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In deformed Hartree-Fock calculations with Skyrme interactions we observe a near degeneracy of
the mean energies of many-particle—many-hole deformed intrinsic states. For example, in *°Ca the
np-nh states with n =2, 3, 4, 5, 6, 7, and 8 are nearly degenerate. The deformation parameter S in-
creases steadily from n =2 to 8. The intrinsic state energy of the 8p-8h state is lower than that of
the 4p-4h state for the interactions used here—SK III, SK IV, and SK VI. The calculations are also
performed with the Skyrme III interaction for the even-even calcium and titanium isotopes. For
“Ti there is a near degeneracy of 6p-2h and 8p-4h. For the N > Z isotopes above, the two protons
excitation lies lowest. Whereas the intrinsic state energies are much higher than the observed ener-
gies of the lowest-lying deformed states, the results when projection of J =07 states is carried out
and pairing effects are taken into account, are encouraging.

INTRODUCTION

Low-lying highly deformed many-particle—many-hole
states are a vital ingredient of the nucleus spectroscopy of
light-medium mass nuclei, and their role in the spectros-
copy of heavy nuclei is just beginning to be appreciated.

We feel that a reexamination of this problem is ap-
propriate at this time, despite the fact that there have
been many theoretical and experimental contributions to
this subject for several decades. We wish to see if we can
rigorously calculate the energies of these deformed states
starting with a model which was initially devised for oth-
er purpose—mainly to fit ground-state properties of all
nuclei in the periodic table. This is the Skyrme-Hartree-
Fock model,' originally applied by Vautherin and Brink?
to spherical nuclei, but then found to be easily extended
to fit ground-state bands of deformed nuclei as well.

Early contributions to our understanding of the de-
formed states were made by Morinaga,® Talmi and
Unna,* Engeland,® Brown and Green,®” and Gerace and
Green.? It was shown, for example, that the first excited
0% states in '%0 and *°Ca, these being J =07, T=0 states
at 6.05 and 3.05 MeV, respectively, were dominantly 4p-
4h highly deformed states, albeit with some admixture of
Op-Oh and 2p-2h. The arguments put forth to support the
picture of a low-lying deformed state involved the use of
Nilsson diagrams.’

In “Ca Gerace and Green'® went even further. They
suggested that an 8p-8h configuration, even more de-
formed than the 4p-4h, was necessary to explain the pres-
ence at 5.21 MeV of the second 0" state. A few years
later, in a calculation which used the Strutinsky
method,!! Metag et al.!? plotted the energy as a function
of deformation and found that over and above the spheri-
cal minimum there was a second pronounced prolate
minimum. They found that the deformation at this
minimum was more in accord with an 8p-8h
configuration rather than 4p-4h.

(0]

Extensive experimental work looking for 8p-8h states
was carried out by Middelton et al.'> via the
328(12C,a)®Ca reaction. Their results, broadly speaking,
supported the picture of Gerace and Green.! In later
publications, Fortune et al.'*!> assigned as dominant
configurations of the J =0" states: 0 MeV, Op-Oh; 3.35
MeV, 4p-4h; 5.21 MeV, 8p-8h; 7.30 MeV, 2p-2h; 8.28
MeV, also 2p-2h; and 8.42 MeV, 2p-2h or 4p-4h.

Getting back to theoretical contributions, the work on
np-1h configurations by Bansal and French!® was general-
ized to many-particle—many-hole states by Zamick!” re-
sulting in simple predictions for the energies of these
states. Arima, Horiuchi, and Sebe!® invoked a weak cou-
pling model to predict the energies of the deformed
states. Zuker, Buck, and McGrory'® explained deformed
states in '%0 in terms of four nucleons relative to a '>C
core. Ellis and Engeland®® used SU(3) wave functions for
the particles and for the holes.

Hartree-Fock calculations of the energies of the highly
deformed states in '®0 were first performed by Ripka and
Bassichis?! and by Kelson.?> Stephenson and Banerjee?
and Das Gupta and de Takacsy®* made a case for a triaxi-
al solution for the 4p-4h state in '°0. Hartree-Fock cal-
culations with interactions constrained to give correct
ground-state properties of nuclei were performed by
Boeker.?

In more recent times Liu and Zamick?® showed that
one could get low-lying “4p-4h” states in “He and '°O
with Skyrme-like interactions. Auverlot er al.?’ also
showed that in 'O the 4p-4h configuration came low.
They made the important point that because of the spin-
orbit interaction the lowest solution for 4p-4h had axial
symmetry, in contrast to previous calculations which
yielded a triaxial solution.

Liu, Jagaman, and Zamick?® extended the work in “He
to 2p-2h and found a surprising near degeneracy of the
4p-4h and various 2p-2h configurations. This near degen-
eracy provides an important motivation for the present
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work. We wish to examine here whether this is an ac-
cident, peculiar only to *He or if it is a more widespread
phenomenon. It should be added that in a completely
different calculation using the symplectic shell model,
Carvalho, Vassanji, and Rowe?’ also noted a near degen-
eracy of 4p-4h and 2p-2h configurations in *He (in their
notation (2)[22] and (4)[4]).

POSITIVE AND NEGATIVE PARITY
INTRINSIC STATES TREATED TOGETHER

In this section we consider the closed shell nuclei *He,
160, and “Ca. We perform constrained deformed
Hartree-Fock calculations for the lowest energies of np-
nh states, using a program originally written by Vauthe-
rin,*® and modified by Brack,’! and Sprung and Val-
lieres.’? For each case we list the intrinsic state energies
and the deformation parameter 3. The latter is defined as

0.168°+B=p, ,
(or B=[V/(140.6453,)—1]/0.32),

where f3,, the quantity actually listed in the code is given
by

Bo=V(1/5)Qo(m)/[ZR? (7],

where Q () is the intrinsic quadrupole moment of the
protons and R () is the root-mean-square radius of
the protons.

We will consider both even numbers of holes (even n)
corresponding to positive parity excitations, and odd
numbers of holes corresponding to negative parity excita-
tions. The reason for considering these states together
will become clear from the results which will soon be
shown.

We perform calculations with the Skyrme interactions
SK III, SK 1V, and SK VI. This enables us to carry out
our study with a wide range of effective masses:
m*/m=0.95, 0.76, and 0.47 for SK VI, SKIII, and
SK 1V, respectively. The Skyrme parameters are given in
a work by Beiner et al.®

For the case where there are an odd number of nu-
cleons, be they neutrons or protons, there are two degen-

erate states for the odd nucleon. These are | k) and the
time-reversed partner |k). The program used here
maintains axial symmetry at all times. This is achieved
by forcing the occupancy of each of the above two states
to be 0.5.

We define the intrinsic state ¢, as the single Slater
determinant which emerges from our fixed configuration
Hartree-Fock calculation. This state may be regarded as
a wave packet formed by admixing several states, each
with a different total angular momentum. The intrinsic
state energy is equal to (d,H¢,) where H is the Skyrme
Hamiltonian. For *He, '°0, and *°Ca the results are
given in Tables I, II, and III, respectively.

For n=2 we include two types of excitations, one in
which a neutron and a proton are excited (a), and the oth-
er two protons excited (b). (To form states of good iso-
spin, one must take linear combinations of these two
configurations as well as a state in which two neutrons
are excited.) For n >3 we restricted ourselves to
configurations in which the numbers of excited protons
and neutrons are as close to each other as possible. Thus,
for n=3 we excite two protons and a neutron, for n=5
three protons and two neutrons, and for n=7 four pro-
tons and three neutrons.

The most striking observation to be made from exam-
ining the Tables I, II, and III is that there is a near de-
generacy of several np-nh states, with no distinction as to
whether #n is even or odd. For example, in 40Ca when the
SK III interaction is used, the np-rh states for n =2—8
have energies of —331.8 [case (a)], —330.8 [case (b)],
—329.0, —329.2, —327.8, —327.8, —328.2, and —329.9
MeV, respectively. The ground state (n=0) is at —341.3
MeV and the 1p-1h excitation at —335.8 MeV.

Thus, it costs about 5.5 MeV to excite the 1p-1h state
and an additional 4.0 MeV to form the 2p-2h state. But
from then on, it seems to cost no energy to excite addi-
tional particle-hole states up to n=28 (beyond n=38 the
degeneracy gets badly broken). We seem to have formed
a partial condensate. Meanwhile, the deformation steadi-
ly increases as n increases. From n=0 to 8 for SK III the
values of 3 are 0, 0.05, 0.13, 0.22, 0.32, 0.38, 0.44, 0.50,
and 0.55, respectively. Beyond n=38, though, the ener-
gies of the np-nh states increase rapidly.

TABLE I. Intrinsic state energies and deformation parameters of np-nh deformed states in *He, us-
ing the deformed Hartree-Fock approach, with various Skyrme interactions and nine major oscillator

shells included.
SK VI SK III SK IV

m*/m 0.95 0.76 0.47

Configuration E (MeV) B E (MeV) B E (MeV) B
Op-Oh —26.3 0 —26.5 0 —26.8 0
1p-1h —14.1 0.16 —12.3 0.20 —8.99 0.28
2p-2h?* —4.12 0.58 —2.04 0.62 1.38 0.67
2p-2h® —1.57 0.96 —0.31 0.95 1.89 0.87
3p-3h —1.21 1.07 —0.20 1.08 1.79 1.05
4p-4h —1.22 1.10 —0.19 1.10 1.89 1.07

Srv—m vl
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TABLE II. Intrinsic state energies and deformation parameters of np-nh deformed states in '°O for
various Skyrme interactions and 11 major oscillator shells included.

SK VI SK III SK IV
Configuration E (MeV) B E (MeV) B E (MeV) B

Op-Oh —127.6 0 —128.0 0 —128.4 0

1p-1h —121.5 0.07 —1204 0.08 —117.5 0.10
2p-2h® —116.5 0.27 —114.8 0.28 —109.5 0.31
2p-2hb —115.1 0.22 —112.9 0.24 —108.2 0.30
3p-3h —114.2 0.44 —111.4 0.46 —106.0 0.49
4p-4h —115.1 0.60 —112.5 0.63 —108.5 0.65
6p-6h —97.0 0.71 —96.3 0.73 —89.8 0.76
8p-8h —88.6 0.81 —85.6 0.82 —78.6 0.82

Aryv—m vl

b2,

This work shows that, to properly describe deformed
states, one has to take all the nearly degenerate
configurations into account on an equal footing. Thus, to
properly describe the ground and low-lying positive pari-
ty excitations of “°Ca, one should include Op-Oh, 2p-2h,
4p-4h, 6p-6h, and 8p-8h in a matrix diagonalization, and
for negative parity states the 1p-lh, 3p-3h, 5p-5h, and
7p-7h excitations. There is no justification in leaving any
of these out.

The admixture of all these states may provide an addi-
tional mechanism for lowering the energy of the first ex-
cited Ot state. There has always been a problem of get-
ting this state low enough in a convincing fashion.

DEPENDENCE OF THE INTRINSIC STATE
ENERGIES ON EFFECTIVE MASS

We note a strong dependence of the excitation energies
of the intrinsic deformed states on effective mass. For
SK VI with m*/m=0.95, the excitation energy of the
4p-4h intrinsic state in “Ca is equal to 9.4 MeV; for
SK IIT with m*/m=0.76, the value is 12.1 MeV and for
SK IV with m*/m=0.47, the value is 17.1 MeV. Recall
that the single-particle energy differences are inversely

proportional to the effective mass, for example in the os-
cillator model the energy difference #iw gets changed to
fiw/(m* /m), we now see that the 4p-4h excitation ener-
gies also increase with decreasing effective mass, just like
the single-particle energies.

The effective mass in the Skyrme interaction’? involves
a certain combination of the velocity dependent terms ¢,
and #,:

(m/m*)—1=(%)(3t,+5t,)p(2m /#) .

There may also be a dependence on the other combina-
tion of parameters like the surface term proportional to
(9¢, —5t,) | .** This will be studied at a later date.

We next consider the 8p-8h excitation energies. For
SK VI, SKIII, and SK IV these are, respectively, 8.0,
11.4, and 15.3 MeV. These energies are even lower than
the 4p-4h energies.

The phenomenology of deformed states due to Brown
and Green®’ and Gerace and Green®'® would seem to in-
dicate that the 4p-4h intrinsic state energy is lower than
that of 8p-8h, and this could present a problem for the
Skyrme interactions. This requires further study.

TABLE III. Intrinsic state energies and deformation parameters of np-nh deformed states in “°Ca for
various Skyrme interactions and 11 major oscillator shells included.

SK VI SK III SK 1V
Configuration E (MeV) B E (MeV) B E (MeV) B
Op-Oh —339.8 0 —341.3 0 —341.2 0
1p-1h —335.8 0.05 —335.8 0.05 —333.1 0.05
2p-2h? —3329 0.12 —331.8 0.13 —326.9 0.13
2p-2hb —331.8 0.11 —330.8 0.12 —326.2 0.13
3p-3h —330.2 0.21 —329.0 0.22 —323.3 0.23
4p-4h —3304 0.31 —329.2 0.32 —324.1 0.34
5p-5h —329.0 0.37 —327.8 0.38 —321.9 0.39
6p-6h —329.7 0.43 —327.8 0.44 —321.5 0.45
7p-7Th —329.6 0.49 —328.2 0.50 —322.8 0.51
8p-8h —331.8 0.54 —329.9 0.55 —3259 0.56
12p-12h —301.1 0.50 —290.6 0.51 —267.7 0.52
16p-16h —252.2 0.44 —235.3 0.46 —202.0 0.48

Aryv—a v
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SPECIAL COMMENTS ON “He

Considering *He on the same footing as '®0 and *“’Ca
may appear questionable to many. After all, it is a very
light nucleus. Whereas in “*Ca a 4p-4h excitation may be
regarded as the excitation of an «a particle, in “He it obvi-
ously consists of breaking up an a particle. Furthermore,
the 4p-4h excitation in “He, if exists, is near or in the con-
tinuum for four nucleon breakup.

It is not our intent here to defend the calculation in
“He, but rather, to point out that it was in this nucleus
that the near degeneracy of the various np-nh
configuration was first noticed by Liu, Zamick, and Jaqa-
man.”® The behavior in this nucleus gave the present au-
thors the clue that the calculated near degeneracy of vari-
ous np-nh excitations might be a more widespread
phenomenon as indeed it is. It occurs in '°0 and “’Ca.

In Table I it should be pointed out that the /=0, T=0
1p-1h state is a spurious state, and so will not appear in
the physical spectrum.

DEFORMED STATES IN CALCIUM
AND TITANIUM ISOTOPES

In this section we will consider deformed states in oth-
er calcium isotopes 2Ca, ¥Ca, *Ca, and **Ca, as well as
some titanium isotopes **Ti, “°Ti, **Ti, and °Ti. We shall
only use SK III in this section and consider only positive
parity states. One can expect the similar results for other
Skyrme interactions.

The results for the calcium isotopes are given in Table
IV. We can follow the trend with increasing neutron
numbers. We will first focus on the lowest-energy excita-
tion which in all cases consists of two protons being excit-
ed from the “sd” to the *‘fp” shell. The energies of these
excitations for 4 =42, 44, 46, and 48 are 5.8, 3.9, 5.6, and
10.5 MeV, respectively. It should be added that in “°Ca
the energy of a two proton excitation is about 10 MeV.
For “2Ca, *Ca, and *®Ca the calculated excitation ener-
gies are quite low. There are known low-lying 0% excited
states in the calcium isotopes e.g., at 1.837 MeV in “*Ca,
at 1.883 MeV in *Ca, and at 2.42 MeV in **Ca. Allowing
for the fact that projection will lower the J=0 state ener-
gy relative to that of the intrinsic state, it is not unreason-
able to associate the first excited states of these nuclei
with the two proton excitation. The first excited 0% state
in ¥*Ca is at 4.28 MeV and this might be a dominantly
(fp)® configuration. If we look at more complicated
configurations in *Ca we note a near degeneracy of a 6p-
4h and 8p-6h state. The intrinsic state excitation energies
are 7.9 and 7.7 MeV, respectively. They are reasonably
close to the 4p-2h state so that all three of these states
could be mixed strongly via a residual interaction.

In *Ca the 8p-4h state 7*v*—7~*is 7.7 MeV above
the ground state, and then there are two nearly degen-
erate states, another 8p-4h state 7v*—7"%v"2 and a
10p-6h state 7*v®—7~*y~2 which are both near 11 MeV
above the ground state.

In Table V the results are presented for the titanium
isotopes. For *Ti we have the interesting result of a near
degeneracy of the first excited state with the 6p-2h and
8p-4h configurations which have intrinsic state energies
of 6.0 and 5.6 MeV, respectively. In more detail the

TABLE IV. Intrinsic state energies and deformation parame-
ters of excited states in the calcium isotopes with the SK III in-
teraction and 11 major oscillator shells included.

Nucleus Configuration E (MeV) B
42Ca v? (ground) —359.7 0.05
-2 —353.9 0.24
vty 2 —351.8 0.36
vt ? —352.0 0.48
*Ca v* (ground) —379.6 0.09
w2 —375.7 0.29
vt gt —371.9 0.40
Ve — 22 —368.7 0.34
7O — a2 —368.8 0.45
%Ca v® (ground) —398.6 0.08
Ve —7? —393.0 0.26
gt —389.0 0.38
BCa v# (ground) —417.1 0.01
TV — 2 —406.6 0.17

configurations are 7*v? — 7% and 7*v* —772v~2 The 05
state has been identified as an 8p-4h state by Fortune
et al.'*'® in agreement with a theoretical estimate of Ari-
ma, Gillet, and Ginocchio.*

In **Ti, **Ti, and °°Ti, however, the two proton excita-
tion is the lowest. The respective energies are 3.9, 4.5,
and 9.3 MeV. For these the results are somewhat similar
to the calcium isotopes. Experimentally the first excited
states in “Ti, *Ti, **Ti, and *°Ti are at 1.904, 2.611,
2.997, and 3.870 MeV.

In a complete shell model diagonalization of **Ti in the
(fp)* space the first excited state comes at about 7 MeV.
Thus, the 1.904 state is undoubtedly a deformed state.
However, as mentioned previously, we get a near degen-
eracy of the 6p-2h and 8p-4h intrinsic states.

Shell model diagonalizations in the (fp)” space give the
first excited state in *°Ti at 5.5 MeV and in **Ti at 4.34
MeV (in these calculations one particle was allowed to be
excited from the f,,, shell). These energies are some-
what higher than the observed energies but not so much
higher that we can say unequivocally that the states in

TABLE V. Intrinsic state energies and deformation parame-
ters of excited states in the titanium isotopes with the SK III in-
teraction and 11 major oscillator shells included.

Nucleus Configuration E (MeV) B
“Ti m*v? (ground) —370.8 0.17
v —r? —364.8 0.29
mht— 2y —365.2 0.41
Ti 7v* (ground) —395.1 0.21
vt —mr? —391.2 0.33
“BTi mv® (ground) —416.3 0.19
T — g2 —411.8 0.30
0T 7v® (ground) —436.1 0.09
v — 2 —426.8 0.22
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*Ti and **Ti are deformed states. However, it is quite
possible that they are, or at least that these states are
mixtures of (fp)" and deformed states, especially two pro-
ton excitation states.

Lawson®’ was the first one to suggest that the 05 state
at 3.00 MeV in ®*Ti was indeed a deformed state. The
calculations done here support this. However, this 0™
state decays strongly to the 2;" state with a B (E2) of 17
W.u. (Weisskof unit). [It should be remembered though
that B(E2) 0T —2% is five times bigger than the reverse
process B(E2) 2t —0*.] A pure (fp)'%sd);? state
could not decay to a pure (fp)? state. At this time the is-
sue is unresolved. Perhaps the deformed and (fp)?
configurations are strongly admixed via a residual in-
teraction.

PROJECTION AND PAIRING

We have thus far calculated the intrinsic state energies.
In order to make comparison with experiment it is neces-
sary to project out states of good angular momentum. It
is also well known that pairing correlations can be impor-
tant for the many-particle—many-hole states, even
though they are not expected to contribute significantly
to the closed shell ground state.

In this work we limit ourselves to J =07 states. In the
context of projected Hartree-Fock theory, Villars*® de-
rived a formula for the energy of the J=0 projected state:

E(0")=(goHdo) —(doHI 4o} /(J1) ,

where J? =J,f-+—Jy2 with J, =3j (i) and ¢, is the relevant
np-nh state, i.e., the state which is the Slater determinant
emerging from a Hartree-Fock calculation with the Ham-
iltonian H. The “Villars intrinsic state” @, is the solution
of the Hamiltonian of nonrotational motion H, which is
given by (see page 17 of Ref. 36) H=H —J?/(2I) with I
the moment of inertia. The state @, should not be con-
fused with the state that we call ¢,

In the projected Hartree-Fock approximation the mo-
ment of inertia in the Villars formalism>® is given by

7 /2 pyr = doHI o) | /I

For more information we refer the reader to a recent re-
view by Moya de Guerra.’
In this work however, we use the cranking model:

E;_o—E™=_#¥J%) /21, ,

where the moment of inertia I is calculated using the
cranking formula®®—4

Icr—:z;([ | (k |_]+ I 1>2/(Ek +El)(ukU[—u1Uk )2
+320 1 ke [y | 1) [P /E +E o, —upvy P

where 2’ corresponds to a sum over all Hartree-Fock or-
bitals with a J, component k >0 while 2’ runs only over
those orbits having k =1. In the above the E, are the
quasiparticle energies given by E, =[(e, —A)>+A?%]'?,
with €, the single-particle Hartree-Fock eigenvalues.
The quantity v} is the probability that a state is occupied:

vE=l—uf=1{1—(e,—A)/E,],

and where A, the pairing gap, is given by A=GZ,u,v,
with G the strength of the pairing interaction.

Note that we can obtain (J?) by using the preceding
expression without the energy denominators. By setting
u=1 for states above the Fermi surface and u=0 for
states below, we obtain the results for the projection
without pairing.

In Table VI we present the results for the excitations of
selected J =07 states, where the interaction SK III was
used to generate the intrinsic state. We see that both the
pairing correlations and the projection lower the energies
of the J =07 states and bring the results into remarkable
good agreement with experiment.

We see from this table that the stronger the deforma-
tion the more one gains in energy from projection. On
the other hand, as a compensation one gains less energy
from pairing. This is evident in comparing the results for
4p-4h and 8p-8h in “°Ca. For nonclosed shell nuclei, e.g.,
#.Ca, one must remember that not only the deformed
state but also the ground state gains binding energy from
pairing. Thus, in “’Ca the excitation energy is raised be-
cause of pairing.

TABLE VI. The excitation energies of selected / =0% many-particle—many-hole states, where the
SK III interaction is used, and where pairing correlations and projection have been taken into account

and 11 major oscillator shells are included.

Energy gain

Energy gain Final excitation

Nucleus Configuration pairing (MeV) projection (MeV) energy (MeV)

‘He 4p-4h -7.0 19.7
150 4p-4h —1.1 —55 8.9
“Ca 4p-4h -3.0 —338 53
8p-8h —-0.5 —43 6.6

42Ca 2p —4.0
4p-2h —3.5 -3.1 32

4Ca 4p —2.8
6p-2h —22 —23 2.2
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DEPENDENCE OF THE RESULTS
ON THE INPUT PARAMETERS

The axially symmetric deformed oscillator basis states
are well discussed by Vautherin.’** Some input parame-
ters in the program are N, B, and Q such that (N, + 1)
is equal to the number of major shells, and in terms of the
harmonic oscillator frequencies ®, and ®, and
wo=(wlw,)!”?, we have By=(mawy/#)!/2 and Q =0, /w,.
Note that B, is the reciprocal of the oscillator length pa-
rameter b,, and that as a crude approximation
Q=(1+p,) where B, is the deformation parameter de-
scribed in the text.

Obviously we will obtain better results, i.e., obtain
greater binding energies, if we increase the number of
major shells (Ny+ 1) and if we choose the input parame-
ters By and Q so as to produce as close as possible the
correct radius and quadrupole moment of the nucleus in
question. In order to determine Q we run the code twice
for each configuration. In the first run a guess was made
for Q, then the program yielded an output deformation
Bo- In the next run the value of Q was taken to be
(14 By).

In Table VII we show the dependence on N of the en-
ergy for the ground state, 4p-4h state, and 8p-8h state in
“0Ca. An important point to notice is that the difference
in energies of the np-nh and Op-Oh states converge faster
than the absolute energies. For example, in going from
(Ny+1)=11 to 13, the absolute change in energy of Op-
Oh state is —0.36 MeV; but the excitation energy of 4p-
4h state changes from 12.07 to 12.15 MeV and that of
8p-8h from 11.36 to 11.35 MeV.

In Table VIII we show the dependence on B,. Note
that for 4p-4h and 8p-8h the middle value B;=0.54
(fm~"'), which is used for Table III, yields a lower energy
than the two other values B;=0.50 and 0.60. For the
ground state the best result is obtained for the largest
value, B;=0.60. This is not surprising because Liu
et al.?®?® have previously shown using the deformed os-
cillator model that the value of the oscillator length pa-
rameter b =(b, b,b, )13 is larger for the 4p-4h state than
the corresponding length parameter b, for the ground
state.

CLOSING REMARKS

The most striking feature to emerge from our Skyrme-
Hartree-Fock studies of many-particle—many-hole de-
formed states is the occurrence of near degeneracies of
mean intrinsic state energies of many of these states even
though the deformations are different. In the future we

TABLE VII. The dependence of the np-nh state energies (in
MeV) of “Ca on the number of major shells (N, + 1) using the
SK III interaction with B, =0.54 (fm~').

State No=8 No=10 No=12

0p-Oh —340.53 —341.26 —341.60
4p-4h —327.51 —329.19 —329.45
8p-8h —327.92 —329.90 —330.25

TABLE VIII. The dependence of the np-nh state energies (in
MeV) of “’Ca on the oscillator parameter B, (in fm~') using the
SK III interaction and with 11 major shells.

State B,=0.50 B,=0.54 B,=0.60
0p-Oh —340.87 —341.26 —341.42
4p-4h —328.76 —329.19 —328.92
8p-8h —329.34 —329.90 —329.63

should try to study more deeply why these degeneracies
occur. Are they due to some dynamical symmetry of our
effective interaction which we have not get uncovered?

It should be pointed out that the degeneracy becomes
more exact as the calculations get better and better. For
example, if we approximate the Hartree-Fock wave func-
tions by deformed oscillator wave functions the near de-
generacy is not realized as well. This is because the more
deformed the state, and the more particle-holes that are
involved, the more major shells are required to adequate-
ly describe such states. Thus, for example, in the de-
formed oscillator model the 4p-4h and 8p-8h states in
“0Ca would occur at much higher energies than in better
calculations in which many major shells are involved. On
the other hand, for the 2p-2h state the difference would
not be so large.

Also, to get the degeneracy we must use the full
Skyrme interaction. For example, if we set the spin-orbit
interaction equal to zero the 8p-8h state in “’Ca would be
much higher than the 4p-4h state. The spin-orbit interac-
tion plays an important role, along with the other parts
of the Skyrme interaction, in establishing the degeneracy.

We have found that the odd parity excitations are
nearly degenerate with even ones. It appears that we
have a near condensate in the sense that for a certain
range of n in “°Ca we can add particle-hole excitations to
the system (these can perhaps be represented as bosons)
without any additional cost in energy, although the de-
formation of the system progressively increases.

We do not see why in a given diagonalization any of
the nearly degenerate states should be excluded. For ex-
ample, for even parity states in “°Ca one should include
Op-Oh, 2p-2h, 4p-4h, 6p-6h, and 8p-8h in a diagonaliza-
tion. Perhaps an excited state in which all these
configurations are strongly admixed is more aptly de-
scribed as a large amplitude vibration rather than a state
of fixed deformation.

We should also comment upon the fact that when pro-
jection and pairing are included the excitation energies of
the deformed states come reasonably low in energy so as
to be readily associated with low-lying excitations of the
physical spectrum. The results with SK III are certainly
encouraging.

In this work our objective was not to get an impressive
fit to experiment, but rather, to follow the logical conse-
quences of a predetermined model—Skyrme-Hartree-
Fock. Of course there is some phenomenology involved
in this model in the sense that the parameters are chosen
to fit ground-state properties such as binding energies and
radii. The parameters however, were never adjusted to fit
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the properties of many-particle—~many-hole states con-
sidered here. However, it is the mark of a good model or
theory to go beyond what was originally intended. In
that sense the Skyrme-Hartree-Fock model is a good
model.

In the near future we must focus more strongly on the
deviations between the theoretical results obtained here
and the combination of experiment and phenomenology
espoused by Fortune and his collaborators.”*~!> They
have developed a picture of deformed states which cer-
tainly hangs together very well, but which requires a sim-
ple direct interaction interpretation of multiparticle
transfer reactions. They identified several many-
particle—many-hole states and do not seem to require as
high a degree of degeneracy as we obtain in our calcula-
tion (although the basically 4p-4h and 8p-8h states in
“0Ca are not that far apart). From the theoretical point
of view we should consider whether nuclear correlations
beyond Hartree-Fock might be important. For example,
in the simpler problem of the low-lying 1p-1h octupole
states found in almost all nuclei, it is known that the in-
clusion of a phonon exchange between the particle and
the hole is a vital mechanism for preventing an octupole
collapse in nuclei.*! Perhaps this mechanism is also im-
portant when we have several particles and several holes.

It would also be of interest to make connections with re-
cent theoretical approaches such as those of Bertsch,
Barranco, and Broglia*? concerning how nuclei change
shape. It would also be useful to make a closer connec-
tion to the Strutinsky methods.!!

Let us close by noting that the calculations done here
lend strong support to the highly intuitive ideas of early
workers in this field, and indeed make their contributions
seem all the more remarkable. Our work suggests that
there may be more surprises ahead and that future con-
frontation between theory and experiment should prove
to be very stimulating.
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