawas than is
the modulus of its imaginary part. Although the
differences between the approximate (FIT) and exact
values of both G, and G, appear to be non-negligible,
these differences are very small near k,=0 (Q~2.8
fm~!). Moreover, the variation shown in Fig. 4 is ex-
treme in that we have assumed collinear collisions.

E. Properties of the effective G-matrix interaction

In this section we consider some of the dynamical
characteristics of the Yukawa representation of the
present G-matrix interaction (HM86) based on the Bonn
potential,® which are useful in the interpretation of
nucleon-nucleus scattering. Some of these properties are
compared with the free f-matrix interaction (SP84) of
Refs. 16 and 19 and/or the G-matrix interaction (GPH)
derived by von Geramb? which is based on the Paris po-
tential.’ These interactions include both direct and ex-
change terms. In this section, the exchange terms have
been evaluated in an “asymptotic” energy approximation
as described in Ref. 16; in particular, Q in Eq. (2.2) is
fixed at 2k,. It should be noted that with Q fixed at 2k,
the exact G matrix and its Yukawa representation shall
only (necessarily) agree at ¢ =0 where the on-shell kine-
matics are realized; see Eq. (2.19).

Figure 5 illustrates the energy and density dependence
of the magnitude of the central components of the HM86
(Bonn), GPH (Paris), and SP84 (phase-shift analysis) in-
teraction at zero-momentum transfer (¢ =0). The HM86
and GPH interactions are shown at the smallest and larg-
est Fermi momenta at which they are calculated. As
could be anticipated from Fig. 2(b), G, depends very
weakly on the density, whereas the other central com-
ponents of G depend rather strongly on the local density
at which the interaction is evaluated. In principle, this
strong density dependence limits the validity of the LDA
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FIG. 5. Energy and density dependence of the central com-
ponents of the HM86 and GPH interactions; results for the
SP84 interaction are also shown.

but this has not been investigated. With the exception of
G, we see that below ~300 MeV, the HM86 values of
| G| at k=0 are in somewhat better agreement with
the SP84 values than are the GPH values at k=0.50.
This is particularly true in the isovector sector. Results
using the free Paris ¢ matrix (calculated independently
but not shown) exhibit this same trend. The implications
of some of the differences between the different forces in
studying nucleon-nucleus scattering are discussed in Sec.
I1I.

Figure 6 illustrates the energy and momentum-transfer
(g) dependence of the HM86 interaction at intermediate
energies at kp=1.1 fm~! corresponding to p=0.53 nor-
mal density (py). With the exception of G, there is a
rather strong energy dependence of the central parts of
G. This is due to the large correlations present in Gy,
G,, and G, which depend strongly on the collision ener-
gy. This strong energy dependence restricts the validity
of the assumptions used in constructing the effective G-
matrix interaction such as the procedures used to deter-
mine k, and K in terms of the incident and Fermi mo-
menta and the single-particle potential. The energies
quoted in Fig. 6 are the asymptotic laboratory energies of
the incident nucleon. The relatively large isoscalar NN
spin-orbit (LS) interaction depends weakly on the in-
cident energy while the small isovector LS interaction de-
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pends much more strongly on the energy. In the meson-
exchange model this behavior may be understood in
terms of the relatively large (small) bare potential associ-
ated with the exchange of o and w (p) mesons in the iso-
scalar (isovector) interaction. The higher-order terms (in
V) are, therefore, relatively more important for GL5.

The energy and momentum dependence of the tensor
parts of the effective G-matrix interaction are also illus-
trated in Fig. 6. Here the terms G} and GT are shown
as a function of the exchange momentum transfer Q rath-
er than for a fixed value of Q. In meson-exchange mod-

the exchange of 7 and p mesons which each carry isospin
1. The small (isoscalar) G{ is consistent with this inter-
pretation. In this same picture, the contributions G{’
and G are believed to arise primarily from the large G 7
term acting in the exchange channel.'"?** To the extent
this is correct we find

[GI(Q)+GT (Q)r 1,15 ,(Q)
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where P, denotes the Pauli exchange operator. Qualita-
tively, this assumption 1is borne out in that
|GY | =3|GI'|. The direct and exchange momentum
transfers are defined by Eq. (2.12). It has been shown'®
that the most important values of Q for nucleon-nucleus
scattering are those near Q=k,, where k, is the
momentum of the incident nucleon in the nucleon-
nucleus system. These are essentially the values near the
end points of the curves in Fig. 6. The peak value of GT
is seen to change by less than 209% over the energy range
considered. A similar energy dependence is also seen in
Gl and G near the peaks.

Figure 7 displays the density and momentum-transfer
dependence of the HM86 interaction for an incident pro-
ton energy of 210 MeV, an energy common to most inter-
mediate energy facilities. The moduli of the different
components of the force are shown for kz=0.0, 1.1, and
1.36 fm ! corresponding to densities of 0.0, 0.53, and 1.0
times normal density. Similar plots for the GPH interac-
tion have been discussed by Kelly.> With the exception

|

2
0

— ~ k ~
ImG (K, k,kg)=—Q(K k) [ dk'——V(k,k'=kok') ReG(K,K',ko)+P [ d*k’

|A]

where A denotes the derivative of the energy denomina-
tor with respect to k' evaluated on the energy shell. Asa
first approximation, the G matrix in the right-hand side
(rhs) of Eq. (2.23) may be replaced by the ¢t matrix [see
Eq. (2.15)]. Then the first term on the rhs of the above
equation is proportional to the Pauli operator Q on the
energy shell, while in the second term the Pauli operator
enters as a part of the integrand. Therefore, for a com-
ponent of the G-matrix interaction whose real part dom-
inates (such as G,), the imaginary part will be roughly
proportional to the Pauli operator evaluated on the ener-
gy shell. The same observation holds if one iterates Eq.
(2.23) to first order. The real part of the correlated part
(G) of the G matrix, also obeys Eq. (2.23) with ImG and
ReG being interchanged. Therefore, ReG becomes pro-
portional to Q(K,k,) when ImG is the dominant part of
the G matrix. Evaluation of Q in Eq. (2.4) at ky=1.36
fm~! and T, =210 MeV gives the suppression factor of
0.6 mentioned above to within ~10% at the on-shell
point k'=k,. The overall suppression of ImG, with in-
creasing density was predicted qualitatively by Clementel
and Villi.2! As has been noted by Kelly and co-workers,’
the large ¢ enhancement in the modulus of G| is seen to
arise from the (~gq independent) reduced attraction in
ReG.

Above ~100 MeV the density dependence of the spin-
orbit and tensor parts of the interaction is relatively weak
(but non-negligible) for ¢ < 1.5 fm~'. The main features
of this density dependence may be understood in terms of
the suppression of correlations with increasing density
which are primarily important for large momentum
transfers involving collisions at relatively short distances.
The centrifugal barrier in />0 states help shield these

of G, each central term of the interaction is seen to de-
pend rather strongly on density and exhibits a charac-
teristic suppression at small g and, in the case of G, a
modest enhancement at large g. These characteristics are
examined in more detail in Fig. 8 where the real and
imaginary parts of G, are shown separately. For the real
part, Gy(kr=1.36) differs from Gy(kr=0) primarily by
a decrease in attraction (or an increase in repulsion) of
~20-25 MeV fm? roughly independent of g. The simple
shift in ReG, with density reflects the dominant short-
range character of the correlated (higher-order) terms in
relating ReG(p) to ReG(p=0); see Eq. (2.15). Unlike the
real part of G,, ImGy(p) does not differ from
ImGy(p=0) by a simple shift so that the additional
correlation is going from G (0) to G(p) cannot be charac-
terized as a zero-range correction. The ImG(p) is better
characterized by an overall suppression of ImG(0) by a
factor of ~0.6 at this particular energy. This suppression
can be understood in terms of Eq. (2.1) where the imagi-
nary part of the G matrix is given by

V(k,k')Q(K,k') ImG(K,k’, k)
E(K,k')—E(K, k) ’

(2.23)

f

noncentral components from close encounters and, there-
fore, large correlations. A detailed analysis of short-
range correlation effects on the G-matrix interaction (for
the bound state problem) may be found in Refs. 11 and
12.

There has recently been considerable interest** in ex-
tracting and interpreting the longitudinal and transverse
spin responses in nucleon-nucleus scattering. For this
purpose, it is essential to know the relevant longitudinal
and transverse spin couplings in the nuclear medium.
Figure 9 shows the ratio of the transverse to longitudinal
couplings as a function of momentum transfer at 325
MeV, a popular energy for investigating the nuclear spin
response. The longitudinal ¥/ and transverse (V') cou-
plings defined here include the central, tensor and spin-
orbit contributions and are given by??

t22

Vig)=nE ,
(2.24)

V’(q)=\—}7—E(C2+BZ+F2)“2 ,

where 7 converts amplitudes to ¢ matrices or G matrices
as in Ref. 16, and C? stands for | C |2, etc. These com-
binations reflect the interaction components relevant for
calculating cross sections for unnatural parity excita-
tions.!>2*2* Both isoscalar and isovector coupling ratios
are shown at zero and normal nuclear densities. The iso-
scalar coupling is seen to be predominantly transverse at
all ¢ shown, whereas the isovector coupling is largely
transverse for ¢ <1.25 fm~! and primarily longitudinal
for larger q. The qualitative features of the couplings are
rather insensitive to the local density. Quantitatively, the
transverse dominance for AT =0 is suppressed at full
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density for small momentum transfers. The sharp peak III. SELECTED APPLICATIONS OF THE
in the AT =1 coupling ratio near 0.7 fm ! reflects a near- EFFECTIVE G-MATRIX INTERACTION

ly complete cancellation of the AT =1 central and tensor
forces in V., a characteristic associated with OPE which
has been pointed out earlier.'® Analogous results at 210
MeV have the same qualitative features as those shown in

Fig. 9 for 325 MeV.

In this section we apply the effective interaction de-
scribed above (henceforth denoted by HM86) to several
transitions in nucleon-nucleus scattering which illustrate
some of its properties which are relevant for exciting

102

- (c)

—

— 10
~
©
HM 86 -210 MeV
———kgz 0 fm' "E
—— =110 -
— -3 >
= G
= HM 86 -210 MeV ot HM 86 - 210 MeV
—— s A = :
o ke= O fm | ~—— k=0 fm
- —— =110 —_
g 110
o | —  :136
1 1 1 ]OO 1 1 1 1 1 1
1 ]2 3 L 00 1.0 2.0 3.0
q(fm?) q(fm-T)
‘O] 1 1 1
1 2 3
qlfm™)
(e)
3
40 + 16+l
=~
N
N
20 \\\
T \\b'
16T (d) N
60 == el ;
N £ ~
\ >80 AN
40 AN = \
- O - \
[ HM 86 -210 MeV N\ \) T/ A\
- NN 60 16, | W\
.20 ———Kez0 fm NI A\
2 —— =110 AN
= — =136 40+ N
0 i - . HM 86-210 MeV '~
-1
67| ———k=0 fm
20f 6o 20t —— 100
“/;5:::4 - %
o 1 1 1 1 1
0 1 2 3 % 1 2 3
q(fm7) Q(fm™)

FIG. 7. Density and momentum-transfer dependence of the HM86 interaction at 210 MeV incident energy.
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states requiring different spin and isospin transfers. Some
of the remaining ambiguities and deficiencies in the in-
teraction and its method of application are noted. Both
direct and knock-on exchange terms are included in the
calculations. For elastic scattering and natural parity ex-
citations of angular momentum J < 2, the exchange terms
are calculated in a well-established short-range approxi-
mation'®?* for the local representation of the interaction
considered here. The single-scattering approximation
was used for the inelastic processes as well as for the opti-
cal potential for elastic scattering.

A. Elastic scattering

Medium corrections to the NN interaction are
known?®?3 to be important for the calculation of optical
potentials for use in the Schrodinger equation. Indeed,
von Geramb and co-workers have obtained rather im-
pressive results for elastic proton scattering from both
light and heavy nuclei’ using a G-matrix interaction
(GPH) based on the Paris® potential. Here we consider
the elastic scattering of protons from *°Zr and '*C at in-
cident energies (7T ) of 121.5 and 200 MeV, respectively,
using the effective G-matrix interaction (HM86) based on
a one-boson-exchange version of the Bonn potential given
in Table V of Ref. 4. The optical potential is calculated
in a folded model and in each case the ground-state pro-
ton density used to construct the optical potential was
taken to be consistent with electron scattering;’® the neu-
tron density was taken to be N /Z times the point proton
density.

200
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FIG. 8. Density and momentum-transfer dependence of the
real and imaginary parts of the G, component of the HM86 in-
teraction at 210 MeV.
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Measured?’ cross sections for p +°°Zr elastic scattering
are shown in Fig. 10 together with those calculated using
the present effective interaction. The agreement is
reasonable but not excellent. Curiously, the calculated
cross section using a similar interaction based on an ear-
lier version (HEA) (Refs. 13 and 28) of the Bonn potential
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FIG. 10. Elastic p +*Zr scattering at 121.5 MeV. The solid
curve corresponds to the use of a folded optical potential using
the HM86 G-matrix interaction. The data are from Ref. 27.
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agrees somewhat better with the data.

Figure 11 shows results for p+'2C elastic scattering
where cross section (o) and analyzing power (4,) data®
are available. The solid curves were calculated using the
HMS86 interaction; the dashed curves were calculated us-
ing a free t-matrix interaction'® based on the SP84 ampli-
tudes of Ref. 19. The agreement between measured and
calculated cross sections is quite reasonable when the
density-dependent HM86 interaction is used and, as ex-
pected, represents a significant improvement over the re-
sults obtained using the SP84 interaction. An even more
striking improvement is observed for A,; however, even
the G-matrix results are not in good agreement with the
data.

B. Inelastic scattering and charge-exchange reactions
The observables for inelastic scattering and charge-

exchange reactions were calculated in the distorted wave
approximation using distorted waves calculated from ei-
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FIG. 11. Elastic p + '2C scattering at 200 MeV. The dashed
tions described in the text. The o and A4, data are from Ref. 29.

ther a folded model potential (F) or a purely phenomeno-
logical Woods-Saxon potential (P) as indicated.

1. The ">C(p,p’) reaction at 200 MeV

Excitations in '2C provide a variety of different types of
transitions which sample several symmetry and dynami-
cal properties of any effective interaction. Moreover,
electron scattering data are available for most of the tran-
sitions considered and this information is used to fix or
constrain the p-shell transition densities of Cohen-
Kurath®® (CK) as described in Refs. 16 and 31. The
(p,p') data are from Ref. 29.

Results for the excitation of the first 2% state at
E,=4.44 MeV are shown in Fig. 12. It is assumed that
the excitation is purely scalar-isoscalar (S =7 =0) in
character and, therefore, samples the corresponding
(density-dependent) part of the effective interaction;
Coulomb excitation is included and a folded optical po-
tential is used. The present calculation overestimates the
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and solid curves were calculated using the SP84 and HMS86 interac-
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FIG. 12. Measured (Ref. 29) and calculated o and 4, for the
2% (4.44 MeV) excitation in '2C at 200 MeV incident energy.
The HM86 interaction was used. F denotes the use of distorted
waves derived from a folded optical potential.

cross section near its peak by ~30% as is the case’? with
the GPH interaction. This overestimate occurs after the
CK transition density has been matched (in shape and
magnitude) to the longitudinal (e,e’) form factor out to
~2 fm ™! (~45° at 200 MeV) and therefore suggests that
the HM86 interaction is too large at small g. 4, is de-
scribed reasonably well for 8_ , <40°. Although far from
perfect, the HM86 results represent a considerable im-
provement over those obtained using the free t-matrix in-
teraction with phenomenological distorted waves such as
shown in Ref. 29.

Figure 13 shows measured and calculated cross sec-
tions and analyzing powers for excitation of the 0; state
at 7.65 MeV. The transition density, which in this case is
taken from Ref. 33, has a node near 2.5 fm which makes
this excitation somewhat more sensitive to density-
dependence in the NN interaction than more surface-
peaked transitions. Folded distorted waves using the full
density-dependent HM86 interaction were used in each
calculation shown. The dashed curves correspond to the
use of only the zero-density G matrix [G(0)] in the tran-
sition potential, whereas the solid curves correspond to
the use of the full density-dependent G(p). For
6. m. <30° the full density-dependent calculations are in
significantly better agreement with the data than are the
results using G(0). However, as in the case of the 2%
state at £, =4.44 MeV, G, appears to be too large at
small momentum transfers. The curve denoted by
G +6G corresponds to including the correction suggested
by Cheon* for S =T =0 collective excitations. The
amount of improvement in the calculated cross section is
similar to that achieved in going from G (0) to G(p). Itis
not clear that the Cheon correction improves the agree-
ment between measured and calculated A,. Similar, but
smaller effects occur when 8G is included in the 2; exci-
tation. Even with these corrections, the calculated peak
cross sections for the 05 and 2{ transitions need to be
multiplied by ~0.7 in order to agree with the data at this
energy.

Measured and calculated results for excitation of the
1+, T=0 state at an excitation energy (E, ) of 12.71 MeV
are shown in Fig. 14. The wave functions are those of
Cohen and Kurath.’® Because of the strong sensitivity of
(e,e’) scattering to isospin mixing, electron scattering
provides little help in pinning down those parts of the
transition density most relevant for (p,p’). Moreover,
distorted wave calculations have been typically unsuc-
cessful in describing this transition for T, <200 MeV; the
CK wave functions do provide a reasonable description
of the (p,p’) data for T, >400 MeV.!® As in the case of
calculations?® using the free ¢ matrix, the present interac-
tion yields a poor description of the cross section data.
Both interactions yield cross sections which are too large
and which lack the observed structure. Nevertheless, a
reasonable description of the analyzing power is obtained
at this energy where the central, spin-orbit and tensor
parts of the interaction each contributes significantly.
The level of agreement between the measured and calcu-
lated observables is quite similar to that obtained using
free t-matrix interactions.'®?® The result for the cross sec-
tion seems to indicate that the isoscalar tensor force G
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is too strong at large exchange momenta Q. We observe
that this part of the force is basically the Pauli exchange
term arising from the strong isovector tensor component
GT [see Eq. (2.22)]. Figure 14 shows that the kp=0
effective G-matrix interaction yields 4,(0) qualitatively
similar to that obtained using the full density-dependent
interaction [G(p)]. The calculated cross section using
the k=0 interaction is ~50% larger than that shown in
Fig. 14; the shape is similar to that shown.

Results for the excitation of the 1, T=1 state at
E_=15.11 MeV are shown in Fig. 15. The CK wave
functions are in agreement with the relevant Gamow-
Teller matrix element measured in the 4 =12 system;
moreover, the shape and magnitude of the corresponding
(e,e’) form factor is reasonably well described?® by these
wave functions for ¢ S 1 fm~!. As for the 12.71 MeV ex-
citation, the cross sections corresponding to the central,
central plus spin orbit (LS), and central plus LS plus ten-
sor parts of the interaction are shown. The isovector LS
part of the NN interaction is seen to be especially weak
for ¢ $1.5 fm~'; the isovector tensor force is seen to be
important for ¢ >0.25 fm~!. The complete calculated
cross section is in good agreement with the data for ¢ <1
fm~!, where the transition density is most reliable.
Moreover, the minimum near ¢ =1.25 fm ! is better de-
scribed using the present interaction than the SP84 in-
teraction.!> Although the calculated A, is in rather poor
agreement with the data, results obtained'’ using the
SP84 interaction hardly resemble the data at all. Overall,
the agreement with the cross-section data is reasonable
where the wave functions are most definitive. As noted
earlier, the density dependence is weak for this type
(S =T =1) of transition.

Measured and calculated cross sections and analyzing
powers for excitation of the 2%, T =1 state at E, =16.11
MeV are shown in Fig. 16. The S =0 and S=1 CK tran-
sition densities were reduced as in Ref. 31 so as to agree
with (e,e’) results for this excitation. Additional reduc-
tion of the calculated cross section by ~25% would yield
a much better description of the data for 1 Sq (fm~!)$2.
This transition, dominated by the tensor force, suggests
that the strength of the isovector part of the NN tensor
force may be too large by ~10%. Calculations for
T, 200 MeV using t-matrix interactions also overesti-
mate the cross section for this transition by similar
amounts. The results for 4, shown in Fig. 16 also sug-
gest that the tensor force may be too large. We should
emphasize that we have used folding-model distorted
waves and have not studied ambiguities arising from the
use of different optical potentials.

2. The ¥*Ca(p,n)*Sc (IAS) transition at 134 MeV

Results for the excitation of the isobaric analogue state
(IAS) in the “8Ca(p,n) reaction are shown in Fig. 17 for
cross section and 4, data.*> Each calculation was made
using distorted waves generated by a folded optical po-
tential based on the full density-dependent interaction.
As is usual, the transition to the IAS was assumed to ex-
haust the Fermi strength from the ground state. The
solid (dashed) curve corresponds to the use of the full
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FIG. 15. Measured (Ref. 29) and calculated observables for

the 17 (15.11 MeV) excitation in '>C at T, =200 MeV. The no-
tation is as in Fig. 14.
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FIG. 16. Measured (Ref. 29) and calculated observables for
the 2% (16.11 MeV) excitation in '*C at T, =200 MeV. C, LS,

and T are as defined in Fig. 14.
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(zero-density) HM86 interaction. Although the use of the
full density-dependent interaction improves the agree-
ment for 4, it slightly worsens the agreement between
measured and calculated cross sections. The smaller
cross section obtained in the case of full HM86 interac-
tion as compared to the zero-density case arises from the
decrease in | G, | with increasing density (see Figs. 5 and
7). A renormalization of the calculated cross section by
~ 1.4 is needed to describe the data at small angles. Such
monopole transitions in medium to heavy mass nuclei
have been shown!’ to be especially sensitive to the dis-
torting potential. In particular, folded optical potentials
typically yield'>?%3¢ cross sections which are consider-
ably smaller than those predicted using phenomenologi-
cal optical potentials which describe elastic scattering.
The use of folded potentials also suppresses the role of
density dependence in the transition operator (here G.).
Results of calculations using phenomenological distorted
waves with the full, density-dependent interaction as the
transition operator are also shown in Fig. 17. This agree-
ment with the forward-angle cross section is excellent
without any renormalization which implies that the
zero-density interaction will overestimate the data. The
results for A4, are less definitive.

3. The '*C(p,n)"*N reaction at O

Figure 18 shows the energy dependence of measured
and calculated ratios of cross sections for exciting the iso-
baric analog (Fermi) state at E, =2.31 MeV and the pure
Gamow-Teller (GT) state at E, =3.95 MeV. Both Fermi
and GT matrix elements are known’’ for these transi-
tions. Calculations were made using effective G-matrix
interactions based on the Bonn and Paris potentials as
well as the SP84 ¢-matrix interaction. The differences in
the ratios using the three interactions may be ascribed
primarily, though not entirely, to differences in the calcu-
lated IAS cross sections which are driven primarily by
the G, part of the interaction (see Fig. 5). The effects of
using different types of distortion on the cross section ra-
tios are very small. Overall, the HM86 interaction pro-
vides the best description of the measured®®>® ratios.

4. Excitation of high-spin stretched states

Stretched excitations in nuclei provide some of the
most definitive tests® of the NN interaction at large
momentum transfers. These unnatural parity excitations
involve only one particle-hole (p-A) component, and a
single-orbital angular-momentum transfer L =J —1,
where J is the total angular-momentum transfer and'
J =j,+Jj,- It has been shown elsewhere® that isovector
stretched states are populated primarily by the large iso-
vector tensor force, whereas for isoscalar stretched states
both spin-orbit and tensor forces contribute significantly.

We consider the excitation of the T=0and T =1, 6~
stretched states in the 2Si(p,p’) reaction at 134 MeV.
Comparisons between measured and calculated cross sec-
tions and A, are shown in Fig. 19(a). The particle-hole
configuration here is (f;,,,d5/,) and the oscillator pa-
rameters were chosen following Hintz et al.’° F denotes
the use of a folded optical potential. The calculated cross

sections for the 7 =1 state have been multiplied by 0.31
as is required by (e,e’) data. The agreement between
measured and calculated cross sections and 4, is quite
reasonable for this transition, suggesting that the strength
of the isovector tensor force is quite reasonable. The
strong similarity between the solid curve [G(p)] and the
one with k=0 illustrates the rather small medium
corrections to the isovector part of the tensor force. This
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FIG. 18. (a) Measured and calculated ratios of the 0° cross
sections for GT and Fermi transitions in the reaction '*C(p,n).
(b) Measured and calculated values of the 0° Fermi cross sec-
tions for the reaction "C(p,n). The curves (open circles) corre-
spond to the use of folded (phenomenological) optical potentials
(POP). (c) Measured and calculated values of the 0° GT cross
sections for the reaction '*C(p,n). (d) Measured and calculated
values of 0° cross section ratios for the '*C(p,n) reaction. C, LS,
and T denote central, spin-orbit, and tensor parts of the NN
force.
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confirms our expectations based on the strong one-pion-
exchange contribution to this part of the force. The good
agreement for this transition appears to be inconsistent
(quantitatively) with the results discussed earlier for the
isovector 2% excitation in '>C at 16.1 MeV. However, it
should be noted that the 6~ stretched configuration is be-
lieved to be simpler than the 2* excitation in '>C in that
only an S =1 transition density enters the 6~ excitation.
We have verified that the cross section for the excitation
of this 6~ state in 23Si is also well described at 180
MeV,* with the same renormalization of the particle-
hole strength. This latter result indicates that the noted
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inconsistency is unlikely due to the consideration of
somewhat different incident energies for the two transi-
tions.

For the T =0 excitation in 2Si, the shapes of the mea-
sured and calculated observables are in good agreement
as shown in Fig. 19(b). In this case, however, the calcu-
lated (p,p’) cross section with unit p-h strength has to be
multiplied by N =0.17 to agree with the data. Similar
calculations for the (m,7’) reaction require N =0.11.%
Calculations by Hintz et al.* for this same (p,p’) transi-
tion using the SP84 z-matrix interaction and a phenome-
nological optical potential require N =0.12. As in the
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FIG. 19. (a) Measured (Ref. 39) and calculated observables for the 6 (T =1) excitation in ?!Si at T,=134 MeV. The solid and
dashed curves have the same meaning as in Fig. 17. (b) Same as (a) for the 6~ (T =0) excitation in *Si at T, =134 MeV; the C, LS,
and T curves are as in Fig. 14.
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case of the T =1 excitation, density-dependent effects on
the calculated cross section are very weak (not shown).
However, as seen in Fig. 19(b), the agreement between
measured and calculated A4,(6) is improved significantly
when the full density-dependent interaction is used.

IV. SUMMARY

A local density-dependent NN interaction (HMS86)
based on one of the recently published OBEP versions of
the Bonn potential has been derived from the Bethe-
Goldstone equation for the G matrix in nuclear matter
for use in calculations of nucleon-nucleus scattering be-
tween 50 and 450 MeV incident energies. The validity of
the G-matrix interaction approach is expected to depend
on the projectile’s incident energy. In particular, at the
lower energies where the incident momentum is compara-
ble to the Fermi momentum, the validity of the G-matrix
approach is highly questionable since other types of
correlations, not taken into account by the G-matrix, be-
come very important. Above the threshold for pion pro-
duction we have not included any inelasticity. Many of
the methods and approximations used to construct the
NN interaction are given in this work or in Refs. 11 and
16. As in Ref. 16, we have parametrized the interaction
at several particular energies and densities in a way to
make it relatively convenient to use in some of the most
widely used proton scattering programs [DWBA —70 (Ref.
40) and its offspring, and ALLWORLD (Ref. 41)] at inter-
mediate energies. Medium corrections arising from Pauli
blocking and the (self-consistent) single-particle potential
have been included in a way which makes the connection
with NN scattering relatively transparent.

Some of the dynamical aspects of the different parts of
the G-matrix interaction have been displayed and dis-
cussed. In particular, we have considered the energy,
density, and momentum transfer dependence of the in-
teraction in anticipation of its application to N-nucleus
scattering. Although our emphasis here is not on de-
tailed analyses of specific measurements of nucleon-
nucleus scattering observables, we have applied the in-
teraction to a variety of transitions, primarily in the
100-200 MeV range of energy, which illustrate some of
its merits and weaknesses. Particular emphasis has been
placed on the relative importance of medium corrections
in the different terms of the interaction and their implica-
tion for cross sections and spin observables in transitions
which are selectively sensitive to these different terms.
For elastic scattering and the excitation of § =T =0 col-
lective states, the full density-dependent results are sys-
tematically in better agreement with the data than are
calculations using either the zero-density HM86 interac-
tion or the SP84 t-matrix interaction. Even so, the inelas-
tic cross sections of this type are still overestimated by
~30% when the density-dependent G-matrix is used.
One possible resolution of this problem may be the expli-
cit inclusion of relativistic dynamical effects which have
been shown to reduce the attraction of G, at small g.*
Results for excitations involving spin and/or isospin
transfer -£0 tend to be less definitive with regard to the
need for density dependence. The ratios of isovector 1+
to isovector O cross sections in the l“C(p,n) reaction are

consistent with a relatively strong density-dependent G,
together with a nearly density-independent G,,. As with
free t-matrix interactions, the largest discrepancies be-
tween the measured and calculated observables occur for
isoscalar, S =1 excitations where the exchange contribu-
tions associated with the tensor force are large.

Finally, we hope that a clearer and more definitive pat-
tern of the deficiencies of the effective G-matrix interac-
tion will emerge following a more systematic and detailed
application of it over a much wider range of energies than
has been attempted here. The range and strength param-
eters of the interaction are available from the authors
upon request at energies between 50 and 425 MeV.* On
the more theoretical side, we must work towards treating
the off-shell and nonlocal behaviors of the G-matrix care-
fully and perhaps improve the way in which the local
density approximation is implemented as well as study its
domain of validity.
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APPENDIX

In the present work, we have derived a G-matrix in-
teraction for use in calculations of elastic and inelastic
nucleon scattering using the one-boson-exchange (OBE)
version of the Bonn potential.* The OBEP developed by
the Bonn group is actually a relativistic potential. The
use of such a potential in a nonrelativistic BG equation
involves approximations which merit some discussion.
We first outline the derivation of the scattering equation
in which the OBEP has been used (and determined).

The scattering amplitude is obtained in the framework
of a three-dimensional reduction of the Bethe-Salpeter
equation** which for the two-fermion invariant scattering
amplitude is written schematically as

T=R+i [ROT, (A1)
where K denotes the irreducible interaction kernel with
respect to the two single-fermion lines and & is the rela-
tivistic two-fermion propagator. The three-dimensional
reduction of Eq. (A1) is achieved by first rewriting Eq.
(A1) in terms of two coupled equations

T=0+ [0¢T, (A2a)
O=R+ [RGS-2)0 . (A2b)

A

The two-fermion propagator g is chosen such that it



38 EFFECTIVE INTERACTION FOR NUCLEON-NUCLEUS. .. 71

preserves the covariant form of Eq. (A2a) and ensures R js assumed to be given by the OBEP .
that the resulting scattering amplitude T satisfies the rela-
tivistic unitarity relation. Moreover, if § is a “‘good ap-
proximation” to i, the quasipotential U defined in Eq.
(A2b) may be calculated in perturbation theory. In par-
ticular, one might keep only the lowest-order terms, i.e.,

zk, where in the present work the interaction kernel

J

The two-fermion propagator £ is not unique and a
number of different choices have been proposed.**—*4’
Among these, the most common one and the one which
we are interested in here is that of Blankenbecler and Su-
gar®® which, using the notation of Bjorken and Drell,* is

. © dw' ' ' ' ’
gees( K,k ;0)=— f4mzm(ﬁm+m NP +m)8(p s, —m*)8(p5, —m?) . (A3)

Here, o denotes the Lorentz invariant defined by

w=4K K'=(E, +E, ) —4K?, (A4)

with E, =(p*+m?)!"? and K defined by Eq. (2.2); k, is the four vector defined by

p 1u —Pay
k,= — (A5)
The integration over o’ can be carried out giving
Zuns (K, k' 30)= —4m? it A+ (PA (p) 5 |kt S H
BBS » o - 2E E ., 2 2_ 0
) (Epll +Ep;) 4K w l'f’ 2
Ep, —Ep,
=Zpps(K,K';0)8 |k — —'2—2— (A6)
In the above equation A | denotes the projection operator onto the positive-energy states. In particular,
A (p)=3 |ulp,s)(alp,s)| , (A7)
s
where
oo | | (A8)
ulp,s)=|— ap %
E,+m
is the positive-energy Dirac spinor and k, is the timelike component of the four-vector k.
Equation (A2a) in momentum space becomes (within the approximations described above)
(KK, k) =P(K,k,k)+ [d’k"P(K,k' k" )Zpps (K, K", ) T(K, k", k) , (A9)

where k’, k', and k denote final, intermediate, and initial relative momenta, respectively, as defined by Eq. (2.2) and
P1,P; and o have been expressed in terms of relative and total momenta.
Taking the matrix-element of the above equation with the positive-energy Dirac spinors u(p,s) one obtains

T(K,k', k)=V(K,k',k)+ fd’k”V(K,k',k”)gBBs(K,k”,k)T(K,k“,k) , (A10)
where
W (K, k', k)= (a(p),s)a(pssy) | W|ulpy,s)u(pys,)) (A11)

for W either ¥ or T and geps{ K, k", k) is equal to gpps (K, k", k) of Eq. (A9) without the projectors A _ (p;)A (p,).
In the nucleon-nucleon (NN) c.m. frame (K =0), Eq. (A10) becomes

1

V(k', k") 5 3
k‘/m—k"*/m+in

Tk, k) =P,k + [d’k" ‘E{"— T(k",k) , (A12)

k
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where we have used the explicit form of gggs(K
=0,k",k) in addition to the fact that

0=4K}—4K*=4K{=(E, +E,
=4E;=4(k*+m?)

in the NN c.m. frame. For simplicity, we have also omit-
ted the total momentum K =0 as an argument of ¥ and
T.

If we now multiply both sides of Eq. (A12) by the
factor v/'m /E,\/m /E, and define the quantities

V(k',k)=V'm /E,.V(k',k)\Vm /E, ,
T(k',k)=V'm /E,T(K',k)\V/m /E, , )
we get
T(kK',k)=V(k',k)
1
k*/m—k'"*/m+in
(A14)

+fd3kNV(kl’ku)

XT(k",k)

which is formally identical to the nonrelativistic
Lippmann-Schwinger equation. The relationship be-
tween the NN differential cross section in the NN c.m.
system and the scattering amplitude T as given by Eq.
(A14)is

]

G=\/m/Ep,]\/m /Eplz(ii(p’l)ﬁ(p'z) |G| u(p)u(py))y/m/E, 1/ m/E, ,

2
| T(k', k)| 2.

m

4rtic?

(A15)

The close similarity between the three-dimensional
Blankenbecler-Sugar equation and the nonrelativistic
Lippmann-Schwinger equation has motivated the use of
the potential V, as given by Eq. (A13) and constructed
from the relativistic meson-exchange theory, within the
conventional nonrelativistic framework. However, as we
have seen [Eqgs. (A6) and (A 10)], this similarity holds only
in the NN c.m. frame. In other frames the
Blankenbecler-Sugar equation is manifestly different (for-
mally) from the Lippmann-Schwinger equation. Never-
theless, we consider the potential V given by Eq. (A13) as
a nonrelativistic potential in the sense that we will use it
in a nonrelativistic context such as in the Lippmann-
Schwinger or Bethe-Goldstone equation. In the bound
state problem the formal difference between the
Blankenbecler-Sugar and Bethe-Goldstone equation has
been shown to have little influence on the resulting in-
teraction.*?

Another notable point is related to the factors
V/m/E, in the definition of the interaction. The G-
matrix or f-matrix interaction to be used in nonrelativis-
tic calculations (and which has been represented by a sum
of Yukawa terms in momentum space) is given by

(Al6)

where G denotes either T of Eq. (A9) or its Bethe-Goldstone analogue and u(p) denotes the free nucleon spinor u(p,s)
without the two-component spin-wave function X,. Note that, apart from the factors 1/ m /E,, Eq. (A16) for the ¢ ma-
trix is identical to T given by Eq. (A11) without the spin-wave functions X.

In the Bethe-Goldstone equation, we use the OBEP which contains the factor v'm /Ek-\/m /E, as defined in Eq.
(A13); therefore, the resulting G matrix also contains this factor so that the G-matrix interaction used in scattering cal-
culations and given by the left-hand side of Eq. (A16) is related to that (GBY) obtained by solving the Bethe-Goldstone

equation via

G=1/m/E, 1/ m/E,V Ej/my/m/E,/m/E, VE/mG® .

The final point is related to the assumption involved in
the use of the OBEP V when the Bethe-Goldstone equa-
tion is solved in practice. In the free NN problem the
scattering equation is usually solved in the NN c.m. sys-
tem [see Eqgs. (A12)-(A14)] in a partial-wave helicity
basis. The latter is simply related to the familiar | JLS)
basis. Use of the helicity basis is extremely cumbersome
in frames other than the NN c.m. frame as is required in
nuclear matter calculations where one works in a frame
in which the nuclear matter is at rest. Nevertheless, we

(A17)

[

use the partial-wave helicity matrix elements of the
OBEP evaluated in the NN c.m. frame in subsequent cal-
culations in the nuclear matter rest frame. This means
that we are neglecting the c.m. momentum (K) depen-
dence of the OBEP which is questionable because, in con-
trast to bound state problems where the c.m. momentum
is limited to |K | <kpf, one has |K| Yk for the un-
bound state cases. Here, however, we simply assume that
the dependence of the OBEP on K is negligible.
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