
PHYSICAL REVIEW C VOLUME 38, NUMBER 1 JULY 1988

Charge radii in the 50 (N, Z (82 region
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It is shown that the isotopic variation in charge radii for selected nuclei in the 50(N, Z (82 re-

gion can be described in a shell model framework using a semirealistic effective interaction.

I. INTRODUCTION

There exists by now a wealth of data on the variation
with neutron number of nuclear charge radii. ' The sim-
plest interpretation of this data is in terms of the droplet
model ' where the difference between the spherical pre-
diction and the experimental observation defines the
effective deformation parameter (P ). Since this is a
definition, it is possible that many effects are included in
the extracted (P ), in addition to the real deformation
effects. It is the purpose of this paper to show that, at
least for the nuclei in the 50 (N, Z (82 region, the dom-
inant effect is indeed quadrupole deformation.

II. THE MODEL

The framework for the present calculations is the same
in all essentials as that given in Ref. 4. We start from a
shell model Harniltonian:

1H=ge a a + —, Q V tt sa atria as .
a aPy5

The single particle labels are restricted to one major shell
consisting of the 1d5/z, Og7/z, 2s, &z, 1d3/z, and Oh»&z or-
bitals. The two-body matrix elements are calculated us-
ing the nonlocal Tabakin potential which gives a reason-
able fit to the nucleon-nucleon phase shifts and harmonic
oscillator wave functions with a fixed size parameter
(trtco=g. 1 MeV). They are renormalized by including all
the second order ladder graphs, and a very limited set of
core polarization graphs. The single particle energies e
are determined by a fit to the one quasiparticle energies in
the Sn isotopes, and the N =82 isotones. These calcula-
tions are done using a spherical Bardeen-Cooper-
Schrieffer (BCS) code, and the results are listed in Table I.
Some two body matrix elements are also modified in or-
der to improve the agreement with these data: all the
T = 1 matrix elements connecting the (Oh» rz )

configuration to itself and to the (Og7/2 ) and the (ldsr2 )

configurations are multiplied by 1.3 and a small
(anti-)pairing force (G = —0.04 MeVfm ) is added to
the proton-proton interaction. These single particle ener-
gies and matrix element modifications differ only in detail
from those of Ref. 4 primarily because of the availability
of new data. We did not refit the quadrupole effective
charges; the earlier calculations had given e =1.7 and
e =1.1. These values were obtained by comparing the
results of a spherical quasiparticle Tarnrn-Dancoff ap-

proximation (TDA) calculation to the experimental
8(E2) for the semimagic nuclei. The importance of us-

ing a semirealistic interaction has been discussed many
times before, for example in Refs. 4 and 7.

Since complete shell model calculations are prohibi-
tively lengthy, the structure of the deformed nuclei away
from the closed shells is obtained through an axially sym-
metric deformed Hartree-Fock-BCS calculation: the
poor man s shell model. In brief, the intrinsic state is
written

TABLE I. Single particle energies with respect to the ' Sn
core.

Tabakin
Proton Neutron

Pairing + quadrupole
Proton Neutron

1d5/2

Og 7/2

$1/2

1d3/2
Oh 11/2

0.459
0.0
2.295
2.568
3.190

0.0
0.100
1.972
2.326
3.028

0.96
0.0
2.75
2.90
3.10

—2.55
—2.43
—0.33

0.0
—0.05
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where the operator a; k creates a proton in a deformed
orbital, k labels the 3 component of angular momentum,
and i is an arbitrary sequence label. Neutrons are labeled
by v and the bar indicates a time reversed state. The de-
formation parameter P is defined below, and r can be ei-
ther 0 or sr/3, corresponding to prolate or oblate shapes.
The deformed orbitals are, as usual, expanded in a spheri-
cal basis, and, in this case, only the one major shell is in-
cluded.

The Nilsson coefficients and the occupation amplitudes
are obtained by minimization

&&in«(»r) IH+~(Q. +Q. )
I
in«(P r) & =o

which leads to the usual Hartree-Fock and BCS equa-
tions. The operator Q and Q„are the usual quadrupole
moment operators for protons and neutrons. The
Lagrange multiplier A, determines the deformation pa-

38 487 1988 The American Physical Society



488 R. TURCOI IE AND N. de TAKACSY 38

rameters p and y, and makes it possible to vary the defor-
mation of the intrinsic state, though only within limits.
The intrinsic state can always be constrained to a spheri-
cal, or a prolate, or an oblate shape, but the deformation
is limited at the upper end by the restriction of the vector
space to one major shell and at the lower end by the value

of A, which produces a prolate-oblate shape change rather
than a further decrease in the size of the quadrupole mo-
ment.

The deformation parameter p is defined to have the
usual Bohr-Mottelson meaning. It is extracted from the
intrinsic state by taking the ratio of the microscopically
calculated quadrupole moment and the liquid drop esti-
mate:

'p(p, y)=g
I 2

1/2

4&(P)P&[cos(3y )] . (13)

The series is very rapidly convergent if the prolate-oblate
energy difference is modest. For simplicity, the inertial
parameter D is taken to be independent of deformation
and is determined for each nucleus by fitting the experi-
mental 0+ to 2+ energy difference in the gamma soft
(V~ ——0) limit of the Bohr model (where the solutions are
also simple). This is the one parameter that is adjusted
separately for each nucleus.

The nuclear deformation, including shape oscillations,
is then

(intr(p)
~
e„g +e,g„~ intr(p) )

&p'&=y f c',p'dp (14)

V(p, y) = Vo(p)+ Vi(p)cos(3y),

Vo(P) =— (intr(P, O)
~

H
~
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1
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While it is reasonable to describe a well deformed axi-
ally symmetric nucleus in terms of a single intrinsic state
(calculated with A. =O), the nuclei in which we are in-

terested have spectra that characterize them as moderate-
ly deformed and gamma soft. We therefore use the above
formalism to generate a deformed energy surface (and in-

clude a Coulomb energy correction for good measure):

The model is now completely defined, but, by its na-
ture, it cannot directly predict nuclear sizes. In fact, at a
first level, the size information is an input into the calcu-
lation of the two-body matrix elements which are then
held fixed. However, the model is essentially parameter
free, and it does predict the general structure and
specifically the ground state deformation of any even-
even nucleus between the magic numbers 50 and 82. It
therefore complements the droplet model and the two
can be combined to predict the variation of nuclear sizes
with neutron number. The model is similar to the one
used by Myers and Rozmej' to study the Rb isotopes.

III. RESULTS

Since the isotope shift data'" on the Ba isotopes is
both accurate and extensive, we start by concentrating on
these. The results of the calculation are shown in Table
II which lists the location of the energy minima along the
prolate and oblate axes, the deduced value of the inertial
parameter D, and the computed rms deformation. The
experimental deformation parameters are extracted in the
usual way:

—intr P, —
~

H ~intr P, —'3 '3 (8)

J2 J2 J2
1 2 3

2gi 22/ 2J$

Jl, ——4Dp sin (y ——,'kyar),

(10)

1 0 0 1

(12)

The ground state (J =0) wave function is independent of
Euler angles, and can be written

A simple interpolation formula is used to generate Vo(p)
and V&(p) on an evenly spaced coordinate grid starting
from the very unevenly spaced results of the Hartree-
Fock-BCS calculation.

The nuclear wave function is the solution of the Bohr
Hamiltonian, '

[E—T„b—T„,—V(P, y )]4'(P, y, 0„0~,8~)=0,

The superscripts indicate that the changes are with
respect to the reference nucleus with 82 neutrons and the
droplet model quantities are calculated in the spherical
limit. The data are compared to the calculations in Fig. 1

and Table II.
For completeness, we show in Fig. 2 the calculated en-

ergy functions Vo(p) and V&(p) for the typical case of
Ba and in Fig. 3 the spectrum of energy levels for the

same nucleus calculated in the gamma-soft limit, along
with the experimental data. ' It is not our purpose here
to do detailed spectroscopic calculations for these nuclei,
but only to argue that the model gives a good description
of the structure of the Ba nuclei. It is nevertheless worth
noting that V, is in fact small, and that its proper in-

clusion in the calculation would produce small deviations
from the classical gamma-soft spectrum. ' Actually, we
expect that a more careful treatment of the proton-
neutron collective dynamics would be profitable when
studying the relative spacing of the levels in the 2,+,4&+
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TABLE II. Deformations in the Ba isotopes using a semirealistic interaction derived from the Taba-

kin potential. The columns labeled AE give the calculated energy differences between the spherical and

the deformed solutions. The experimental deformation parameters are normalized to the theoretical

value at N =82.

D
(MeV ')

Prolate

Pm in ~Emin Pmin

Oblate
~Emin Calc. Expt.

138
136
134
132
130
128
126
124
122
120

220
215
185
160
150
140
125
140
155
170

0.0
0.11
0.18
0.21
0.23
0.25
0.27
0.28
0.28
0.28

0.0
—0.43
—1.91
—3.79
—5.69
—7.26
—8.31
—8.53
—8.57
—8.46

0.0
—0.10
—0.16
—0.20
—0.24
—0.27
—0.30
—0.32
—0.31
—0.31

0.0
—0.31
—1.34
—2.74
—4.42
—6.26
—7.94
—8.77
—8.89
—8.75

0.089
0.117
0.146
0.176
0.200
0.226
0.255
0.258
0.260
0.269

0.089
0.123
0.160
0.190
0.214
0.235
0.253
0.269
0.286

doublet and the 3&+,42+, 6&+ triplet. Specifically, the neu-
trons and the protons should perhaps be described by
different deformation variables. Of course, the J =0+
ground state wave functions which determine (P ) are
obtained using the full Bohr Hamiltonian.

The same comparison of theory and experiment can be
done for the Xe, Nd, and Sm (Refs. 14 and 15) isotope se-
quences, and with much the same results. This is shown
in Fig. 4 where the calculated and experimental deforma-
tions of the N =76 isotones are plotted as a function of
atomic number.

It is clear that there is good agreement between theory
and experiment in all these cases. The predicted defor-
mations are systematically somewhat too small (by
—10'), and there is a good reason for this. The scale of
the theoretical p depends on the values chosen for the
shell model effective charges, and the assumption that
they are independent of deformation. However, one ex-
pects that the importance of across shell excitations

should increase with deformation, and our model does
not take this into account. In fact, it is very satisfactory
to observe that this effect is so small. To put it another
way, the restriction of the vector space to one major shell
limits the range of quadrupole moments accessible to a
system with fixed Z and N with the result that there is a
very strong and rapid rise in the Bohr potential Vo(p) for
values of p past the minimum, and a consequent and un-
physical truncation of the high p tail of the wave func-
tion.

There is also a small but systematic difference in slope
between the data and the calculation for the Ba isotopes
near N =66. The theoretical deformations tend to satu-
rate in this region, and then decrease back to near spheri-
city as N ~50. The data on the contrary show a contin-
ued and almost linear increase in (p ) right through the
lightest measured isotope. The same discrepancy also
shows up in the E(4+)/E(2+) ratios in the light Ba
(though not in the Xe) isotopes. '
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FIG. 1. Calculated and experimental deformation of the Ba

isotopes. The calculations are based on the Tabakin interaction.
The experimental points are taken from the isotope shift data

and are normalized to the theory at N = 82.
FIG. 2. The potential energy function of the Bohr Hamil-

tonian for "Ba derived using the Tabakin interaction.
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FIG. 3. The energy levels of" Ba calculated in the gamma-
soft limit of the Bohr model using the Tabakin interaction.
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We therefore conclude that, at least in this region of
the periodic table (50& N, Z & 82), nuclear deformations
can be predicted in an essentially parameter-free way
within the general framework of the shell model, and nu-

clear deformation can explain the major part of the
differences between the measured charge radii and the
predictions of the spherical droplet model.

Another way to show this is to use the predicted defor-
mation parameters as input to the droplet model. ' We
can then compare the experimental radius differences to
the predictions of the deformed droplet model, and ex-
tract a residual difference which is most conveniently
parametrized in terms of a "residual deformation" pa-
rameter (p ), which then contains all the efFects other

than quadrupole deformation,

g( 2)~Ã~, N g(„2)N~'. N (p)+ („2)( ) (p)g(p
4m

(16)

FIG. 5. The differences between the experimental and drop-
let model mean square radii for the Ba, Xe, and Sn isotopes, ex-

pressed as effective deformations. The open symbols refer to the
spherical droplet model and the solid symbols to the deformed
droplet model with the magnitude of the deformation taken
from theory. N'= 82 for Ba and Xe, and N'=-66 for Sn.

We have done this for the Ba, Xe, and Sn (Refs. 17 and
18) isotopes with the results shown in Fig. 5. The open
and solid symbols show the data compared to the spheri-
cal and the deformed droplet models, respectively, where
the deformation is predicted by the calculations. It is

clear that the residual effects are small once the deforma-
tion is properly included.

The case of the Sn isotopes warrants further comment.
As expected for semirnagic nuclei, the calculated defor-
mations are small for all the isotopes, and reach a max-
imum at " Sn with +(p ) =0.096, which is about 10%
smaller than the experimental value +(p ) =0. 103 from
Coulomb excitation. ' The isotope shift data are in good
agreement with these small values of the dynamic defor-
mation except for the lightest isotopes where a regular
curvature in the data becomes manifest. From our re-
sults we have to conclude that this curvature is not due to
quadrupole deformation of the valence nucleons, and cite
the observed systematics' ' in the energy and the B (E2)
of the 2&+ state in support of this. More subtle explana-
tions have been proposed, ' and it is also reasonable to
expect that the intruder band ' that occurs near N =66
should have an effect.

0.0
50

N=76 isotones
CALC.

x

60

FIG. 4. The calculated and experimental deformation of the
N =76 isotones. The calculations are based on the Tabakin in-
teraction. The experimental points are taken from the isotope
shift data and are normalized to the theory for each isotope at
N =82.

IV. A SCHEMATIC HAMILTONIAN

(Q +Q„)(Q +Q„), (17)

Although the use of a semirealistic Hamiltonian has
important advantages, ' the results obtained above do
not depend qualitatively on this choice. To prove this,
we have repeated the calculations for the Ba isotopes us-

ing a standard pairing plus quadrupole interaction. The
single particle energies are given in Table I, and the
strength of the pairing force is 6 =6 =0.25 MeV. The
quadrupole potential is
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TABLE III. Deformation in the Ba isotopes using a pairing plus quadrupole interaction. The
columns labeled hE give the calculated energy differences between the spherical and the deformed solu-

tions. The experimental deformation parameters are normalized to the theoretical value at N =82.

D
(MeV ')

Prolate

Pain ~Emin Pmin

Oblate
Calc. Expt.

138
136
134
132
130
128
126
124
122

240
225
200
175
155
145
130
135
160

0.0
0.0
0.16
0.20
0.23
0.25
0.26
0.27
0.28

0.0
0.0

—1.06
—2.83
—4.55
—5.80
—6.81
—7.52
—7.64

0.0
0.0

—0.12
—0.17
—0.21
—0.26
—0.29
—0.30
—0.29

0.0
0.0

—0.29
—1.29
—2.60
—3.90
—5.46
—6.23
—5.45

0.087
0.118
0.142
0.171
0.203
0.232
0.257
0.266
0.262

0.087
0.122
0.159
0.189
0.214
0.234
0.252
0.269
0.285

where ~=0.00444 MeV fm . These form a reasonable
parameter set, and there is no need for a particularly
careful choice for the present purposes. The single parti-
cle energies are close to the data for Sn and Sb,131 133 24, 25

and also to the energies used with the more realistic
Hamiltonian when the N- and Z-dependent monopole
mean field of the latter is taken into account. The
strength of the pairing force is roughly determined by the
observed pairing gap in the N =82 and the Z =50 nuclei.
Finally, the strength of the quadrupole interaction is

chosen to roughly reproduce the calculated deformation
of ' Ba with the more realistic Hamiltonian.

The results of the calculation are given in Table III.
They are essentially the same as those obtained using the
Tabakin potential, except that deformation sets in a little
more slowly near N =82, and the deformed energy
minimum is more shallow. We expect the difference to be
more significant if the space spans more than one major
shell.

be used as input to the droplet model with a standard pa-
rametrization in order to predict the variation with neu-
tron number of nuclear charge radii. The results are in
generally good agreement with the data extracted from
isotope shift measurements for long isotope chains.

The calculation uses a Hartree-Fock-BCS formalism,
but the basic framework is the shell model with its
strengths and its limitations. The vector space is restrict-
ed to a single major shell, the harmonic oscillator size pa-
rameter is fixed, and the across shell admixtures are in-
corporated through constant effective charges. In these
respects the model is different from the more ambitious
Hartree-Fock calculations that span a large vector
space. ' ' ' ' Its predictions are also quantitatively
different, especially with respect to the onset of deforma-
tion near a spherical magic number, and the energy gain
that accrues with deformation.
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