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Integrodifferential equation for few- and many-body systems
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A complete derivation of a new two-variable integrodifferential equation valid for three- and

many-boson systems is given here for the first time, and it is shown to be exact if all correlations
higher than those of two-body type can be neglected. Its equivalence to the Faddeev equation for
three bodies and its applicability to many-body systems are discussed in detail. Three-body forces
are included. It is shown that the three- and four-body binding energies obtained by means of this

equation are in good agreement with those obtained from the most sophisticated variational, Fad-
deev, and Faddeev- Yakubovsky calculations. This indicates that our new two-variable

integrodifferential equation should also be useful for larger systems, in particular since unlike other
methods it does not suffer from the disadvantage of rapidly increasing complexity with A. We also
show that a simple adiabatic method for the solution of this equation {and hence also for the Fad-
deev equation) is quite sufficient, due to the closeness of the upper and lower bounds obtained in this

way. Finally we apply the adiabatic method to nuclear three-body scattering and even include the
effect of breakup for spin-dependent forces. It is found that asymptotic behavior is reached for a
value of the hyperradius of the order of 3S fm.

I. INTRODUCTION
In a previous paper' we proposed a method for intro-

ducing the two-body correlations in the wave function,
through a hyperspherical harmonic expansion of the
wave function in which the potential harmonic basis,
which is complete for the expansion of any function of
the relative coordinate between two particles, is used.
For this purpose the wave function of the A-body system
is decomposed into its Faddeev components and subse-
quently the equation fulfilled by the components is pro-
jected on the potential basis for the pair of particles un-
der consideration. This function is given in terms of a
series expansion in potential harmonic (PH) polynomials
and the original equations are then transformed into an
infinite system of second order coupled differential equa-
tions in the hyperradius, which is truncated for a numeri-
cal solution.

This method is difficult to use when the solution does
not converge rapidly enough in terms of the number of
PH basis elements used in the truncated expansion of the
amplitude. Unfortunately this is precisely what we have
to deal with in the case of strongly repulsive core poten-
tials like the realistic forces occurring in nuclear physics.

To circumvent these difficulties we have transformed
the infinite system of differential equations into an
equivalent two variable integrodifferential equation where
one variable, the hyperradius. This is a collective vari-
able which does not generate any correlations. The other
coordinate is given by the ratio of r,-., the relative coordi-
nate between two particles, and the hyperradius. This en-
ables us to describe the two-body correlations.

This paper is devoted to a presentation of the complete
derivation of this equation for bosons and a discussion of
its range of applicability followed by a number of applica-
tions to few-body systems. The results are compared to
those obtained by means of the most sophisticated

methods in other recent literature.
In Sec. II we present the hyperspherical background

formalism required for the derivation of the above men-
tioned integrodifferential equation in such a way that the
various correlations can be introduced in stages. The
states of the A-body system in the hypercentral part of
the total interaction are introduced in Sec. III and a com-
parison is made with the harmonic oscillator independent
particle model.

In Sec. IV we introduce the two-body correlations into
the Schrodinger equation by means of a Faddeev decom-
position of the wave function, restricting ourselves to the
case of identical bosons in S states. We thus obtain a par-
tial integrodifferential equation in two variables r; and r
for the amplitude F(r;J, r). For the case of three bosons
interacting in S states only, a particularly simple deriva-
tion of the kernel of this integrodifferential equation is
given, which also illustrates the more difficult case of an
arbitrary number of particles. This equation can, by
means of a simple transformation, be shown to be identi-
cal to the Faddeev equation for S-state projected poten-
tials, and is therefore exact in the case we consider here.

For A & 3 we then show that if only two-body correla-
tions are retained we again arrive at a two-variable
integrodifferential equation of the Faddeev type, but with
a more complicated kernel. Using more sophisticated
techniques this kernel can also be obtained in analytical
form, for bosons interacting in S states, only. The com-
plete derivation of this kernel is given in Appendix A.

It is shown in Sec. V how easy it is to include three-
body forces in our formalism. In Sec. VI we explain in
detail why our three-boson equations are exact (and iden-
tical with the Faddeev equation) for S states, and why
this is no longer true for A )4. It clearly emerges from
this discussion that our two-variable integrodifferential
equation for S states for A ) 3 takes all two-body correla-
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tions but nothing else, exactly into account.
In Sec. VII we explain in some detail the application of

an adiabatic approximation, in particular the extreme
adiabatic approximation (EAA) and the uncoupled adia-
batic approximations (UAA), which, respectively, pro-
vide lower and upper bounds to the exact binding ener-
gies, obtained from the integrodifferential equation.
These bounds generally are close and determine the bind-
ing energy within narrow limits. Combined with an ac-
curate interpolation formula, they allow us to determine
the binding energy in a much simpler way than by a full
solution of the partial integrodifferential equation.

The asymptotic behavior of the two-body amplitudes
which, in the approximate separation of the variables
characteristic of the adiabatic approximation, are ob-
tained as eigenfunctions for each value of r, is discussed
in Sec. VIII. Subsequently, in Sec. IX, we consider the
problem of three-body scattering in this approximation.

In the simplest case, where only one two-body bound
state exists and the particles interact by means of pure
Wigner forces, we describe the scattering process with
the aid of the coupled adiabatic approximation (CAA).
In addition, we show how to include the break-up process
in our treatment.

Finally in Sec. X we apply our formalism to calculate
three- and four-body binding energies for a number of po-
tentials and compare our results with those obtained by
means of the most sophisticated methods in the litera-
ture. The last point we investigate here is the asymptotic
behavior of the eigenpotential corresponding to a three-
body bound state.

II. HYPERSPHERICAL BACKGROUND FORMALISM

We eliminate the center-of-mass motion by a suitable
chain of Jacobi coordinates given by

4 =» —x2=r&2

)
——&3(x3—X3),

;+ )
'}/2——(i + 1 ) /i ( x; + t

—X;+) ) =&2i /(i + 1 )(x;+ )
—X;), (2. 1)

l

$, =&2A/A —l(x„—X), X, =—g xj, X„=X, A =N+1 .
j=1

(T —E)(I);,(x)= —V(r;, )%(x) (2.2)

for 3 particles, where the index ij in this case means that
we use the partition where g~ =r," and where

for a system of A identical particles. The choice of the
pair (1,2) for g~ is arbitrary. We could also use the pair
(ij ) for g~. Then &3(xk —X„)becomes g'~ „where Xk
is the center of mass of the particles x;,xj,xk and so on,
in a similar way as described in Eq. (2.1). From now on,
to be more general, we use the partition g'~, g~, , . . . , g',

where gtv=r;, , g'~, =&3(x„—X„) and so on. Assum-
ing that only two-body potentials occur we write the Fad-
deev equation

tions because the problem rapidly becomes too compli-
cated to solve. Nevertheless, the problem has to be treat-
ed in this way to successively introduce all the many-
body correlations in the wave function. For low energies
and for low density systems only the two-body correla-
tions are important, but when the density and/or the en-

ergy increase the probability to have more than two par-
ticles interacting at the same time increases, and the
many-body correlations cannot be neglected.

In order to distinguish between the various correla-
tions, we use the property that any continuous function
can be expanded in a series of harmonic polynomials ac-
cording to

i &j&A
P,, (x) (2.3) %(x)= g H(L)(x)@(Ll(r),

[L]=0
(2.4)

is a function of all coordinates x = (x, , x2, . . . , x„)of the
particles. Obviously by adding Eq. (2.2) for all pairs (ij )

we obtain the Schrodinger equation for %.
To solve Eq. (2.2) we will proceed in steps. First we

obtain the solution without correlations, then we intro-
duce the two-body correlations generated by the poten-
tial. In the next step we would have to consider the
correlations where the six degrees of freedom of g'z and

, are involved and so on, until all g, have been taken
into account. For obvious reasons we have to stop after
inclusion of only a few of the lowest few-body correla-

where H(z)(x) is a harmonic polynomial (HP) in all vari-
ables x characterized by 3N —1 "quantum" numbers [L],
where L stands for the degree of the polynomial and
4(L)(r) is a function of the hyperradius

1/2 1/2

2 g (x, —X)2
N

r=

2
r,

i &j&A

1/2

and where the sum is taken over all quantum numbers
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[L],for L running from zero to infinity.
The HP's form a complete orthogonal set over the sur-

face of the unit hypersphere and fulfill the orthonormali-
ty condition:

fH,*,)(Q)H(, )(Q)d Q=5(, ) (L ), (2.5)

where the hyperspherical harmonic (HH) function
H(I)(Q) is the value of H(L)(x) over the hypersphere
r =1. If the angular coordinates over the hypersphere
are defined by the spherical coordinates cu; of each vector
g'; and by the {()}) coordinates defined by

'3 3A 4 3 L2(Q)~
iir r dr

(2.10)

L, (Q, )= (1—z; )w;(z;)
wi zi i}z; Bzi

l (co;)
+2 + L,', (Q;, ),

1+z, 1 —z;
(2.11)

where L (Q ) is the grand orbital operator. Let L; ( Q; ) be
the operator associated with the first vector {g, , . . . , g; I.
It can be written in terms of the one for the vectors

, I as follows

N r cospN

4, i rsin—(t N cosPN

g, =r siniI}iv. . . sing;+i cosP;, (Pi ——0),
(2.6)

where

L (Q)=Liv(Q),

and

the surface element d Q becomes a product
N

dQ=dcoi ff dao (singj) ~ cos Pjdgj.
J=2

N

=d~i ff 2 J (1—z. )' J ' (1+z )' dz dc@.1 J J J/=2

N

Y( )(Q)= Yi '(a), ) ff Y, '(a) )"'P'
J=2

(2.8)

(2.7

where zj =cos2$J. Then by applying the orthonormality
condition, Eq. (2.5), and using the notation Y(t)(Q) in-
stead of H(L)(Q) to specify that we are dealing with the
Zernike and Brinkman hyperspherical coordinate system
(co;,i';) [see Eq. (2.6)], we find that

(1 z )(3i —5)/2(1+z;) (2. 12)

It is useful to keep in mind that it is a consequence of Eq.
(2.7) that

N

dQ=dcu, fI 2 J w. (z~. )dzjdco
J=2

(2.13)

in such a way that when g; is in an S state (i.e., l;=0),
w, (z, } is the weight function associated with the Jacobi
polynomials P„' ' ' ' (z; ) occurring in the HH given

by Eq. (2.8) when L, , =0.
Let %(x) be a function that is expanded as

wheie l2(m;) is the orbital operator with the phase con-
vention

[l'(~, }+l (l+1)]Yi (~;)=o .

where

"'P ' ' '(P)=X, (1—z ) '
J J J J

J

in terms of the Jacobi polynomial P„' ' ' and
v. l, l. + 1/2

J

—(L. )+ l. ) 2v, t (v, n))n, f—
NL, l

——2

while

v. =L, +——1, LJ=I,. + g (2ni, +li, ),
J

k=2

with

N

L =LN = g (2n, +I;),

(2.9)

P(x) = g Y(L )( Q )4(L)(r)
[L]

(2.14)

and let d 0; be the part of the surface element d0 which
contains the coordinates co and z for j &i, i.e.,

dQ;=d, ff 2 i
( )d, d

J=2
(2.15)

Then if we integrate 'ti(x} over the surface of the unit
hypersphere spanned by the vectors {g„.. . , g,. j, we
eliminate from %(x) the dependence on {g„.. . , g,. {.By
means of the orthonormality condition

f Y(I )(Q;)dQ;=0 for L,.&0 . (2.16)

The remainder is then a function of {g;+ i, . . . , giv I only.
This property wi11 be used to project a function of the set
of all coordinates {x{ on a definite subset {g;+„.. . , giv I
of the Jaeobi coordinates associated with the partition,
e.g. , (2.1) used to define the Y(L) (Q) basis.

where n, =0 and n =(L LJ,—lj. )/2. —
As a consequence of the product structure of d 0, the

Laplacian (i.e., the kinetic energy operator) expressed in
terms of co; and z,- is a sum given by

III. THE STATES OF THE N-BODY SYSTEM

Let us extract that part of the potential V(r, ) in Eq.
(1.2), which is independent of the distance r, between the
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particles. It is called the hypercentral part of the poten-
tial and it is given by the average of the potential over the
whole unit hypersphere r = 1:

Vo(")= I [o) J F[o) V (r )d"0 (3.1)

where Y~oj is normalized over the hypersphere as
J( 1'[o) }dII= 1. By using Eq. (2.7) and

r/ =r cosgjv =r&(1+z)I2, where z =cos2$, one finds,

V ( )
I (D/2) ]

(1 )(D 5)/2(1+ )]/2V 1+z
&~2""]-'1.[(D —3)/2] 2

' 1/2

(3.2)

where D =3(A —1). Let us assume that Vo(r) contains
the major part of the interaction, which is in general true.

Inserting the approximation V(r/)= Vo(r) into Eq.
(2.2) and summing over all pairs (i,j ) we obtain the ap-
proximate equation, equation

T+ Vo(r) E]Po—(x)=0 .
A(A —1)

2
(3.3)

Its exact solution is the product

Vo(x)=H[L}(x)u(r)/r +', (3.4)

where 2 =L +(D —3)/2, of a properly symmetrized HP
and a function of r which is the solution of the radial
equation

d' X(/+1)
dr 7'

+

Vo(r) Eu (r) =0 . —A(A —1)
2

(3.5)

The state is defined by the quantum numbers [L] which
characterize the harmonic polynomial H[L}(x).

In this approximation, which practically does not con-
tain any correlations, because it is identical to the genera-
tor coordinate method applied to a harmonic oscillator
Slater determinant, the ground state is obtained when
the repulsive centrifugal barrier is minimal, i.e., when the
degree J of the HP is minimal. In the particular case of a
harmonic oscillator potential

2A'
V (r, )="

Am b4 (3.6)

2nf
u~ „(r)=

I (n+X+ —', )

2+1
r 2

L 4+1/2
n

b 2

(3.7)

and n is the number of nodes of the Laguerre polynomial
LX+]/2( 2/b2)

Let n, and I; be the harmonic oscillator (HO) quantum

the total potential g,. V(r; ) is hypercentral because
r2=2/A g, „r,2and generates, as. . is a well known, a
solution without correlations which can be written as in
Eq. (3.4), where

numbers associated with the particle (i}, where the sys-
tem is described by an independent particle HO model.
It is well known that the ground state is obtained when

L = g (2n;+l, ) (3.&)

is a minimum. The quantum number L is also the degree
of the HP in Eq. (3.4}, therefore, the quantum numbers
which describe the ground state in an HO independent
particle model are those occurring in the HP description
of this state. The only difference with an HO model is in
the radial function u (r), which is determined by the cen-
tral potential Vo(r), and in the translational invariance of
the solution of Eq. (3.4). For an HO interaction we have
for the ground state

u(r)/r +'=C exp( r /2b ), — (3.9)

where b is the HO parameter defined above and C a nor-
malization constant.

When excited states are considered the HO indepen-
dent particle model generates spurious center-of-mass ex-
cited states together with hyper-radial excited states
(breathing modes), which are admixed to the solution. In
contrast to this the center-of-mass motion is eliminated
and the admixture with the breathing mode is avoided in
the hyperspherical harmonic (HH) description of the ex-
cited states, which provides an unambiguous definition of
the "state" of the N-body system.

T+ Vo(r) EP, .(x)—A(A —1)

= —[ V(r;, ) —Vo(r)]q/(x), (4.1)

where V ( r, ) —Vo( r ) is the residual interaction and
where, for the sake of simplicity, we assumed a central
two-body potential V(r,. ). The wave components P; (x)
now represent modified Faddeev components for the A-
body problem. By substituting the first order approxima-
tion of Eq. (3.4) for %(x) in Eq. (4.1) we find that P;J.(x)

IV. INCLUSION OF THE TWO-BODY CORRELATIONS
AND THE INTEGRODIFFERENTIAL EQUATION

In order to introduce the correlatidns we have to take
into account the degrees of freedom that we have neglect-
ed so far. For this purpose we rewrite Eq. (2.2) by intro-
ducing on both sides the hypercentral part Vo(r):
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can be written as the product

P&J(x)=H[1](x)F(r& &r) (4.2)

where the function F(r, , r) "is a solution obtained by sub-
stitution of Eq. (4.2) in Eq. (4.1)

T+ Vo(r) E—H[r ](x)F(r ~, r)
A (A —1)

= —[V(r~/} —Vo(r)]H[L](x) g F(rki, r) .
k&1&A

(4.3)

H[p]( x ) = Y[0](D)= I (D/2)
'z

1 I (D/2)
m' ' 1[(D—3)/2]

The general case where L&0 has been considered else-
where. Here we will only discuss the case of the bosons
in S states, for which L =0 and the HH of degree zero, a
constant, normalized according to Eq. (2.5) is

In this paper the full details of the derivation are given
for the 6rst time, however.

In order to obtain an equation for F(r,J. , r. ) only, we
have to eliminate the other degrees of freedom. For this
purpose we write the surface element over the unit hyper-
sphere, using Eq. (2.7), as

dQ 2
—D/2(1 —z)(D —5)/2(1+z)1/2d~; dz dQ, (4 4)

where z =cos2$N, cosPN r; /r——, and where d Qz &
is the

surface element for the 3(N —1)-dimensional space
spanned by the vectors g&, . . . , g'z

&
with our standard

choice fN
——r; . Then we use the property that d QN &

is
the weight function from which the HH are constructed.
Let [Lz &] be the set of quantum numbers associated
with the HH in the space of (g„.. . , g'~, ). Then the in-
tegral

f Y[L~ ~](Q~ —t)dQN i
——0, (4.5)

for L~,&0. The equation which determines F ( r;, r) is,
after multiplication of Eq. (4.3) by H[0] and integration
over d Qz &dco;. given by

T+ Vo(r) EF(r—;,r)= —[V(r). ) —Vo(r)] f g F(rki, r) [Y[o](D—3)] dQ&
A(A —1) 6f CO;J.

(4.6)

where w (z)=(l —z} (1+z)', a=(D —5)/2,

(4 7) and

Equation (4.6) is a partial integrodifferentia] equation in
two variables, which can be routinely solved for three bo-
dies. For more than three particles another approach is
needed to integrate over the other variables under the in-
tegral sign on the right-hand side of Eq. (4.6) and thus to
eliminate them.

Instead of r,. and r let us use the variables
z =cos2$/v 2r, /r 1 and r and——let—u. s set

F(r;, )=P(,r)/r' (4.8)

The kinetic energy operator applied to F(r;/, r) becomes
according to Eq. (2.11):

TF(r , r)=r"
1J& m

Xo(XO+ I }
X — ~+

8T r

4
(1 —z )w (z) P(z, r),

r2 w (z)Bz Bz

Xo——(D —3)/2=3A /2 —3 . (4.10)

In the simplest case, i.e., three particles in S states, only
three variables are involved: (1) the hyperradius r; (2) the
angle 8 between the two vectors g', =v'3(xk —X) and

$2 ——r,/; (3) the ratio g, /gz ——tang with z =cos2$
=2r, /r 1. The .wave—function is then given by

m &n&3
F(r „,r), (4.11)

and can be expanded in terms of the Legc;ndre polynorni-
als

%=r Q P~i~(z, r)P&(cosO} .
I

(4.12)

Starting from Eqs. (4.6) and (4.8), for A =3 and D =6,
we have Y[0](D —3)=Y[0](3)=1/v'4~, dQN
where cok represents the spherical coordinates of the
spectator particle, and d6) j'dip j sinOd 0 when the z axis
of the coordinate systems for r, . is taken along g, . Then

F(rkl, r)=r P[2rkl/r l, r], — (4.13)

which leads to

where
0'=r g P[2rki/r I, r] . —

k &1&3
(4.14)
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For the calculation of the integral in Eq. (4.6) we intro-
duce the kinematic rotation vector z(ip) which expresses
the relative coordinates r „ in terms of the Jacobi coordi-
nates defined in the partition where g'N ——r," and

, ——&3(xk —X) (Ref. 6) as follows:

~( P) CN coWN+CN —l sine N cos'PN —1+

+g'2 sinipN. . . siny3 cosipz+pl sincpN. . . siny3 sinipz .

cp~=m/2 one can obtain only pairs r „, where both m

and n &i and j (disconnected pairs).
For A = 3 we have only two Jacobi coordinates and

2rk, lr —1=2z (q&z)/r 1—

where F2 is the appropriate angle, i.e., $N =0 or +2m. /3
according to whether we have to deal with the pair (ij),
(jk) or (ki) Th. e integrand in Eq. (4.6) is given by

(4.15)

The set of angular parameters Iy] determines the linear
combination z(q&) and one notices that for ipN

——0,
z(0) =gN ——r;j, while for ipN ——+2m. /3, and yN, ——0, z(ip)
corresponds to r;A, or r,j„where one of the particles is ei-
ther (i) or (j) (connected pairs). On the other hand, for

1
F(rk(, r)

k (l(3 4~

co;, —:(8, ip;, ),

while in Eq. (4.13) we have

'2
COI

dip; sin8d8,
4a

(4.16)

P(2rkllr l, r)=P—(2[z(ip)] Ir —l, r)=P[z cos2iip+(I —z )' sin2ipcos8, r), p=pz .

The integral in Eq. (4.6) then becomes (z =2r;l lr 1)—
7i 2 1/2 —5/2

'+
r P(z, r)+ J P[z cos2q+(1 —z )'~ si 2nomic so8, r]sin8d8 =r P(z,r)+, J P(x, r)dx

0 sin2ip( 1 —z )
'

(4. 17)

(4.18)

where z+ ——z cos2y+(1 —z )'~ sin2g. Using this result and Eq. (4.9) for D =6 we obtain the integrodifferential equa-
tion for P(z, r)

gz Xo(g, +1)
+

Br f 2
(1—z )' +3VO(r) EP(z,r)—

r2( 1 2) 1 /2 i)z ()z

1 Z += —
I V [r&(1+z)/2] —Vo(r)] P(zr)+ z &&2 I P(x, r)dx, (419)

sin2p(I —z')'"
1

where sin2ip= &3/2 and cos2ip= ——,
' for equal mass par-

ticles.
The change of variable from z to 8 with z =coso and

P(z, r)=&r U(r, 8) transforms Eq. (4.19) into the well-
known Faddeev equation in terms of U(r, 8) when for S-
state projected potentials Vo(r) is cancelled on both sides
of this equation. This proves that our approximate
derivation of Eq. (4.6) for arbitrary A, leads to an exact
result for three bodies.

For more than three particles and at the level, where
only two-body correlations are included, we also obtain a
two-variable partial integrodi6'erential equation, but we
have to employ another method to obtain the kernel of
the integral part. Even though in this case the equation
is not exact any more for S-state projected local poten-
tials, it still takes all two-body correlations into account
exactly.

In order to project F(rkl, r) in Eq. (4.3) on the r; space
for L =0 we expand this function by using the potential
harmonic (PH) basis PzK+i(0,. ) which enables one to
make a complete expansion of any function of r, . The
general procedure for constructing this basis for any state
is explained in Ref. 1. Here we restrict our comments to

where r, =r cospN and zN ——cos2"$N 2r, /r 1. For S———"
states we used the simplified notation

P2K(Q, )
—=P2K(Q; ) .

Then we write

F(rkl r)= & &rK(&k()+K(r»
K

and project each PH on the r; space leading to

( „~F( „,, r)&

g ( +2K ( ~ij )
I +2K ( +kl ) )+2K ( +ij )+K ( r )

K

wh'ere according to Ref. 6

(4.20)

(4.21)

I

the simplest case of bosons in the ground state.

By using the partition, where g'N =r;, , it is obvious that
the HH basis (2.8) needed to expand any function of r;l
only should not depend on the other Jacobi coordinates
involved in the partition. It is then given according to
Eqs. (2.8) and (2.9) by the HH for which LN &

——0, i.e., by

P'2K+i(II;, )=I'i (~;, )
"'

2K+i(PN) (ol'
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@x(r)=[Y0Y[0](D—3)] ' f ' 'P~z($)F(r cosP, r)(sing} cos Pdg,

Interchanging the sum and the integral in (4.21) we obtain

(r;, ~
F(rki, r})=[I'pl'[0](D —3}] ' f" y (&~(&;,)

~
&z&(&k())&z&(&;,)' Pz&(P)

K

XF(r cosP, r)(sing) cos Pdg,
where ' 'P2x (P) can be obtained from Eq. (2.9)

(4.22)

(4.23)

(N)POO (y)
(4K +D —2)I (K +D/2 1)K—! P

I [K + (D —3 )/2] I (K +—,
'

)
(4.24)

The P~'~ (z) are the Jacobi polynomials associated with the weight function w, (z).
For the sake of simplicity we use the variable z =cos2$ =2r,"/r —1 for P and write

F(r , r)=r "' " P(z, r) .lJ &

By using the matrix elements which project the potential harmonics of the pair (k, l) on the one of the pair (i,j )

(P~x(Q) )
~ P~x(&„1) ) =Ps' (cos2ys )/Pg' (1) (4.25)

w here!pN ——2m/3 for connected pairs like (i,j ) and (j,k) and yz n/2 f——or .disconnected pairs, we find after some alge-
bra, that the projection of P (2rI, I lr 1,r) on the—pair (i,j ) is given by

f[p] (z& z
& cos2g7~ )P (z ~ r )dz (4.26)—1

where

f (z,z', cos2q& )=w (z') g P ' (z)P" (z')P ' (cos2qr )/[h " P ' (1)]
K=0

(4.27)

and yz has a suitable value as discussed above.
The kernel f[0](z,z', cos2grN ) is the projection function for one pair in S states, and hg' is the normalization con-

stant of the Jacobi polynomials. For other orbital states of the interacting pair the problem has been treated in Ref. 5.
If we now use Eqs. (4.9), (4.10), and (4.27), it can be seen that Eq. (4.6) becomes

82 Xp(/0+I) 4 1 8 2 8 A(A —1)+ (1—z )w + Vp(r) E P(z, r)— .
81 r2 w Bz Bz 2

where the kernel

= —
I V[r&(1+z)/2] —Vp(r) ) P(z, r)+ f f[0](z,z')P(z', r)dz'

—1

(4.28)

(A —2)( A —3)
f[p](z z )=2( A —2)f[p](z,z', ——,')+ f[p](z,z', —1) (4.29)

~ ~~+ 2~ (sing sin5)f[0](z,z')P (z', r)dz' =2( A —2) — f [(u —u )(u+ —u)]" 'P (2u —1,r)udu—1 cos cos

( A —2)( A —3) Yi

+ (1—z)' [—(z+z')]" &I+z'P(z', r)dz'
2 1(A,—1)

(4.30)

is called the projection function. It sums up the contribution of all pairs but (i,j) The first. term of Eq. (4.29) refers to
the 2( A —2) connected pairs for which qr~=2m/3 and the last one to the ( A —2)( A —3)/2 disconnected pairs for
which yN n/2——.

The projection function for one pair is given in Eq. (4.27) by a series which can be summed up analytically, the details
of which are given in Appendix A.

The final result is

where 5=2@/3 (or ir/3), A, =D/2 2, cosp=i/(1+z)/—2,
»nP =&(1—z)/2, u+ cos(p+ Q }.——

As expected, we recover from Eq. (4.28)—(4.30} the
Faddeev Eq. (4.19}by using the variable z'=2u —1 for

A =3, i.e., A, =1. We should note that in Ref. 4 where
the kernel of this integrodifferential equation was ob-
tained in closed form for the first time, Eq. (7) has to be
corrected by substituting u for &(]+z')/2, 4udu for dz',
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and g+ for z+ in the first integral where the limits are
defined without the absolute value symbol. In Ref. 10
this equation has already been given correctly however,
but without any details of its derivation.

VI. DISCUSSION OF THE CORRELATIONS
DESCRIBED BY THE INTEGRODIFFERENTIAL

EQUATION

From our derivation it is clear that in the case of the
Faddeev equation for three bodies our results are exact
for S states and S-state projected potentials. To under-
stand this let us examine the various quantum numbers
associated with the spatial degrees of freedom. For three
particles, when the center-of-mass motion is eliminated,
only two variables remain, the two Jacobi coordinates

g, =v'3(xk —X) and $2=x; —xj, i.e., six degrees of free-
dom. In the six-dimensional space the complete harmon-
ic polynomial basis is characterized by the five quantum
numbers associated with the five angular coordinates
which are: (a) the degree L of the harmonic polynomial;
(b) the orbitals I, and l2 of the two vectors gl and g2', (c)
the total angular momentum l and its projection m.

For S states we have l =m =0 and I
&

——l2 ——1,, and we
only have to consider the two quantum numbers L (even)
and k. The quantum number L is even because S states
are even. In Eq. (4.18) we projected the wave function ql

on the S state for the pair (i,j ), i.e., for A, =O. The residu-
al part of the wave function contains only A.&0 terms and
when we only consider an S-state projected potential, the
product of the potential and the residual part, for which
the orbitals A, = l, =12&0, vanishes. For more than three
particles the residual part of the wave function contains
all the neglected quantum numbers however.

For instance, for four-particles the harmonic polyno-
mials are characterized by eight quantum numbers which
are: (a) the degree L of the harmonic polynomial; (b) the
six orbital quantum numbers l;, m;; (c) the quantum num-
ber n related to the length of one of the three Jacobi vec-
tors. For a total angular momentum l, m the orbitals are
coupled to give l, m as follows

V. INCLUSION OF A THREE-BODY FORCE

We will show below that our equations give an accu-
rate estimate of the binding energy of the few-body
ground state ( A (4) for a sample of various central po-
tentials, and that our results are in agreement with those
obtained by using other sophisticated methods for so.ving
the Schrodinger equation.

The question we now consider is whether we have to
restrict our method only to two-body potentials or
whether the same scheme can be used for solving
Schrodinger equations with three-body forces. The com-
monly used total three-body potentials have the structure

V' '(r,~)V' '(rjk),W(x) = (5.1)
i &j&k&A

where V' '(r,j ) is a two-body potential, but they can have
any other structure, the crucial point being that they are
symmetrical functions, which can be expanded by using
the fully symmetricaj hyperspherical basis:

W(x)= g $zx(Q,")Wx(r)+residual contributions,
K,i &j& A

(5.2)

where [Pzx(Q;~)] is the potential harmonic basis for S
states, which is complete for the expansion of any func-
tion of r ~. and r, and where the Wrr(r), K =0, 1,2, . . . are
the potential multipoles. ' Since the hyperspherical basis
for symmetric S states contains only one element for
K &6 in the six-dimensional space, the residual part con-
tains a negligible amount of the interaction as has been
shown previously. ' The total three-body potential can
now be written as

[(Il I2)I12 I3]l,

For an S-state l =m =0 and we have only three quantum
numbers l3 ——l[2 and l), lq.

When lp is projected on the S state for g3 ——r;J, the or-
bital l3 ——0 is selected and we still have the residual quan-
tum number l& ——l2 ——A, . This manifests itself in such a
way that the product of an S-state projected potential and
the residual wave function still contains the two quantum
numbers A, and n. These quantum numbers are related to
the degrees of freedom generated by the coordinates
different from r, and hence, to the many-body (A &2)
correlations. Our equation is therefore only exact to the
extent to which all correlations higher than the two-body
correlations can be neglected.

The claim in Ref. 11 that our integrodifferential equa-
tion is exact for S-state projected potentials is conse-
quently only correct in so far as the two-body correla-
tions are concerned. More than two-body correlations
cannot be taken into account by two variables only, ex-
cept when we are dealing with a system of three particles
in S states, as we have shown above.

We have nevertheless, to point out that our definition
of the two-body correlations might not coincide with
those resulting from solutions of the Schrodinge. " equa-

where

(5.3)W(r,&, r)= g Pzx(Q;&)Wx(r) .
K

where r =—', g, &
r, , is already a functi"on of r, and r"

only.

In order to take into account the three-body interaction,
the two-body potential has therefore, to be modified in
Eq. (4.27) by adding Wo(r)P& to Vo(r) and W(r, , r) to"
V (r,J). .

The case where V' '(r,") is a Gaussian potential is espe-
cially simple in the three-body problem, because for

—a(r )V' '( r;, ) =e ' the product

V' '( r;k ) V' '( rk, ) =exp [ a( r,k +r—k; ) ]

=exp[ —( —,')ar ] exp[ar;. ],
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tion obtained by other methods, e.g. , perturbation
methods or by means of Jastrow functions. In the last
case the two-body correlations are introduced in the wave
function as a product of Jastrow two-body correlation
factors in such a way that when a strong repulsive core
occurs in the potential, the Jastrow factor f (r, ) vanishes
when rj~0. In our scheme, the wave function is con-
structed as a sum of amplitudes g; 1 F(r, , r) and it is
the projection of the sum on the r; space which cancels
out when one of the r,. goes to zero. Exactly the same
thing happens in the case of the Faddeev solution, which
provides an exact solution for S states when S-state pro-
jected potentials are used.

VII. ADIABATIC APPROXIMATION METHOD
FOR THE SOLUTION OF THE TWO VARIABLE

INTEGRODIFFKRENTIAL EQUATION

Equation (4.28) can be solved either directly as a two
variable partial integrodifferential equation or by an ap-

P(z, r)=P&(z, r)u&(r), (7.1)

where Pz(z, r) is assumed to vary slowly with r and is a
solution of a one variable integrodifferential equation in z
with r regarded as a parameter. Hence,

proximate separation of the variables in the adiabatic ap-
proximation.

For this purpose we assume that the radial motion
(coordinate r) and the orbital motion (coordinate z) are
nearly decoupled as for instance in the adiabatic approxi-
mation applied to molecular systems. In that case the ve-
locity of the electrons is large compared to the velocities
of the nuclei in such a way that for each distance r be-
tween two nuclei the total energy of the electronic cloud
determines the interaction between two atoms. Here we
assume that the orbital motion is very rapid compared to
the radial motion and contains most of the energy, as for
electrons in atoms, in such a way that the amplitude can
be written as the product

a, a
(1—z )to Pz(z, r)+ Uz(r)P&(z, r) =

( V [r&(1+z)/2] —Vo(r) j Pz(z, r)+ f f(o)(z,z')Pz(z', r)dz'
1

Bz Bz —1

(7.2}

Eq. (7.2) has normalizable solutions only for a definite set of eigenvalues U&(r} associated with the eigenamplitudes
Pz(z, r). Each Uz(r) is generally associated with a Pz(z, r) which has a definite number of nodes for —1 &z & 1. Each
element of the infinite set ( Uz(r) ) is called an eigenpotential. The radial function is now a solution of the radial equa-
tion:

Xo(Xo+ 1 )
+

dr r 2

A(A —1)
Vo(r)+ U&(r) —E&'„u& „(r)=0, (7.3)

where the derivatives of Pz(z, r) with respect to r have been neglected. In this equation n is the number of nodes (n&0
for the breathing mode) of the radial wave for bound states, and the wave function is given by

%azz(x)=u~ „(r)/r " g Pz(2r, /r —l, r) . "
i &j&A

(7.4)

It has been shown elsewhere, '
by means of a hyperspherical harmonic expansion of the wave function, that the solution

obtained in this way provides a lower bound E for the binding energy (EAA for extreme adiabatic approximation).
An upper bound is obtained when the variation with r of Pz is taken into account. For this purpose we consider %NCAA

as a variational solution and we write

B&(r,Q)= g P&(2r, /r —l, r), "
i &j&A

where Bz(r, 0) is normalized to one for any r, i.e.,

f ~B,(r, II) ~'dII=&B, ~B, &=I,

and d 0 stands as usual for the surface element over the unit hypersphere r = 1. The solution

0'(x) =B~(r,Q}u~ „(r)/(r'" )

(7.5)

(7.6)

(7.7)

would be the exact solution of our integrodifferential equation if Bz(r, Q} were independent of r To take thi.s depen-
dence into account variationally, we introduce Bz in the right-hand side of the radial equation for uz „(r) we premulti-
ply by B& (r, II ) and we integrate over 0 to obtain the new variational equation for u& „(r):

g2fdQBq(r, II) . &o(&o+1}
+

dr 2 + Vo(r)+ U&(r) EB&(r,Q)u z „(r)=—0 .
A(A —1)

The radial wave function is the solution of the radial equation
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d +o(+o+ 1) A ( A —1) d B&
Vo(r)+ Ui (r) — Bi

dr 7' 2 I dr2
gUAA . (UAA)( ) ()

A, , n (7.8)

where the orthogonality of dB& Idr and B& has been taken into account. The solution obtained in this way is called the

uncoupled adiabatic approximation (UAA). ' ' As it is variational it provides an upper limit for the exact binding en-

ergy.
It is easy to show that the additional potential fi /—m (Bz

~

d Bz/dr ) is always positive. Starting from the nor-

malization (Bz(r, 0)
~
Bz(r, 0) ) =1 where r is a parameter we obtain, taking derivatives,

(
d'B, dB, dB,

B
dr dr

which is always negative, in such a way that

A (A —1) dB~ dB),
Vo(r)+ Ui(r)+

2 pl dr dr

is always larger than [ A ( A —1)/2] Vo(r)+ Uz(r)
By using the adiabatic approximation we simplify the numerical calculations for the solution of Eq. (4.19) and we ob-

tain upper and lower bounds for the binding energy. The interpolation formula

EUAA+0 2(gEAA gUAA) (7.9)

(7.10)

from which B& can be normalized, and

provides a very accurate estimate of the exact binding energy as has been demonstrated previously. '

For the normalization of Bi (r, Q) we use the property that when a function F(rk&, r) is projected on the
~
r; ) space,

the remainder is orthogonal to any function of r; and r. By using this property one finds

A(A —I) 1

(B&
~
Bz) = Pz(z, r)w (z)dz Pi(z, r)+ f f(o}(z,z')Pz(z', r)dz'

2 —1 —1

dBg dB),

dr dr
A(A 1) i dP&(z, r) dP&(z, r) i dP&(z', r)

w~(z) + f(,}(z,z') dz'
—1 d7 d7 —1 dr

(7.11)

VIII. ASYMPTOTIC BEHAVIOR OF Pz(z, r)

In order to calculate the asymptotic behavior of
Pz(z, r) for r~ oo we transform the kinetic energy opera-
tor by using, instead of the variables z and r, the variables
r~=r[(1+z)/2]' and r. The z-dependent part of the
kinetic energy operator for S states

V= + +—— (1—z)wD —1 8 4 1 8 2

Qr r dr r w Bz Bz

where

with

B2

Br2 r r}r

2
1J

r. . Q2lJ

r2 c)r2
LJ

The limit for r ~ ~ for fixed r, is obviously given by

(8.2)

(8.3)

(8.4)
w (z) =(1—z)' ' (1+z)'

is modified. It becomes

(8.1)

The right-hand side of the integrodifferential equation
(4.6) is given by

[V(r, ) —Vo(r)] Fi(r, , r)+ f f"(ol(2r,"/r2 "I,z')F&[r&(I+z')/2, r]d—z'
—1

where F&(r",r) is normalized for each value of r as in Eq.
(7.2) and

F (r r)=r ' " P [2r Ir —1 r]

Let @&(r, )be the asymp"totic limit of Fi(r~ , r) when.
r ~ oo for fixed r, . The function 4&[ri/(1+"z)/2] tends
to a Dirac delta function 5(z+1) in the z coordinate for
r~~, and the integral part of the integrodifferential
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equation vanishes for r ~ 00. Since lim„„VO(r) =0
(Ref. 6) the asymptotic equation for r ~ oo becomes

m dr," r,j dr,.
&

g2 Xo(XD+ 1)
V,fr(r}=

m
+ 3 Vo(r)

The effective potential in Eq. (7.8)

(9.4)

+[V(r,, ) —U&(r)] 4&(ri ) =0, (8.5) goes asymptotically to the eigenenergy Ez ((0) and the
radial wave function has the asymptotic behavior

in such a way that Uz(r} tends for r~ ao to one of the
energy eigenvalues of the two-body bound states or to
zero for two-body scattering states.

uz(r) ~ sin(q&r +5&), (9.5)

IX. THREE-BODY SCATTERING
IN THE ADIABATIC APPROXIMATION

The adiabatic approximation can be used for solving
the scattering problem in the three-body case. We have
already seen that the "channel basis" function P&(z, r)
tends to one of the two-body eigenstates for r~oo. In
particular when we have to deal with a bound state
4z(r; )in the. asymptotic region, the normalized function
P&(z, r) is asymptotically given by

P~(z, r) ~ (Yo) r 4z(r, ), "
/'~ 00

where

f [Pz(z, r)] dQ=1, z =2r; /r 1, —

(9.1)

P;i(x) =P~(z, r}u&(r)/r5i2,

where u&(r) is a solution of the radial equation (7.8).

(9.3)

and the two-body bound state wave function is normal-
ized, i.e.,

f [4&(r, )] r,,dr,i=1 . (9.2)
0

In the uncoupled adiabatic approximation the amplitude
is given by

where (fi /m }qz E ——Ez—and, according to Eq. (9.3), the
asymptotic amplitude becomes

sin(q&r +5&)
(9.6)

But the distance between the particles (i) and (j) is
confined by the two-body bound state wave function.
Hence for r ~ ~ we must also have r ~ri„

sin(qz rz +5q)
lim P,l(x)=( Yo) @q(r,l )

p'~ oo rk

where rk —&3(x„—X). If r is replaced by rk in Eq. (9.6),
it describes the scattering of the spectator particle k in
the S state by the two-body bound system, which is also
in an S state and given by Yo+z(r, ). The 5& i"s the corre-
sponding S-wave phase shift. In the UAA all the Pz(z, r)
are orthogonal and each channel is described by only one
integrodifferential equation (7.2). Hence, we can only
have elastic scattering when we are dealing with Wigner
forces. When spin-dependent potentials are considered
and when only one bound (triplet) state is present, as is
the case for nucleons, a transition can occur between the
triplet two-body bound state, and the free singlet state,
resulting in a break-up reaction. In this case the system
is described by two coupled integrodifferential equations

d 15 4 1 8 8+ 1 —z
dr 4r2 r2 (1 z )

i Qz ()z

z

= —V' '[r&(1+z)/2] P'~'(z,r)+, f [P' '(z', r) 3P'~'(z', r)]dz'—, a&P (9.7)
[3(1—z )]'/

with each P' '(z, r) related to the two-body system in ei-
ther the triplet (a=3+) or the singlet (a= 1+)S state.

To include inelastic (break-up) processes in the case of
simple Wigner forces we have to go beyond the uncou-
pled adiabatic approximation, i.e., take account of the
derivatives of P(z, r) with respect to r by means of the
coupled adiabatic approximation (CAA). ' '

We construct the vector Bo(r, Q) as in Eq. (7.5). It is
normalized according to Eq. (7.10). The index A, =O indi-
cates that Uo(r) is the lowest eigenpotential tending to
the two-body eigenenergy E0 & 0 when r ~~. It de-
scribes the elastic channel where the spectator particle is

I

scattered by the two-body bound state of the interacting
particles.

To include the break-up in our description we start
again from the Schrodinger equation

+2(Q)+ + V(r, Q) Eu (r, Q)=0, —
m Br2 r

(9.8)

where

X (Q) =L (Q) —(D —1)(D —3)/4, D =3( A —1),
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and where

!P(r,Q) =u (r, Q)/r'

When V(r, Q)= g, V(r, ), where V(r, ) is a central lo-
cal potential, the uncoupled adiabatic solution u (r, Q } for
the channel A, =O is given by Bo(r, Q)uo(r), where uo(r) is

a solution of the radial equation (7.8) and where Bo(r, Q)
satisfies, according to Eq. (7.2),

fi X (Q) + U2(r} B2(r, Q)
m r

=[V(r, Q) —Vo(r)]B&(r,Q), (9.9)

with A, =O.
The hypercentral potential Vo(r) is set equal to zero

for an S-projected potential. In this solution the deriva-
tives of Bo(r, Q) with respect to r in Eq. (9.8) have been
taken into account only by retaining the term
(Bo

~

d Bo/dr ) occurring in Eq. (7.8), which corre-
sponds to the UAA. Let us now investigate the full effect
of the operator d /dr occurring in Eq. (9.8) on the UAA
solution u(r, Q)=B&(r,Q)u&(r). It generates the com-
ponents

d2u& d8& du& d2
u(r, Q)=B2 +2 ~u„

dr dr r r dr

(9.10)

where the matrix element is calculated from Eq. (7.10) by
substitution of d 8~/dr and d P~/dr respectively for
8& and P&. The components 8&" and 8& ' being orthogo-
nal to 8& can be expanded only in terms of 8& with

B~'(r, Q)= g b2" (r)B2.(r, Q) i~O .
A, +A.

(9.13)

2

Therefore, they contain only channels orthogonal to
B2(r, Q)

When A, =O and only one bound state exists, Bp" and

Bp ' are associated with inelastic scattering, i.e., with
break up in this case. In the coupled adiabatic approxi-
mation the solution is a sum of three terms only, i.e.,

2

u(r, Q)= g Bi2"(r,Q)uI'(r) .
i=0

The coupled equations for the three radial functions
u &"(r) have already been given. ' They are

d 2

+E u "(r)+ g U„" (Jr) 'u~'(r)=0, (9.14)
m dr2 j=p

where

2

U '(trr)=( ' B—tr2 (())+ V(r, (!) Brt)'
mr

By using the normalization relation, Eq. (7.6), one can
write'

d8&

d7'
= C(r) B2

d 8
dr

' =Cl(r)C2(r)B~(2)+ ' Bk(i) -C2i(r)B
dr

(9.11)

(9.12)

where the C, (r) are functions of r only and where the
(BI„' ) satisfy the orthonormality condition

The operators P,"
p)

dC
P1 —— +2C1

d7' dr

P2 =Pp = —C1 C2
(0) (2)

P2 ———P1 —— +2C2(1) (2) 2 d
df dr

(9.15)

(9.16)

(BI'i
~

B(2J') =5; while Bp'=Bi, .

The derivatives with respect to r generate the two new
components 8&" and 8 &

' orthogonal to 8&. The
[Bz' (r)] are called the coupled adiabatic basis functions.
The coefficient C, and C2 are calculated from Eq.(7.10)
where the normalization of P&(z, r) fulfills Eq. (7.6). Then
from Eq. (9.11) the first coefficient C i

——( dB2 /
dr

~

dB&/dr) is given by Eq. (7.11), and the second
coefficient is obtained from Eq. (9.12) as

d 8& d 8&
C —C1 — lnC,

C dr dr dr

are responsible for the occurrence of a break up for A, =O.
The diagonal terms Wz" (r) in the potential matrix are

given by

(p)
2

rrl dr dr
(9.17)

which is the additional term occurring in the UAA, and

fi8'(~2) = C22 and W(~1) = W(ko)+8 (~2)

m
(9.18)

For i =j=0 the matrix element in Eq. (9.15) is easily cal-
culated, using the symmetry property of the grand orbital
operator X (Q). We have

g2' " = (Br + (()) Bk(*r))+&(Br
l
V(r/)(B, )+ ,"')V

3 8 ~
m 12

2
+1"'") + V(, } P.('r}+f f(.)(z, '}P,(z', r)dz' + W~i" =U„(r)+ Wi ),—1

(9.19}
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Ui (r)=3VO(r)+Uq(r)+WP', (9.20)

where Ui(r) is given by Eq. (7.2) with Vo(r) =0 for an S-
projected potential. For a local potential acting in all
partial waves we have

ing energy

g UAA+() 2(g EAA g UAA
)

(EEAA g&»«gUAA (0)
(10.1)

where Uz(r) is given by Eq. (7.2).
Here we should note that according to Eq. (9.7) the

matrix element in UP'J'(r), j&0, does not exist and the
coupling between the main partial wave uP'(r) and the
two others is taken care of by the operators P', ' and P'z '.

The system of the three coupled equations (9.14) has
been solved' for the trinucleon bound state with typical
central potentials like the Volkov, ' Gogny Fires de
Tourreil, ' Eikemeier-Hackenbroich' and Afnan- Tang'
potentials. The norm of the partial radial wave functions
in the solution have been found not to exceed 4. 10 and
10, respectively, for uo"(r) and uz '(r), and the exact
binding energy was nearly fully obtained. This means
that truncation after only three terms of the solution
leads to a very accurate result for ground states. When
the total energy E in Eq. (9.14) becomes larger than the
two-body binding energy, which is the asymptotic limit of
Uo (r) for r~ ao, Eq. (9.14) describes the scattering of
one particle in S states by a two-body bound S state.
When E becomes positive, break-up becomes possible and
is described by the partial wave solutions uo' '(r) and
uo' '(r) of Eq. (9.14) when suitable asymptotic boundary
conditions are imposed.

We notice that Uo (r) is the potential from which both
the three-body bound state and the two-cluster scattering
in an S state are calculated. It tends to the two-body
binding energy when r~00. On the other hand, both
Uo'"(r) and Uo' (r) vanish at infinity, as should be the
case for a three-body scattering state (break-up state),
when only one bound state exists.

X. APPLICATION TO THREE-
AND FOUR-NUCLEON GROUND STATES

I

I

I
1500-

1

l

I

1

1

1000-

- ISO

—IOO

~ ~ ~ e ~ $

MT V

——-- Volkov

It has been shown' previously that this empirical formu-
la is very accurate.

In Table I we give the binding energy of the trinucleon
bound state H obtained by using the adiabatic approxi-
mations with a set of central nuclear potentials (first
column). The second and third columns refer respective-
ly to the extreme and uncoupled adiabatic approxima-
tions. The interpolated energy EI is shown in the fourth
column, and a sample of the results obtained with the
best other methods is exhibited in the last columns where
HH stands for hyperspherical harmonic expansion,
ETBM, for the variational method with correlation fac-
tors, and F for the full solution of the Faddeev equation
(all partial waves included). For illustrative purposes
we display the adiabatic potential 3VO(r)+ Ui(r) occur-
ring in Eq. (7.3) for three of the nucleon-nucleon poten-
tials we employed in our calculations in Fig. 1. It is seen
that the degree of repulsiveness of the nucleon-nucleon
potentials is reflected in the effective potential.

Our results for H are in all cases in agreement with
those obtained with the most accurate methods. The
diff'erences between the upper and lower bound range
from 0.25 MeV for the softest potentials to 0.7 MeV for

As a first step and to establish the accuracy of the solu-
tions obtained, we used our equations to solve the few-

body ground state problem. For comparison purposes we
choose the two-body local central potentials, which have
already been treated to a high accuracy by variational
methods like the amalgamation of two-body correlations
into the multiple scattering process (ATMS), correlated
harmonic oscillator expansion, hyperspherical expansion,
Monte Carlo and Green's function Monte Carlo methods,
and also with the exact solutions obtained by means of
the Faddeev- Yakubovsky equation.

The potentials used for comparison purposes are: (i)
the Volkov' and Gogny-Pires-de Tourreil' super-soft
core potentials; (ii) the Eikemeier-Hackenbroich poten-
tial' which reproduces the S-wave phase shifts without a
tensor force component; (iii) the Afnan-Tang S3 poten-
tial' which exhibits a rather strong repulsive core; (iv)
and finally the Ma16iet-Tjon V in the three versions used

by Erens et al. , Payne et al. ,
' and Zabolitzky.

We solved Eq. (4.28) by using the extreme and uncou-
pled adiabatic approximations, which allow us to
separate the variables and interpolate to obtain the bind-

500—

I

—50

—loo

FIG. 1. The effective potential V,ff(r) =3VO(r)+ Uo(r) in Fq.
(7.3) for A =3 and the potentials: Volkov (Ref. 16) ( ———),
S3 (Ref. 19) ( —~ —- —.), and MTV (Ref. 22) ( ).
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TABLE I. Three-nucleon binding energies in the EAA and UAA to Eq. (4.28) and the interpolated
value (I) according to Eq. (10.1) compared to results in the literature.

Potential

Volkov"
GPDT'
EH(S4)
AT(S3)~
MTV Erens"
MTV Friar'
MTV Zabolj

8.67
3.89
7.372
7.235
8.07
8.03
8.570

8.42
3.62
7.013
6.557
7.70
7.65
8.171

EAA UAA

8.47
3.67
7.08
6.69
7.78
7.73
8.25

HH'

8.465

7.05
6.695
7.783

ETBMb

8.460

7.04
6.677
7.778

6.696'

7 736"
8.253'

Others

8.2620 01'"
' Reference 23.

Reference 24.
' Reference 25.

Reference 16.
' Reference 17.
' Reference 18.

g Reference 19.
"Reference 20.
' Reference 21.
' Reference 22.
"Reference 31.

the strongly repulsive core Ma16iet-Tjon potentials. Our
interpolated energies are expected to be accurate within
at least 0.03 MeV. %'e see that the interpolation formula
gives a binding energy in good agreement with those ob-
tained with the other methods.

The equation that we solved Eq. (4.28), differs from the
usual form of the Faddeev equation by the incorporation
of the hypercentral part Vo(r) of the interaction which al-

ready takes the major part of the effect of the interaction
into account. This hypercentral potential appears in the
diagonal part of the potentia1 matrix when the
Schrodinger equation is solved by a hyperspherical ex-
pansion of the wave function, but must be cancelled out
on both sides of Eq. (4.19) for the exact solution of the
Faddeev equation, when an S-state projected potential is
used. The right-hand side of Eq. (4.28), which contains
the residual interaction, generates the two-body correla-
tions. It contributes a binding energy which ranges from
about 1 MeV for the softest potentials (e.g., Volkov) to
nearly the whole binding energy for the hardest core in-
teractions (e.g. , S3 and Malfliet-Tjon V). It is gratifying
that using a single integrodifferential equation we obtain
the same binding energy as calculated by Friar and colla-
borators by solving the Faddeev equation for the S arn-
plitude, using its full partial wave decomposition. This is
a consequence of the inclusion of Vo(r), the hypercentral

potential, in Eq. (4.28).
The results for the He ground state without the

Coulomb interaction are given in Table II. It is seen that
the difference between the upper and the lower bounds is
two to three times larger than for 3H (although it is
smaller relative to the binding energy). The interpolated
binding energy is in agreement with the variational re-
sults for soft core potentials but differs significantly
(around 0.4-0.5 MeV) for strong core potentials. One
possibility is that this difference might be a consequence
of the particular structure of our wave functions which
are obtained as a sum of two-body amplitudes, while in
the variational wave functions the correlations are de-
scribed by Jastrow factors. Obviously for a three-body
bound S state such variationa1 wave functions are
different from the exact Faddeev wave function. The
effective potentials 6Vo(r)+ Uz(r) are displayed in Fig. 2
for the S3 and MalAiet-Tjon V potentials, and show much
more repulsion followed by a deeper and longer ranged
attraction than in the three-body case.

Finally we investigated the asymptotic behavior of the
total effective potential for three bodies,

15k 1
VT(r)= —+3Vo(r)+Uo(r) . (10.2)

4 mr'
Two different potentials have been employed for this pur-

TABLE II. Four-nucleon binding energies in the EAA and UAA to Eq. (4.28) and the interpolated
value (I) according to Eq. (10.1) compared to results in the literature.

Potential EAA UAA HH' ETBM ATMS GFMC

Volkov
GPDT
EH(S4)
AT(S3)
MTVb
MTV'
MTV

' Reference 26.
Reference 20.

' Reference 21.
Reference 22.

'Reference 31.

30.73
18.85
29.33
28.09
29.97
29.91
31.22

30.32
18.19
28.55
26.63
29.28
29.20
30.48

30.40
18.32
28.71
26.92
29.42
29.34
30.63

30.40
18.29
27.9
26.0

30.32

28.18
26.47

31.36' 31.3+0.2
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FIG. 2. The effective potential V,z(r) =6Vo(r)+ Uo(r) in Eq.
(7.3) for A =4 and the potentials: S3 (Ref. 19) ( ——.—) and
MTV (Ref. 22) ( ).

pose: the Volkov potential with two-body binding energy
E2 ——O. S6 MeV, and the modified Gaussian potential of
Baker et al. '

—{,dr)Vs(r)= Voe (10.3)

IO 20 30 40 50

0,56

FIG. 3. The asymptotic behavior of the total effective poten-
tial of Eq. (10.3) VT(r)= —'A /(mr )+3VO(r)+ Uo(r) in three-
body scattering: Volkov (Ref. 16) ( ———) and Baker (Ref. 10)
( ).

with Vo ———66.327 MeV, d =0.640 41 fm ', and

E2 ——2.225 MeV. The results are shown in Fig. 3. It is
seen that the asymptotic value is reached for distances of
the order of 35 fm in both cases.

XI. CONCLUSION

In this paper we have presented for the first time the
full derivation of a two-variable integrodifferential equa-
tion of the Faddeev type describing a system of A identi-
cal bosons interacting by means of central two-body
forces in S states, when only two-body correlations are
taken into account. For a three-boson system interacting
by means of S-state projected potentials this equation can
be transformed into the Faddeev equation and is there-
fore exact. We have shown here that for A )4 this equa-
tion does indeed take the two-body correlations into ac-
count exactly, while neglecting all higher order correla-
tions. For bosons and S states the kernel has been ob-
tained in analytical form and its full derivation has also
been given here for the first time.

The two-body correlations have previously been de-
scribed by means of an infinite system of one variable
coupled differential equations. However, if these equa-
tions are truncated they do not converge rapidly enough
for potentials with strong repulsive cores. Their transfor-
mation to a single two-variable integrodifferential equa-
tion with a Faddeev-like structure was performed to
overcome this difficulty.

In this way it is demonstrated that the many-boson
problem for central potentials can be described exactly by
such an equation if only two-body correlations are taken
into account. Hence the inclusion of the most important
and in most cases dominant correlations, the two-body
correlations, can be achieved by solving an equation
which is very similar to and not much more diScult to
solve than the three-body Faddeev integrodifferential
equation in configuration space.

Since the most important change in the kernel of the
integrodifferential equation occurs when we go from
three to four-boson systems (which is related to the fact
that we can have disconnected pairs for A )4 but not for
A =3), it is clear that one should first test the validity of
our assumption that all correlations higher than two-
body correlations can be neglected in the four-body sys-
tem. In this case accurate calculations by means of varia-
tional methods, like the ATMS, correlated harmonic os-
cillations expansion, hyperspherical expansion, Monte
Carlo and Green's function Monte Carlo (GFMC)
methods and the Faddeev-Yakubovsky equations, are
available for comparison purposes.

In the present paper, however, we solved the two-
variable integrodifferential equation in a much simpler
way by means of adiabatic approximations, the extreme
adiabatic approximation providing a lower bound and the
uncoupled adiabatic approximation an upper bound. In
this way only two one variable equations have to be
solved. Our calculations showed that these bounds are in
general quite close, their difference hE varying from 0.2
to 0.7 MeV for three-body systems and from 0.4 to 1.3
MeV for four-body systems. In general the harder the
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potential the larger is AE.
The form of the integrodifferential equation we em-

ployed in our three-body calculations differs from the
usual Faddeev equation by the explicit inclusion of the
hypercentral part of the interaction, which must be can-
celled on both sides of the equation to obtain the exact
Faddeev equation for S-state projected potentials. This
has the advantage that, while still using a single equation
we go beyond S-state projected potentials in the three-

body problem and obtain the same binding energy as
Friar using the full Faddeev equation for the MalAiet-

Tjon potential. In fact all our three-body energies are in

good agreement with the results of other groups using
variational, GFMC, hyperspherical and Faddeev
methods. Consequently, any discrepancies between our
four-body calculations and those using other methods
would most likely be due to the approximation involved

in our four-body equation. The discrepancies between
our four-body binding energies and those obtained by
other methods are at most of the order of 0.5 MeV, even

for the hardest potential, indicating that the neglect of
three- and more-body correlations in our integrodif-
ferential equation is justified. We therefore, expect that
the integrodifferential equation [Eq. (4.28)] should be a
good approximation for the ground state of a system of
more than four bosons when the density is low enough
that N-body correlations (N )2) do not generate a
significant contribution to the binding energy. An advan-

tage of our integrodifferential equation approach is that,
while most variational wave functions are of the form of
a sum of products with Jastrow factors, our wave func-
tions are Faddeev-like and exact for A =3. We have also
shown how three-body forces can be incorporated in the
integrodifferential equation approach.

Finally, we have shown that the adiabatic method is
particularly suitable for a simple treatment of three-body
scattering in nuclear physics. In the simplest case of pure
Wigner forces the scattering process can be described by
means of the coupled adiabatic approximation. We
demonstrated that in this approximation the eigenpoten-
tial corresponding to a three-body bound state tends to

I

the energy eigenvalue of the two-body bound state for the
simple cases of the Volkov and the modified Baker poten-
tials at rather large distances of the order of r =35 fm in
the hyperradius. In addition the formalism for the treat-
ment of breakup with spin-independent central forces has
been given here in the coupled adiabatic approximation
leading to a set of three coupled equations in the case
that only one two-body bound state exists.

We can therefore conclude that our two variable
integrodifferential approach to the many-body problem,
has been shown to be accurate not only in three-body, but
also in four-body bound systems notwithstanding the om-
ission of correlations higher than two-body ones in the
latter case. Since this approach does not lead to a rapid
increase in complexity with increasing number of parti-
cles, unlike other methods applied to few-body systems, it
appears to be a very promising method to apply to
many-body bound systems, as long as the two-body corre-
lations remain dominant over the higher order ones as for
A =4. Although we have only used the adiabatic ap-
proximation in the present calculations, which was quite
adequate for our purposes and in fact was shown to
represent a great simplification of the usual methods of
solution of the Faddeev equation, the new equation can of
course also be solved by means of the three-body methods
developed for two variable integrodifferential equation to
obtain higher accuracy where needed.

APPENDIX A

1. Derivation of the projection function

To obtain the projection function f(0)(z,z') we substi-
tute Gegenbauer polynomials for Jacobi polynomials in

Eq. (4.27) by using

Pk —1/2, 1/2(2 2
1 )E

r(z+ 2) r(X)
r(-,') 1(&&+X+1) ' +'

to obtain

f(o)(z,z', cos25)dz'= —(1 —x' )
' x'dx'

x
I (n +2k, )

1 (A, + —,')
cos5 cosP I (A, )

&~r(u, )r(~) C„(cosg)C„(cos5) C„(x')/h„,
I (A, +-'

2

(A2)

where z =cos2$, x =cosP, A, =a+ —, =D/2 —2, —1 &x' & 1 and z'=2x' —1 while h„ is the normalization constant of

C„(x). We note that as (1—x )
'/ is the weight function associated with C„(x') and P(z', r) is an even function of

x' any C„(x') in Eq. (A2) with even n will not contribute to the integral in Eq. (4.26) for —1 &x'& 1. Therefore, the

sum over n can be extended to all integer values of n.
Equation (A2) can be simplified by means of the addition theorem for Gegenbauer polynomials. The expression in

brackets can be written as the integral

C„'cosO sine 2~ id%,
0

where cos8=cosg cos5+ sing sin5 cosy', leading to the expression:

r(~+,
f(0)(z,z', cos25)dz'= (1—x' )

'/ cos5cosgx'dx' f g C (cosO)C (x')/h (sing) 'dy .v'~ I (k) n
n

(A3)
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After substitution of Eq. (A3) into Eq. (4.26) we exchange the order of integration of x' and y and note that we can em-
ploy the relation

(1—x' )
' g C„(cos8)C„(x')/h„=5(x' —cos8) (A4)

to obtain

I (A, + —,')
f f(o)(z, z', cos25)P(z', r)dz'= f P(2cos 8—l, r) cos8(sing&) " 'dq& .

—1 v'~ I"( 1, ) cos5 cosP o
(A5)

1
I (A, + —,')f(ol(z, z', cos25)P (z', r)dz '=

—1
I" A, cos cos5 sin5 sin j f [(u a)(b——u)] 'P(2u —l, r)u du,

a

This can be further simplified if we substitute the variable u =cose for cp. Then
2A, —1

(A6)

where cosg=&(1+z)l2, sing=&(1 —z)/2, A, =D/2 —2, and 5=2m/3, or m l3 for connected pairs. The limits a and b
are given by a =cos(/+5) and b =cos(P —5). For disconnected pairs we have 5=m. /2 and cosm. /2=0. Therefore, we
have to take the limit of Eq. (A6) for 5~m/2 One .finds

2 r x+-,'
f f(ol(z, z', —1)P(z', r)dz'= — (1 z)'—~ "f [—(z+z')] &I+z'P(z', r)dz' .=

e~ r(x —1)
(A7)

Consequently, the projection function of Eq. (4.28) is
given analytically by Eq. (A6) with 5=m. /3 (connected
pairs) and Eq. (A7) when 5=m. /2 (disconnected pairs}.

z —z, „M,",'+(z, z)M;—jz=
J J —r

APPENDIX B
r =2, 3, . . . , N, j =i —N+r, i —N+r+1, . . . , i .

1. Numerical treatment

%e now give details of the numerical methods em-
ployed first for the solution of the integrodifferential
equation, Eq. (7.2), in order to obtain the eigenpotential
U&(r}, secondly, for the treatment of the competing zeros
and apparent singularities appearing in the equation, and
thirdly for the mapping r,/r&(1+z)/2, which for z ~—1

give rise to numerical problems for potentials with 1/rj
behavior.

A natural method to solve the integrodifferential equa-
tion is to expand the eigenfunctions P&(z, r) in terms of
some interpolating polynomials, thereby reducing the
equation to a standard eigenvalue problem. The B splines
of order N have been chosen for this purpose. These are
nonoscillatory piecewise polynomials with continuous
first and second derivatives, up to (N —2). They are
known to provide a stable and accurate interpolation.
For this purpose, the interval [—1, + 1] is divided into M
knots (z, ,z2, . . . , zl ) with 2N additional knots (z z+ &,

z —x+z zo), and (zM+i, zM+2, zM+x) outside this inter-
val. To define and evaluate the B splines, we follow the
conventions of Cox and employ the following algo-
rithm:

1
Zj 1 (Z (Zjz —z

The B; (z) is then simply given by

B; (z)=M,+(z) . (B3)

[M,"]'=
ZJ Zj

(z —zj „)(MJ,' )'+ (zj. —z)(M" ')'
+ 7

ZJ ZJ Pt

(B4)

with [M ]=0. The second derivatives can be obtained in
similar fashion starting from [M"]"=0. All three algo-
rithms are very stable numerically.

The reduction of the integrodifferential equation to a
standard eigenvalue problem can be achieved by using ei-
ther the collocation method as discussed in Ref. 30 or the
Galerkin method. The former is in terms of computing
time, more efficient than the latter; however it is sensitive
to the choice and density of the knots especially in our
case, where we have competing zeros and apparent singu-
larities. Thus the choice of the mesh points is always a
problem, especially for the Malfliet-Tjon potential. In
contrast, the Galerkin method is not as sensitive to the
way the points are chosen. In this method one expands

Apart from the B splines one requires also their first and
second derivatives. These are discussed in Ref. 29. How-
ever, they can easily be obtained by differentiating the
above algorithm. Thus, for example,

M" 'M"

0, otherwise,

j =i —N+1, i —N+2, . . . , i . (Bl)

M+N
Pq(z, r) = g a„(r)B„(z),

n=1
(B5)

Then compute
and the expansion coefficients a„(r) are evaluated by pro-
jecting the whole equation on B (z), i.e., by writing
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M+NI 8 (z}Pt(z;r}dz= g a„(r)I 8 (z)8„ (z)dz ,
=1 1

XB„(z')dz' ~ —8„(—1) .
e-0 8

(B8)

or
M+%

z P zr dz= a„'r "g zg~zdz,
n=1

where the integration intervals are changed from
( —1, + 1) to (a, b) and (c,d) in which the 8 and 8 8„
are nonzero, respectively. Obviously, the method is not
as sensitive to the way the mesh points are chosen as the
collocation method.

The second problem we were concerned with was the
handling of the critical integrals of the form

f „+,f ~, f ~, and f +&, with integrands which have

limits of the form 0/0. Fortunate1y in such cases we ob-
tain finite results. Consider, for example, the integral,
(which appears in the case A =4)

I = z»z J &1+z'[—(z+z')] 8„(z')dz' .

(B7)
For A =4 we have k= —,'. Thus, for z =1—e we obtain

I=—
2

1+z' —z+z' '"
—1

In practice we found that the odd 8 splines gave better
results than the even ones, while N =7 appears to be the
optimum choice. Convergence with respect to number of
knots is obtained with about 15 knots, after which any
change in number, density and distribution gives results
within +0.001 MeV for the soft core and within +0.005
MeV for the hard-core potentials when A =3. For the
UAA the corresponding accuracies are +0.005 and
+0.01 MeV, due to inaccuracies in the derivative. In
general, however, fewer mesh points required more in-
tegration points for convergence. All integrals can be
calculated using Gauss-Legendre quadratures, where 30
integration points and 15 mesh points are suScient to ob-
tain results within +0.001 MeV for the soft core poten-
tials, while for the Malfliet-Tjon potential, these numbers
are increased to 40 and 20, respectively.

For A =4 we had to use the Gauss-Jacobi quadratures,
however. This is a consequence of the appearance in the
denominator of terms of the form (1—z) ( I+z)~. In this
case we multiply the whole equation by these factors and
then use the appropriate Gauss-Jacobi quadratures. The
accuracy of the results obtained with 40 integration
points and 20 mesh points in the case of the UAA is then
better than +0.01 MeV for soft-core potentials and
+0.02 MeV for the hard ones and better than +0.01
MeV for the EAA in all cases.
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