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The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are
decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserv-
ing operator is found to be important. The model is applied to ' 'Er. Energy levels and electromag-
netic transitions are calculated. This model is shown to solve the problem of anharmonicity regard-
ing the excitation energy of the first K =4+ band relative to that of the first K =2+ one. E4 tran-
sitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear
model.

I. INTRODUCTION

The interacting-boson model with s and d bosons
(sd-IBM} has been successful in describing the low-lying
collective states in medium and heavy nuclei. In spite of
its wide range of success, it has recently turned out that
the mode1 needs other degrees of freedom. One of them
is the hexadecapole degree of freedom. ' One evidence
for the necessity of this degree of freedom is the systemat-
ic appearance of the K =3+ band in well-deformed nu-
clei. The excitation energy of this band is generally about
1.5 times that of the y band. The I( =3+ band is cer-
tainly beyond the description of the sd-IBM without
proton-neutron asymmetry. Another evidence concerns
the anharmonic appearance of the I(, =4&+ band relative
to the y band in ' Er, which was pointed out by Bohr
and Mottelson and other collaborators. ' They criticized
the IBM because the sd-IBM gives only harmonic solu-
tion to the K; =4+& band. '

In our recent letter we proposed the sdg-interacting
boson model (sdg-IBM) in order to solve the above
problems. It was found that most properties of ' Er in-
cluding the anharmonic property are well described
within this model. Here we present our method of calcu-
lating energy and transition matrix elements, which en-
ables one to apply the sdg-IBM to other nuclei. The
essential results were written in the letter, but detailed
discussion is given here. We try to make the paper as
self-contained as possible. In addition E4 excitations are
newly discussed.

In the present paper we show that phenomenologically
the problems described above can be solved in one con-
sistent model: the sdg-IBM. We diagonalize the
sdg-IBM Hamiltonian and calculate electromagnetic
transitions using one-body operators. In Sec. II our mod-
el and method of present calculation are described. In
Sec. III the effective interaction is determined in order to

reproduce the collective low-lying states of ' Er. It is
shown that the total number of free parameters is re-
duced to six in order to reproduce the anharmonicity.
The results are compared with experiment. In Sec. IV a
quadrupole operator is defined and calculated E2 transi-
tion rates are compared with experiment, the geometrical
model and the sd-IBM. By assuming a one-body magnet-
ic dipole operator, M1 transitions are calculated in the
sdg-IBM, and the results are compared with those of the
sd-IBM2. E4 transitions are also calculated and the exci-
tation strength from the ground state to the I"=4+ of
the K; =3&+ band is predicted to be strong. Our model
gives different predictions from the quasiparticle-
nuclear-phonon model (QPNM). Summary and con-
clusions are given in Sec. V. From now on, we use abbre-
viations g, P, and y for the ground-state band, the next
lowest K"=0+ band and the first I( =2+ band, respec-
tively.

II. MODEL AND METHOD OF CALCULATION

The sd-IBM has a U(6) dynamical symmetry, while the
sdg-IBM has a U(15) dynamical symmetry. In this sec-
tion the U(15) model and our method of calculating ener-

gy and transition matrix elements are described. We take
the U(15}DSU(3) scheme among other dynamical sym-
metries' since ' Er is a well deformed nucleus. The
number of active bosons, X, is taken to be 16. In Sec.
IIA all possible one- and two-body interactions are
classified according to the U(15) DSU(3) scheme, which
enables us to use the U(15) DSU(3) Racah algebra. Expli-
cit formulae for calculating energies and transition ma-
trix elements are given in Sec. IIB. Because a totally
symmetric rep (where rep stands for representation) [N]
in the U(15) model has a large number of SU(3) reps for
N =16, we are obliged to truncate our model space. The
way we choose the truncated basis states, which are in-
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eluded in our calculation, is described in Sec. II C. The
SU(3) algebra used in this calculation was given by
Draayer and Akiyarna. "

TtK'M=X((40)lim i(04)lime
~

(A, , A)KLM)

xbl bj (A, =O, 1,2, 3,4) . (2.1)

A. Interactions in the U(15)DSU(3) scheme

In the U(15) model the one-boson state belongs to the
(40) rep in the SU(3) notation (A,,p}, while it belongs to
the (20} rep in the U(6) model. Two-boson states (which
must be symmetric) are classified by three reps (80), (42),
and (04) in the U(15) model, while there appear only two
reps (40) and (02) in the U(6) model.

In the U(15) model the creation and annihilation
operators bI and bI for bosons transform as (40) and
(04) reps of the SU(3) group, respectively, where
blm =(—) +

bI and 1=0,2, 4.
In the boson rep any one-body operator with angular

momentum I. is written as

gM=Xa, KT,L A, ™ (2.2)

where a&z's are constants to be determined.
Next we construct the two-body scalar interaction

which has a definite U(15) DSU(3) tensor character. We
define two-particle boson and two-hole boson operators
as follows:

Here ((40)lm(04)l'm'~(A, ,p)KLM} are the Clebsch-
Gordon coefficients of the SU(3) group. In particular,
T =' are the generators of SU(3). In this paper it is as-

sumed that the electromagnetic operator is written as a
one-body boson operator. Thus, it can be expressed as

8t(g )KLM [btbt)(A, P)KLM.

—=X((40)lm(40)1'm'
~

(A,,p)KLM)bI bl ~ (A, ,p) =(8,0), (4, 2), (0,4)

and

8(p g}K'M=[bb]'»"'K'M

—:X((04)lm(04)1'm'
~
(p, A)KLM)b~. ~bI. .. (p, ,A) =(0,8), (2,4), (4,0) .

(2.3a)

(2.3b}

For energy operators which are written as one- and two-
body interactions, we will omit K,L,M(all equal to zero).

Two-body scalar interactions in SU(3) tensor reps
de6ned as

B. Method of calculation

Any v-body interaction is decomposed according to the
U(15) DSU(3) DO(3) scheme as

[8 (A, ,p}8(p', A, ')]

are not yet reduced in U(15). Here p distinguishes in-
dependent modes of coupling in SU(3). This label is need-
ed only in the coupling (42) X(24). One constructs U(15)
tensor operators by the following linear combination:

Ti
' ' ' ——X([2](p',V)[2](A,,p)i)[Fo](Ao,po)Ao)

x [8'(A, ,p)8(p', A,')] (2.4)

The Ao represents the additional label which uniquely
specifies the U(15) DSU(3) reduction. The overbar on the
label [2] shows that it is a hole rep. We have three
different labels for the U(15) label [Fo]' [0], [21' ], and
[42' ]. Interactions in terms of the U(15) DSU(3) scheme
are shown in Table I. In the U(6} model we have two
one-body and seven two-body scalar interactions which
are Hermitian. ' In the U(15} model we have three one-
body and 32 two-body scalar interactions which are Her-
mitian. The number of two-body interactions increases
up to 48 if antihermitian operators are allowed. This ex-
tension of interactions is necessary when one derives
boson-interactions microscopically using the Dyson bo-
son mapping. All U(15) &SU(3) reduction coefficients are
listed in Table II.

Lo f Fo](AOMO) AOKOLO (2.5)

where [Fo], (A~o), and Lo are the reps of U(15), SU(3),
and O(3), respectively. The O(3) is nothing but the physi-
cal rotational group. The totally symmetric state accord-
ing to the U(15) DSU(3) DO(3) scheme is represented as

i [N](AM) AKL),

where (AM) is the rep of SU(3) and A is the additional
label which uniquely specifies the U(15)DSU(3) reduc-
tion. The direct product of the totally symmetric
(N —1}-body and one-body states

i [N —1](AM) AKL )
i
[1](40)kl)

is not totally symmetric. In the next subsection we dis-
cuss how to obtain the totally symmetric states using the
Majorana operator.

The reduced matrix element of a v-body (v&2} force is

for an N-body totally symmetric system
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TABLE I. Interaction tensor operators for bosons in the sdg-IBM.

[Fo]

[o1
[211']

[42' ]

Total

SU(3) labels

(0,0)
(2,2)
(4,4)
(0,0)
(2 2)

(6,0),(0.6)
(4,4)
(6,6)

(8,2),(2,8)
(12,0),(0,12)
(10,4),(4, 10)

(8,8)

One-body Hermite

1

1

1

2
6
4
7
3

4
1

1

1

32

Two-body
Anti-Hermite

16

( [N ](A]M] ) A ] K ] L ] II
V 'll [N ](A2M2 }A 2K2L2 &

=+2L]+1 X( —)"+dim(A2M2)/dim(AM)([v]ill V ' ' ' ' ' 'lll[v])

and

X U((A2M2)(p2A2)(A]M] )(l]p])s(™)(AoMp)}p p p

X ( [N v](AM ) A—[v](A]p])ll[N](A]M] ) A ] & ( [N v](AM )—A [v](A2p2)ll[N](A2M2) A2 &p

X ([v](p2A2)[v](A]p, )ll[Fo](AoMo)Ao & ((A2Mq)K2L2(AoMo)K]]L]]ll(A]M, )K]L] &

~=A, +M, +k,,+p, +A+M .

(2.6)

The quantum number p distinguishes independent modes of coupling in SU(3).
In Eq. (2.6) the SU(3) Racah-coefficient U is defined in Ref. 13. The first factors

([N —v](AM)A[v](A]p])ll[N](A]M, )A, &

are the coefficients of fractional parentage (cfp) which are obtained by the method described in the next subsection. The
second factors

& I vl(p92)[v](~]p])ll[+o](AoMo) Ao &],

are the same isoscalar U(15) D SU(3) coefficients as appeared in Eq. (2.4) for two-body interactions (v=2) and are unity
for one-body interactions (v= 1). The third factors

((A2M~ )K~L2(AoMo }KoLoil(A]M] )K,L & p

are the SU(3)-isoscalar factors. '

The triple-barred matrix element in Eq. (2.6) can be derived from the given boson interaction

([vl(~]p]}k]i] l
V

l [v](~2p2)k2ip)

by using the following formula:

X([v](A]p])k, i,
l

V
l [v](A2p2)kzlz) .

([v]III V
I I

1[v]}=&&[v](pz~z}[v](~]p]}ll[+o](AoMo)Ao &p&(pe~2}k2iz(~]p])k]i] ll(AoMo}KoLo &p

(2.7)
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C. Basis states and truncation

OOOO OOOO OOOOOOOOOOOOOO

OOQOOOQOOOQO~QOOOQOQO

O OOOOO Q OOO~OOOOO~QOO

OOOOOO OOOO
OOO OOOO OOOO

OOOOOOOOOOOOOOO OOOOOOO

OOOOOOOOOOOOOOOOOOO Q OO

We find SU(3) reps belonging to [N] by diagonalizing
the Majorana operator among the basis states with the
same SU(3) label. This procedure simultaneously pro-
vides us with coefficients of fractional parentage (cfp):

( [N v](—AM ) A [v]( AiM )
~~
[N ](A'M') A

' )

Table III shows the thus obtained totally symmetric
states appearing in the sdg -IBM for N = 1,2, 3,4, 5.
When N=4, the (8,4) rep appears twice. A general
method, which distinguishes states with the same (A, ,p)
reps satisfying A, +2p=4N in a more physical way than
those obtained by the simple diagonalization of the Ma-
jorana operator, is established in Ref. 12. The distinction
between these two reps with p =4 according to this
description turns out to give an important clue to under-
standing the properties of the I(; =4&+ band in well de-
formed nuclei.

In order to obtain the cfp's for the states satisfying the
restriction A, +2p=4N for the N-body system following
this procedure, we diagonalize an operator defined by

S=[B (04)B(40)]' (2.8)

according to the SU(3)-seniority classification within the
fully symmetric states [N]. The resulting basis states are
characterized by the SU(3)-seniority quantum number w,
where w means the number of boson pairs coupled to (04)
rep in Ref. 12. In terms of w the eigenvalue of the S
operator is

(375) ' w(2N —2w+3) (2.9)

QOOOOOOOOII

OOO~OOOOOO

OOQ OOOOOO OOOOQOOOOO~O

OOOOO OQ QOOOOOO~OO~OO

OOO OOOO QOOOO~OOOQQO

for the states with A, +2p=4N.
In the other cases of (A, , iM) with I,+2p &4N we may

still use the same procedure; the S operator is diagonal-
ized within the fully symmetric boson states. However,
the eigenvalues of the S operator, in general, cannot be
expressed as simply as the formula (2.9). There are, how-
ever, certain states which have zero eigenvalue. These
states can be labeled with w =0.

In order to see the effect of the S operator we diagonal-
ize the Hamiltonian which includes the S operator in ad-
dition to the Casimir operator and L operator. The re-
sult is presented in Fig. 1. The bands with w =0 stay at
their SU(3) limit positions. The w =1 bands are located
at different positions from their SU(3) limits. For exam-
ple, compare the location of (56,4) w =0, E =0 with that
of (56,4) w= 1, K=0. The former energy is 3.148 MeV
which coincides with an eigenvalue of the Casimir opera-
tor. In analogy to Eq. (2.8) two more operators

OOOOOOOOOOOOOQOQOQ OOOO
and

U = [B'(O4)B(4O)]'"

Z =[B "(04)B(40)]'

(2.10)

(2.11)

O W W Q
OO OO OO OO

cV W W ~ O

are introduced. These operators have the interesting and
important property that they do not have any effect on
the states with w =0 including states with A. +2p=4N
and k+ 2p & 4N. This is clear by their definitions.
Namely they destroy a (04) pair which is not included at
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TABLE III. Complete SU(3) representations in the totally symmetric states from [1] to [5] in the U(15) model. The superscript in-
dicates the multiplicity of the irreducible representation.

(4,0)

[4]

[5]

(8,0)

(12,0)

(6,0)
(0,0)

(16,0)

(10,0)

(4,0)

(20,0)

(14,0)

(8,0)'

(2,0)

(4,2)

(8,1)

(5,1)

(12,1)
(9 1)2

(6, 1)

(3,1)

(0,4)

(8,2)

(2,2)

(12,2)

(6,2)

(0,2)

(16,2)

(10,2)
(7 2)
(4,2)

(6,3)
(3,3)

(10,3)
(7,3)
(4,3)
(1,3)

(14,3)
(11,3)
(8,3)
(5,'3)

(2 3)

(4,4)

(8,4)'
(5,4)
(2,4)

(12,4)
(9,4)
(6,4)
(3 4)2

(0,4)'

(3,5)

(10,5)
(7 5)'
(4,5)'
(1,5)

(0,6)

(4,6)

(8,6)
(5,6)
(2,6)
(2,6)

(0,8)

(6,7)
(3,7)

(4,8)'
(1,8)

(0,10)

3

0

4 4 4 4 4

0 2 (5 ' }tI5QQ (ss4) w=13: f564/ W Q( ) W=1 =4
2 3 ( ~ ) W=p K= K=p W-1 K=2

4 1 (58,3) W=O K=2 K-p
3 $58,3)W Q K

(6O2) (60,2) K

W=O W=O
K=p K=2 S interaction42=

(64,o)
W=O
K=O

0

FIG. 1. Energy levels obtained by the SU(3) limit Hamiltoni-
an with an appropriate strength of the S interaction in the
sdg-IBM.

all in any state with w =0. By adding them to an SU(3)-
preserving Hamiltonian, bands with w=0 remain un-
changed in their SU(3}-limit positions.

SU(3) reps (A, ,p, ) in the sdg-IBM are classified by a la-
bel r, which is defined by A, +2p =4N —3r, where
r =0, 1,2, . . . , [4N/3]. Most of the low-lying bands are
expected to be described in terms of states with r =0, be-
cause their expectation values of the Casimir operator of
SU(3) are large. In analyzing the nucleus for the N =16
system, r varies from 0 to 2. Among them further restric-
tions are made; in the cases of r =0, 1, and 2, p & 8, 7,
and 6 are taken, respectively. The basis states thus
chosen, which are used in this analysis for the N = 16 sys-
tem, are summarized in Table IV. One of the (56,4) reps
has the quantum number m = 1 and is denoted by
(56,4) =', the other one with w=0 by (56,4) = from
now on. A recent group theoretical analysis revealed'
that the w =1 member of (56,4) has one-phonon structure

and the m =0 member has two-phonon structure.
The problem of truncation of basis states is connected

with the nature of the effective interaction. Restricting
SU(3) tensor operators to (00}, (22}, and (60}+ (06) tensor
operators, as will be done in the following sections, we in-
clude in our model space those states which are directly
connected by the above interactions with states of
(&,)M ) =(4N, 0), (4N —4, 2), (4N —6, 3), and (4N —8,4).

III ENERGIES

As seen in Sec. II, the number of interactions is so
large compared to the sd model that we cannot but use
only selected interactions which will be later defined.
The ' Er nucleus is deformed and exhibits typical rota-
tional band structures. Thus a model Hamiltonian
should not destroy the rotational band structure
significantly. Higher tensor operators such as the (88)
tensor are inadequate in this respect. For simplicity we
assume that the Hamiltonian can be expressed by the
SU(3) tensor operators (00), (22), and (06) + (60). There
are 2, 7, and 4 tensor operators (altogether 13), respec-
tively, for parametrizing the Hamiltonian (see Table I).
Among them, the Casimir operator of SU(3), the L
force and the S interaction preserve the SU(3) symmetry.
There still remain 10 independent ones, which can be
used to describe deviations of energies from the SU(3}
limit.

Our procedure for reducing the interaction parameters
consists in searching for a few specific interactions, each
of which produces some specific effect on the low-lying
band positions. The Hamiltonian is parametrized by a
combination of them. The most important point in our
calculation is the reproduction of the anharmonicity.
Thus, in the first place an operator which reproduces this
effect should be constructed. Although such an operator
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TABLE IV. SU(3) representations used in our present calculation for the X= 16 system. The states with multiplicity are classified
according to the quantum numbers w and 5 for the label r =0. The 5 represents the number of boson-triplets coupled to (06) rep.

(64,0) (60,2) (58,3) (56,4)
{w=0,5=0)
(w =1,5=0)

(54,5) (52,6)'
(w =0,5=0)
(w =0,5=1)
(w =1,5=0)

(50,7)
(w =0,5=0)
(w =1,5=0)

(48,8)
(w =0,5=0)
(w=0, 5=1)
(w =1,5=0)
(w =2,5=0)

(55,3)

[2] (58,0) (56,1) (54,2)' (52,3)'

(53,4) (51,5)

(48,5)'

(49,6)2

(46,6)"
(47,7)'

will be found, it will be seen that the operator lowers only
K =2+ and K =4+ bands. Therefore we need an opera-
tor which lowers K=0+ bands. Finally to adjust the
K;"=03+ band, a third operator is constructed.

Because this anharmonic effect is very difficult to ob-
tain, ' such a requirement imposes a very strong restric-
tion on the selection of the other interactions. As seen in
the following we actually have six operators and the same
number of free parameters. A detailed procedure for
fixing specific operators is explained in Sec. III A. A brief
explanation for them is already given in Ref. 15, but a de-
tailed and self-contained description is given there. In
Sec. III B the calculated results are compared with exper-
iment.

A. Definition of specific interactions

where a is determined by requiring

((64,0)» o, L =4
~
H1

~
(60,2)x O, L =4) =0 . (3.2)

One finds a= —1.0167. Thus, the H& has a vanishing
matrix element between (64,0)s=o (g band) and (60,2)x=o
(P band) states. This is necessary because we want to for-
get about the coupling of g and P for the time being and
concentrate ourselves on the coupling between g and y
bands. This turns out to have the effect of satisfying the
requirement (i). Figure 3 shows the energy levels ob-
tained by diagonalizing a Hamiltonian obtained by add-
ing the interaction H& with an appropriate strength to
Hp ~ One sees in Fig. 3 that the interaction H, is particu-
larly useful to reproduce the anharmonic effect. It is seen
that we have acquired the ratio R =2.4. It should also be

A Hamiltonian consisting of the Casimir operator
[(C') =A. +Ju +3(A, +p)+Ay] and L force
[(L ) =L(L+1)]with appropriate coefficients is diago-
nalized and the result is presented in Fig. 2(a). This
Hamiltonian is called Ho hereafter. This figure should be
compared to the one in the sd model [Fig. 2(b)]. We men-
tion that the energy levels of the SU(3) limit do not satisfy
the following requirements; (i) The anharmonicity of the
radio, R =E(K; =4~+)/E(K, =22+)=2.5 must be repro-
duced. (ii) The K; =11+ band must be higher than the
K; =4~+ band.

Other SU(3)-breaking interactions must be constructed
to meet the above requirements when they are added to
the combination of the Casimir operator and the L
force. In the earlier calculation' one of the authors re-
ported that the anharmonicity could be explained by
band mixing between the w=O and w=1 members of
SU(3) states. This argument was based on a calculation
using only r=O states. A further calculation with ex-
tended model space as described in the previous section,
however, has brought the ratio back to two under the
Hamiltonian used in Ref. 12. The failure is attributed to
large mixing between r=0 and other states of small r.
Thus, a further study is needed to find an interaction
which reproduces the anharmonicity.

Now the interaction H
&

is constructed as

(a)
3

sdg
su(3)0

64,o)
W=O
K=O

X
3

4 4
2 3=

4 4
2= 3= 4—2

(24,4) O

(Z4.4)(Z44) K='O
K=0 K=2

0
(28 2)(28,2)

K O
K=2

4
0 — o=2

(32,o)
K=O

sd
su(3) —0

4 4 4 4 4 4 4—
(56,4)p= '= 2 (56,4)

4 (564) 56,4)W=O (56,P))56,4)(564) W=1
3 $ w-p W=O K=4 w=p W=1 W=1 K-4
2 (583)K-4 K=4 K=O K=O

4—4—(563) W=p -2
2~ W~O K~3

(6O2) K=1
(6@2) w-'O -1
W=0 K=z
K=0

0, =a[8 (42)B(08)]' '+[8 (80)8(24)]' '+H. c. ,

(3.1)
FIG. 2. (a) Similar energy levels as in Fig. 1 without the S in-

teraction. (b) Energy levels in the SU(3) limit in the sd-IBM.
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3 3 3 -3
4 2 2

4 2 (5g3)(56&4)
4

Qgq
' '' W=O K=2 2()4c ah W=O

K=0 K=1
4 (56,3}K=o

(564} W=O

4 W-'0 K=3
K«-4

4 $0,2)
O 2 W='O -O.7ly I- +-

1,64,p)
K=2

W=O
K=O

0

FIG. 3. The Hamiltonian is —0.76H&+Ho, where Ho is
—0.0043C+0.0013L . The asterisks in the parenthesis {4, + )

mean that one cannot assign unique {A,,p) because the largest
amplitude is less than 50%.

and b is determined by requiring

((60,2)x o,L =4
~
H2

~
( 564) x= OL=4) =0, (3.4)

which gives b =1.2251. Figure 4 shows the energy levels

noted that the K =1+ and the K =3+ bands are al-
ready separated in energy from each other by this in-
teraction. Another interesting feature of this Hamiltoni-
an is that all bands except K =2+ and K =4+ are
pushed up very much. If one is interested only in repro-
ducing the ratio R, and if all bands other than the
ground, K, =2&+ and K; =4+& bands would be found to
be not collective, one can be satisfied at this stage. How-
ever, we believe that other low-lying bands are also col-
lective. Then we need an interaction which brings down
particularly K =0+ bands in energy. Such an interac-
tion Hz is constructed as follows.

In the same manner the interaction Hz is constructed
as

H2 ——b[B (42)B(24)]' ' —[Bt(42)B(40)]' s'+H. c.

(3.3)

obtained by diagonalizing a Hamiltonian obtained by
adding the interaction H2 with an appropriate strength
to Ho. The main effect of Hz is that it lowers the
E; =02+ and K,- =03+ bands. However, the K; =03+ band
is still high in energy.

To lower further the K, =03+ band, the operator U
defined in Eq. (2.10) is found to be useful because it
lowers the (56,4)x=o band relative to the (56,4)x=z and
(56,4)x =z bands. This operator has no effect on the to =0
bands. Figure 5 shows this situation.

The interaction P] is introduced in order to shift up or
down the K"=1+ band belonging to (4N —6, 3) rep
without changing the other low-lying states significantly.
The operator is constructed in the following way. We
have four (22) interactions and three (06) + (60) interac-
tions (altogether seven) which do not admix (8,0) rep with
the others (see Table II). Since (64,0) states contain only
(8,0) pairs of bosons, these interactions do not connect
the (64,0) states with states of other (A, , iM) than (64,0).
We expect that the following seven reps are important in
addition to the (64,0) rep. They are (60,2)lr o, (60,2)x
(58 3)K =1 (58»)E =3 (56 4)K =0 (56 )x'-2 (56 4)A. =4.
There are six off-diagonal matrix elements between a
specific state and the other six states. On the other hand
one has seven operators. Therefore choosing a specNc
state, one can construct a linear combination of the
operators so that the six nondiagonal matrix elements be-
tween the state and the others vanish. We choose the
(58,3)x,, as the specific state in order to construct the
P& interaction. The P, interaction is thus constructed to
eliminate off-diagonal elements between (58,3)x, and
other six reps in the case of L =4. It also has the effect of
reducing the SU(3) mixing in the low-lying states. The
explicit definition of the P, interaction together with
those of the H„H2, and U interactions in terms of the
U(15)DSU(3) irreducible tensor operators is given in
Table V. The sdg-IBM has the feature that there exist in-
teractions which have an effect only on odd K bands.
Figure 6 shows how the K =1+ band is shifted up by
this interaction almost independently of the y, P,

4
4 4 3=3:2—4—

5S, &**}w=i
4 2= O

—
4 564}

4 2= (563) w o K=0 K=4
2 (Bg)W=O K=i

58,4

2 K=O
~

+
1,64,O)
w=o
K=o

4
4 20—

0- O- (564)
(64,0) K-O
W=O
K+0

4
4 4

4 4 2 3—Q

3—3—O— (52.6}
(602)(60~ ) W=]

(56,4f ) W=O „:O2 W=1 +/=2 K=Q
0 K 0

(4s,s}
W=2
K=O

FIG. 4. The Hamiltonian is —0.41H2+Ho. FIG. 5. The Hamiltonian is —1.2U+Ho.
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TABLE V. Definition of four interactions in Eq. (3.5) except the Casimir operator and L force in terms of the U(15) classified in-

teractions given in Table II. Here {06),means (06), +(60),.

[+o]
(A.,p)

Hl
H2
U

P]

[2113]
(22)

0.2684
0.0
0.1617
0.3017

(22) ]

—0.2511
0.0
0.0517

—0.1000

(22)2

—0.0495
0.0

—0.9616
—0.0197

(22) 3

—0.3621
0.0
0.2155

—0.2904

(22)4

0.0
0.0
0.0

—0.0599

[42"]
(22)5

—0.0457
0.0
0.0

—0.2649

(22)6

—0.4788
0.0
0.0
0.4684

(06) l

1.0167
0.0
0.0
0.0

(06)2

0.0
1.2251
0.0
0.0172

(06),

0.0
—1.0

0.0
0.0

=3+, K =4+, and w =1 bands. We will use all these
interactions in order to find a phenornenological Harnil-

tonian which reproduces the level scheme of Er.168

B. Results

The following Hamiltonian is used for our present cal-
culation:

H =a&H&+a2H2+a3U+a4P, +a~CsU(3]+a6L

(3.5)

4—4
4 0 3

{s64)(564fw=s(580) K=p wK~& w=p
f583%W 1 W & K=4 W=p

4 4 (583' W~ K=O

p 2
2: 3 K-3 K=1

(60 2)(602) —1
W-p W=O

Q
2 P, +H0

(6&gp

K=O

X
3

FIG. 6. The Hamiltonian is 1.0P, +Ho.

where a's are parameters to be determined. The decom-
positions of the interactions into the U(15) D SU(3) tensor
operators are listed in Table V.

First we adjust the parameters to the p and y band ex-
citation energies and the rnornent of inertia of the g band
using the interactions H &, Hz, CsU(3) and L (case A in

Table VI). The L term is adjusted in order to reproduce
the moment of inertia of the g band. The result is shown
in Fig. 7. It is seen that the anharmonic feature and the
appearance of the K =3+ band at twice the y band has
been reproduced, but the K, =03+ band is higher than the
K; =4&+ band.

Next, we add the U operator to shift down the K, =03+
(tp =1) band (case B in Table VI). The result is shown in
Fig. 8. One finds in this figure that the K; =23+ and
K;"=04+ bands also come down. Nevertheless the split-
ting between K, =02+ and K,."=03+ is larger than the ex-
perimental one because of the large mixing of two SU(3)
states, i.e., (60,2)» p and (56,4)»=p.

As stated in Sec. III A the interaction P, is useful to
reduce the mixing of SU(3) components in K;"=Oz+ and
K; =03+. Figure 9 shows the energy levels obtained by

adding the P, operator and adjusting all parameters of
the Hamiltonian in Eq. (3.5). A search for the parame-
ters is made in order to reproduce the experimental
Kf ——02+, K; =2 ~+, K,- =03+, and K;"=4 &+ bandhead ener-
gies (note K;"=04+, K;"=2z+, K;"=3&+ bands are not ad-
justed). The parameters are tabulated in Table VI (case
C). The solid lines show the theoretical energy levels and
the dashed lines show the bandhead energies of experi-
ment in Fig. 9. Table VII shows the component of band-
head states in terms of SU(3) reps and the expectation
values of &„&d, and &g, i.e., the number operator of s, d,
or g bosons. Many bands are strongly admixed. The ex-
ceptions are the g, y, p, and K;"=3~+ bands. In the fol-
lowing we discuss the properties of the bands we are in-
terested in. Those bands are excited by some reactions
such as the (t,p), (p, t), ' (d,p), (t,d), ' (t,a), '

(a,a'), ' and (p,p').

I. g, y, and P bands

The ground band consists mainly of the (64,0) rep as
expected. Among six interactions of the Hamiltonian
(3.5) only H& mixes (64,0) rep with other reps. The g, p,
and y bands are almost pure SU(3) states. They are
(64 0)» p (60 2)» p and (60,2)» z reps, respectively.
These bands correspond to (32,0)» p, (28,2)» p, and
(28,2)» z in the sd-IBM.

2. K; =03+ band

This band consists mainly of the (56,4) =' SU(3) rep.
(the overlap is 0.73). This (56,4) =' state has no counter-
part in the sd-IBM. The predicted K; =03+ band has
theoretically the nature of one-phonon state, which is
consistent with the recent ' Er(d, p) and ' Er(t, d) ex-
periments. Without this interpretation it seems to be
difficult to reproduce the (t,p ) strength. '

3. K; =0&+ band

The fourth K =0+ band is reproduced at a reasonable
position although the energy of this band was not used
for our energy fit parametrization. This band consists
mainly of the (52,6) ='

rep, but has a small component of
the (64,0) rep. In the SU(3) limit this band has no (t,p)
strength because of the SU(3) selection rule. This small
component of the (64,0) rep, however, makes possible the
(t,p) population of this band. ' In Table II of Ref. 21
relative (t,p ) strengths for 0+ states are predicted by the
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TABLE VI. Parameters determined in the boson Hamiltonian in Eq. (3.5). The energy unit is MeV.

Case

B
C
D

a&

—0.63
—0.86
—0.76
—0.81

0.31
0.41
0.41
0.41

a3

0.0
—1.1
—1.2
—1.15

a4

0.0
0.0
1.0
0.5

—0.0036
—0.0043
—0.0043
—0.0043

0.013
0.013
0.013
0.013

wave functions obtained by diagonalizing the Hamiltoni-
an in Eq. (3.5).

4. K; =2q+ band

This band is a mixture of the (56,4) = and (56,4)
reps. (0.63:0.53), i.e., the mixture of one- and two-phonon
states. Although the energy of this band was not used for
our energy-fit parametrization, its position is well repro-
duced as seen in Fig. 9. The (t,p ) strength predicted for
the I=2 state of this band is nine times smaller than
what is expected for the pure (56,4) =' state, although it
is still four times stronger than that for the pure w=o
state. The band mixing causes the reduction of the am-
plitude for the w =1 state and the interference effect. Al-
though the spectroscopic factor is not yet deduced from
the experiment, a larger amplitude of the w=1 state
seems necessary to reconcile the prediction with the ex-
perimental observation' of a strong (t,p) strength for
this state.

5. K; =4&+ band

This band has a large component of (56,4) =
rep.

(0.72). This band corresponds to (24,4) in the sd-IBM
and has the nature of the 2y band. The most remarkable
feature is the reproduction of the anharmonicity, i.e.,
E(K; =4i+)/E(K; =2i+)=2.5, which is mainly due to
the effect of configuration mixing. We cannot reproduce
this strong anharmonicity using only first order perturba-
tion.

6. K; =3+ band

We do not use the experimental information on this
band. The K;"=3~+ band is predicted at a reasonable po-
sition. This band is outside the description of the
sd-IBMI. It has almost pure (58,3) rep, which has one-
phonon structure. For quite some time it has been a puz-
zle whether this band has a collective feature or not.
This band is excited by the (t,p ) and (a,a') reactions, in-
dicating that this band is collective. In Sec. IV we pre-
dict a strong E4 excitation of this band. Although the
8(E4) is not reported experimentally, the I=4 state is
definitely populated by the (a,a') reaction.

7. K =1+ bands

Below 4 MeV we have two K =1+ bands which are
not shown in Fig. 9. One starts at 2.7 MeV and the oth-
er at 3.8 MeV. A recent experimental compilation re-
vealed that two K=1+ bands are observed below 2.4
MeV. One starts at 2133 keV, the other at 2365 keV.
At this stage we cannot predict which one comes from
the hexadecapole degree of freedom. In our model I',
can shift up and down E=1+ bands without changing
the other low-lying states significantly. Thus, adjusting
the parameter a~ in Eq. (3.5) we can fit the theoretical
E=1+ band to any of experimental ones. This problem
is treated in detail in Sec. IV B.

—0

4 4 3
3 2~ 2~
2 0—1 2

4 (e e}(58,3)
(g s){56.4) K-0 W=O

4 3 K-4 W P K=1
2 (583) K= 2

43—(602) W=O —1
W p K=3

(602) K=O

W=O4—
2=0
(64,o)
w=p
K=O

4—2~
2- 4 0

4—4 32 ——(56,4) „' 0
0 {56,4)W=O

( s}(%3)W=1
0 K~Q K~2

( )
K-3 —1

2
(eo2}K=o

4 W=p
2 K=2

0 — 0=
(64,o)
W=P
K=O

FIG. 7. Only the y and p bands are fitted in this figure (case
A in Table VI).

FIG. 8. The y, p, and K; =0&+ bands are fitted in this figure
(ease 8 in Table VI).
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4—3~6— 4—2
5—5

2—
5—p-4=

4—2-- {ss,4)'--4:—{++)K=4
(g g) K~2

o~ {58,3) K 0
2K=3

(ss,4)
4— K=08—
2
—(so, 2)

s—{so,g
K=O 168

K=2

IV. E2, M 1, AND E4 TRANSITIONS

In this section electromagnetic properties are studied
within the sdg-IBM. The predictions of the geometrical
model and the sd-IBM are compared with those of the
sdg-IBM. For that purpose the Mikhailov plot analysis
is carried out with respect to E2 transitions. One of the
differences between the sdg-IBM and the sd-IBM con-
cerns M1 transitions which vanish in the latter without
proton-neutron asymmetry. The mechanism of M1 tran-
sitions is explained in Sec. IV B, where the predictions for
M1 transitions in ' Er are also given. The theoretical
E4 operator is determined to reproduce the experimental
data taken from an (a,a') experiment. '

2—o- o-
(s4,o}
K=O

Energy levels
-0 A. Electric quadrupole transitions

The one-body E2 operator is given by four indepen-
dent parameters in this model:

FIG. 9. All parameters appearing in Eq. (3.5) are adjusted in
this figure (case C in Table VI). Solid lines show calculated en-

ergy levels, whereas dashed-lines show experimental bandhead
energies.

T(E2)=e, (s d+H. c. )+e2(d d)' '

+e, ((d g)"'+H. c. )+e,(g g)"', (4.1)

TABLE VII. The low-lying states obtained by diagonalizing the Hamiltonian in Eq. (3.5) (see case C in Table VI). The SU(3) reps
are the major ones. The largest component of each state is denoted by asterisk. The subscript distinguishes different states with the
same SU(3) rep. The multiplicity was shown in Table IV. The nb shows the expectation value of b bosons.

Bandhead state
(MeV)

(0)
(64,0)

0.9047

Representations and their components

(58,0)
0.3962

n,

3.3 9.1 3.7

2+
y

(0.8)
(60,2)

0.8308
(56,4)2
—0.3164

(54,2)2
—0.3676

3.4 8.8 3.8

0+
(1.2)

(60,2)
0.8092

(56,4) i

0.2940
(54,2)2
—0.3473

3.0 8.5 4.4

0+
(1.4)

(56,4),
0.4495

(56,4)2
0.7282*

(50,4)2
—0.2090

(50,4)4
0.3002

3.4 8.6 4.0

2+
(1.9)

(56,4) l

0.6348*
(56,4)2

0.5330
(52,6)3
—0.2190

(50,4) )

0.2183
3.0 8.5 4.5

3+
(1.7)

(58,3)
0.9260*

(52,3)
—0.2634

3.0 8.6 4.4

4+
(2.0)

(58,3)
—0.3025

(56,4) i

0.7225*
(52,6)3
—0.3567

(53,4)
0.2092

3.3 8.7 4.0

(5o,4),
0.2448

(50,4)q
—0.2080

0+
(2.1)

(64,0)
0.2188

(52,6),
0.3901

(52,6)3

0.6929*
(58,0)
—0.2892

3.3 8.4 4.3

1+
(2.7)

(58,3)
—0.2598

(54,5)
—0.3066

(55,3)
0.5799

(56,1)
0.6111*

3.1 8.7 43

1+

(3.8)
(58,3)

0.7803*
(56,1)
—0.3467

(52,3)
—0.3893

2.9 8.6 4.5
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while in the sd-IBM only two independent parameters ex-

ist; e, and ez. Equation (4.1) can be transformed into a

linear combination of four SU(3} tensor operators defined

by Eq. (2.1). In terms of SU(3) tensor operators the
sdg-IBM has (ll), (22}, (33), and (44} tensor operators
whereas the sd-IBM has only (11) and (22) tensors. Ex-
plicitly the E2 operator is rewritten as

T(E2)= g aux T", =~
(A.=1,2, 3,4), (4.2)

KA.

where T~~xL~ is defined in Eq. (2.1). For (A, ,p, ) =(22) and

(44},K takes 0 and 2, but tensor operators with K =2 are
not independent from those with K =0:

z =v21/Saz x p, a4x z
——v'll/3a4 x p

(4.3)

follows:

a, ——

ay=

a3=

4v 2 11 36v'2 v'6X 11
Sv'3 ' 7v'3XS ' 35v'3 ' 7v'5

11 2v'2

Sv'3X7 7v3XSX7
99 18M 11+ e3+ e4,35v'3X7 ' 7v'3XSX7 ''

8 llv2
v 3XSX7 7v 3X7

68 v il
7v'3XSX7 ' 7v'3X7 ''

v 11 2v'22 v'll 2
v'3XS ' 7v'3 ' 7v'3XS ' 7v'3 ''

(4.6)

T(E2)= ga&T" =
(A, =1,2, 3,4) . (4.5)

The relations between the parameters e's and a's are as
I

Therefore we define new Hermitian operators as follows:

&'='= v'5/26&'=' ='+ v'21/26T', ='"='
= =v 3/14T)= ' = +v'll/14T, = ' = (44)

A. —2The E2 operator is now rewritten in terms of T = in-

stead of T =~ as

From experiments two absolute values of 8(E2}'s are
available: 8(E2;0~+~2~+ } and B(E2;0~+~2&+). For
other 8(E2)'s only relative values are known.

In order to compare our model with the Bohr-
Mottelson model we introduce the well-known and well-
developed idea in the geometrical model to account for
deviations of E2 branching ratios from the Alaga rules.
Assuming that the intrinsic quadrupole moments do not
change from band to band, one can analyze interband E2
transitions in terms of the rotational expansion:

B(E2;K I;~K/II)=(I K 2K/ K,
~
I/K/}—[&f

~
Mp (

i &+ &f
~
M, )i &(If(If+1) I (I;+1)—)]

2, K; =0&K/ or K/ ——0&K,

1, otherwise .
(4 7)

Bohr and Mottelson indeed analyzed the interband E2
transitions among the lowest three bands, namely, g, y,
and p. They carried out the Mikhailov plot analyses
(MPA) for the y~g, p~g, and p~y transitions. The
results of their analyses are collected in Table VIII.

We determined the four parameters of T(E2) in (4.5)
using the four &f ~ Mp

~

i & of their analyses; g ~g, y ~g,
p~g, and p~y. For this purpose we have used the
wave functions determined by the Hamiltonian given in
case C of Table VI. The four determined parameters are
a, =0.3037, a, =0.0659, a, = —0.0568, a4 ———0. 1834.
Using the E2 operator thus determined, we can calculate
any B(E2). However, before discussing our results, we
must confirm the consistency of the MPA, whether the
assumption used by Bohr and Mottelson holds in our
model calculations or not. Table IX shows the calculated
intrinsic matrix elements of intraband transitions in the g,
y, and p bands. These elements are found to be almost
constant, which confirms the assumption made in the
MFA. In the following we compare the calculated results
with observed data in each band.

We list also the prediction by the sd-IBM1 made by
Warner and Casten. The agreement between theory and
experiment for transitions from the y band is good for
each model.

Figure 10 shows the MPA's for y~g, p~y, and
p~y. The general trend of the E2 transitions is well

(f [ M[ol & (f [M, ]I& (f [Mo(l &

25 0.15 28
6.5 0.045 4.4

19 0.13 12

The present model
A

&f IMi Ii&
0.5
0.06

—0.3

TABLE VIII. E2 intrinsic matrix elements. Experimental
values and those in the sd model are taken from Ref. 3. The
case A in this table is obtained by the Hamiltonian with the pa-
rameters listed as case C in Table VI. Similarly the case B cor-
responds to the case D in Table VI.

E2 intrinsic matrix elements
sd-IBM Experiment

1. g, P, and y bands

Tables X and XI show the calculated 8(E2}'sand rela-
tive 8(E2)'s for transitions from the y and p band states

&f IMo Ii& &f IM Ii&
29 1.1
3.8 0.20

11 —0.05

(f [Mori& (f fM, [i&
30 1.2

5.3 0.06
12 —0.45
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TABLE IX. Calculated intrinsic matrix elements of intra-

band transitions in the g, y, and P bands.

g intraband

I/ B(E2)'~'(I020
~

IO)

2.411
2.413
2.416
2.420

y intraband

I/ B(E2)' '/(1220
I
I2)

2.327
2.315
2.296

P intraband
B(E2)'i2/(I020

~

IO)

2.262
2.258
2.253
2.246

reproduced, i.e., the theoretical slope of the y~g, P~g,
and P~y MPA s is positive, positive, and negative, re-
spectively. This is consistent with experiment. It should
be remembered that we have adjusted the four pararne-
ters to the four (f ~

Mo ~i )'s, but not to (f ~
M,

~

i )'s.

Therefore the theoretical (f
~
M,

~

i )'s should be com-
pared with the values derived from the data. The least-
squares average Mo's and M&'s are collected in Table
VIII (case A ). The reproduction for the y band is a little
worse than that by Warner and Casten. Our results,
however, reproduce the overall trend of B(E2) transi-
tions.

Since the strength of P& interaction was determined
rather arbitrarily in Sec. III B, we have changed the pa-
rameter a4 in order to see the effects on MFA's. The
strength of P, is now reduced to one half of that used in
case C (see case D in Table VI). The other interactions
are consequently changed a little to reproduce energy lev-
els. The results are summarized in Table VIII as case 8.
The parameters of the E2 operator are then a& ——0.2464,
az ——0. 1245, a3 ——0. 1063, a4 ———0.3186. The
(f ~M, ~i)'s for fj~g and P~y are improved. The
(f ~

M,
~

i ) of y ~g is still two times as large as the ex-
perimental one. This means that the strength of P&

affects only the P band.

2. E, 03+ band

The E2 transitions for K; =03+kg are predicted to be
as weak as those for P~g. This fact is also consistent
with the experiment.

3 K- =4+ band

We find theoretically the following ratio

TABLE X. Comparison of experimental and theoretical B(E2) branching ratios from states of gam-

ma band in ' Er.

2+

3+

6+

7+

8+

Transition

If,K

0,0
2,0
4,0
2,0
40
22
2,0
4,0
6,0
2,2
4,0
6,0
3,2
4,2
4,0
6,0
8,0
4,2
5,2
6,0
5,2
6,2
6,0
8,0
6,2
7,2

Calculated absolute
B(F.2;I; ~If )e fm

0.01641
0.044 77
0.006 36
0.028 39
0.041 97
1.955 09
0.001 86
0.052 29
0.020 74
0.644 65
0.012 20
0.067 38
1.039 06
1.050 10
0.000 28
0.050 53
0.036 02
1.258 75
0.735 18
0.003 38
1.432 33
0.587 42
0.005 02
0.046 44
1.494 68
0.403 07

$6fg

36.7
100.0

14.2
1.4
2.1

100.0
0.3
8.1

3.2
100.0

1.2
6.5

100.0
101.0

0.02
4.0
2.9

100.0
58.4
2.4

100.0
41.0
0.34
3.1

100.0
27.0

Relative B(E2;I;~If )

IBM1'

66.0
100.0

6.0
2.7
1.3

100.0
2.5
8.3
1.0

100.0
4.3
3.1

100.0
98.5
0.97
4.3
0.73

100.0
59.0
2.7

100.0
39.0
0.67
3.5

100.0
29.0

Expt'

54.0
100.0

6.8
2.6
1.7

100.0
1.6
8.1

1.1

100.0
2.9
3.6

100.0
122.0

0.44
3.8
1.4

100.0
69.0
0.74

100.0
59.0

1.8
5.1

100.0
135.0

'Reference 6.
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TABLE XI. Comparison of experimental and theoretical B(E2) branching ratios from states of 02+

ba„d;„ l68«

0+

2+

4+

Transition

If,K

2,0
22
0,0
2,0
22
32
0,0'

2,0
6,0
22
3,2
4,2
5,2
2,0'

4,0
8,0
4,2
5,2
6,2
4,0'

Calculated absolute
B(E2;I;~If )e fm

0.004 67
0.029 37
0.000 26
0.000 60
0.008 30
0.01447
1.023 04
0.000 14
0.007 34
0.000 26
0.003 03
0.009 56
0.010 88
1.456 77
0.00006
0.01721
0.000 79
0.003 45
0.009 32
1.596 72

sdg

15.9
100.0

0.02
0.05
0.8
14

100.0
0.01
0.50
0.02
0.21
0.65
0.75

100.0
0.004
0.70
0.049
0.22
0.59

100.0

Relative B(E2;I;~If )

IBM1'

5.5
100.0

0.10
0.32
2.6
4.9

100.0
0.09
0.23
0.04
0.63
2.2
2.8

100.0
0.07
0.21
0.09
0.73
2.0

100.0

Expt'

5.5
100.0

0.23
1.4
4.0

=4.9

0.02
0.11
0.03
0.35
0.52
0.19

100.0
0.02
0.07
0.11
0.32
0.93

100.0

'Reference 6.

B(E2;K; =4+~K, =2+)/B(E2;K; =2I+ +K; =0(+)—

=1.4 .

This indicates that the K; =4I+ band has the nature of 2y
band. The states of this band are predicted to decay into
mainly the members of the y band and the E =3+ band.

8. Magnetic dipole transitions

In the sd-IBM one must either introduce a two-body
interaction or expand the model to the IBM2 in order
that M1 transitions occur. On the other hand M1 tran-
sitions are possible by a one-body operator in the
sdg-IBM.

The one-body M1 operator is given by two indepen-
dent parameters in this model

T(M1)=&3/4n. (g~&10(dt's)'"+gz&60(g g)"') .

(4.8)

The T(M1) with

gz
——g =(4'/3)'~

is nothing but the angular momentum generator. To
have finite M I transitions g& &gz is necessary. The
sdg-IBM has (11) and (33) SU(3) tensor operators for a
one-body operator with angular momentum one. Since
the (11) tensor is proportional to the angular momentum
operator, only the (33) tensor makes Ml transitions
occur.

As discussed in Sec. III B up to now we cannot deter-
mine which one among two experimentally observed
E =1+ bands corresponds to the K =1+ band be-

longing to the (58,3) rep. For the time being, therefore, it
is possible to assign the theoretical 12+ state to the 1+
state at 3.39 MeV found by (e, e') experiment, although
the theoretical state is higher in energy compared with
experiment. The wave function of the 1+ state at 3.8
MeV consists mainly of the (58,3) rep whereas the one at
2.7 MeV is mainly a mixture of (55,3) and (56, 1) (see
Table VII). In order to determine the two g factors ap-
pearing in Eq. (4.8), we have taken two experimental
values; one is the g factor of the 2~+ state (=0.315[@~]),
and the other 8(M1;0~+~i&+),„~(=0.9[@~]). Then we
have g& ——0.548 and g~ =0.128. With this M1 operator
the g factor of the 4I+ state is 0.313, whereas the experi-
mental one is 0.303. In the same way we calculated
low-lying M1 transitions such as y —+g transitions using
the M1 operator. We confirmed that M1 transitions
among low-lying states are extremely small
( & 10 [pz]), which is within the theoretical errors.

The K =1+ collective band is also predicted by the
sd-IBM2 as a neutron-proton asymmetric state. One
cannot tell which model is suitable at present without re-
lying on a microscopic calculation. If the difference be-
tween the d- and g-boson g factors turns out to be small,
the sdg-IBM predicts weak B(Ml)'s. The 8(M1)'s in
the low-lying states should be also calculated in the
framework of the sd-IBM2. The results should be com-
pared with the experiment.

C. Electric hexadecapole transitions

In the sd-IBM the E4 transition operator is expressed
uniquely as (d d }' ', which is an SU(3) tensor (22}. With
this operator the K =4+ band cannot be excited from
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150-

I~100-

50-

o6

6
I0 -20

Q,E2;K=2i, ly-K=+. IR)

( I 2 2-2I lg0}

(a)

4a

I I

10 20
i,(l;1)-Iglpg

2Q
5~3$

&3 o o2
Q2 4)4

o4 c)2~ 6 6

4a 5'
I

-10

6~

I

30

T(E4}=e,(s g+H. c. )+ez(d Z}' '

+e, ((dtg )(4)+H.c. )+e,

(gag�

)(4) . (4.9)

pointed out the importance of a hexadecapole degree of
freedom in deformed nuclei. Nesterenko et al. also in-
troduced hexadecapole forces into quasiparticle-phonon-
nuclear model (QPNM) for describing the K; = 3&+ band.

The hexadecapole degree of freedom is inherent in the
sdg-IBM, and no extra freedom is needed. The one-body
E4 operator is given by four independent parameters in
this model:

B(E2'K 02, lg K-g, l, i&

(IPO 20I lgO)

10-
2+

(b)

4g

6i As in the E2 case, Eq. (4.9) can be transformed into a
linear combination of four SU(3) tensor operators defined

by Eq. (2.1). In terms of SU(3) tensor operators the
sdg-IBM has (22), (33), and (44) tensor operators. Explic-
itly the E4 operator is written as

o6

6+
I

-20
I

-10
I

0

8a
2+

c4 2a2
4r

oe c4
o6

I I

10 20 30
1,(l,+1)-1,(iqi)

T(E4)= ga&xTi' =
(A, =2, 3,4) .

KA.

(4.10)

For the (A, ,p) =(33) operator, K takes the values 1 and
3, but each operator is not Hermitian. A new Hermitian
operator is given as follows:

30—
(c)

lgE2' K=02, lp K=2i, ly ) 2

(Ip0 22 I I 2)

f'»= =&5/82T~i= '+='+v 778/2 T~i= '

(4.11)

I 20

10—

~6
6 ~

o4
a4

4 o6
4g

6a

o6

2gP Oa ~44 24 2
6i a ~~

2

For (44), K takes 0, 2, and 4, we define new Hermitian
operators as follows:

f'"„= =41&3x5/2x7x23x383T", = '

0 I I

20 10
I I

10 20

1„(1+1)-1,(i+i)

+566&2x13/7x23x383x683T)= '

+27&3 x 11x 13/2 x 383 x 683T1= '

(4.12a)

FIG. 10. (a) Mikhailov plot analysis of E2 matrix elements
for the y to the g transitions. Experimental values are shown by
open squares while theoretical ones are shown by solid squares.
Points are labeled by If. (b) Mikhailov plot analysis of the same
elements for the p to the g transitions. Asterisks indicate that
for the I=2& states only relative intensities have been deter-
mined. See Ref. 3 for more detail. (c) Mikhailov plot analysis
of the same elements for the P to the y transitions.

1',=4= 16&3X 11 X 13—/3 X 7 X 23 X 383Tt='»='

+319&3X 5 X 11/7 X 23 X 383 X 683T1='~='

+20&3X,5/3X383X683Ti = (4.12b)

The E4 operator is now rewritten by the newly deter-
mined four operators as

the ground state because of the SU(3}selection rule in the
pure SU(3) limit. The experimental ratio is
8 (E4;0~+ ~4~+ )/8 (E4;Og+ ~4s+ ) =4.2, which seriously
contradicts the theoretical prediction 0.05 by the
sd-IBM. Thus, it should be concluded that the sd-IBM is
not able to reproduce the E4 excitations observed in

Er. By analyzing experimental data, Ichihara et al.

T(E4)=~|T~= = +tr T ~= L =4

T ~=4 L=4+ T ~=4.L=4a3 „ ' a4 (4.13}

The relations between parameters e's and a's are as fol-
lows:
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4 19 10&11 3&11x 13
&5X7 14&7 7&5X7 14&5X7

44&2 22&2
3&3X5X7X11 7&3X7X11
&2 X 5 12&2 X 13+ e3+ e~,21&3X7 ' 7&3X5X7 ''

(4.14)
&2 X11X13 4&2 X 13 4&2

&383 &383 &383
148 383

a4 ——— e&+ e23&3x 5 x 383 14&3x 383

2750 33+13+ e3+ e4.21&3x5x ll x 383 14&3x5x 1 1 x 383

The (3,3) operator excites the K = 1+ and 3+ bands of
the (4N —6, 3) representation from the 0+ state of the
(4N, O) one. Similarly the K"=4+ bands belonging to
(4N 8, 4) reps —are excited through the (4,4) operators.
In defining these two operators in Eq. (4.12), T s= was
constructed so that this operator does not excite the 4+
states of (4N 8,4) from—the 0+ state of (4N, O). Neither
the m=0 nor the m=1 member of the K =4+ bands is
excited by the T z= operator. Thus, the sdg-IBM pre-
dicts a definite ratio for excitation amplitudes of the
w =0 and w =1 states in the SU(3) limit. In the N =16
boson system this ratio is 1:6. Because of the two-phonon
nature of the m =0 band' this band is only weakly excit-
ed. The observed relatively weak excitation of the
K =4+ band in ' Er [B(E4)=0.6 spu] compared to
that of the y band' [B(E4)=16.5 spu] does not contra-
dict its two-phonon nature. On the contrary, the QPNM
prediction for the K =4+ band is five times stronger
than the experimental value. Although a revised predic-
tion of B(E4)=0.8 spu is reported by Soloviev, the en-
ergy fit is worse and the B(E4) for the y band is three
times smaller than the experimental value.

The three experimental B(E4)'s (g~g, g~y, g~K"
=4+) in ' Er can be used in a search for parameters in
Eq. (4.13). One more datum is needed to fix four un-
known parameters. Here it is assumed that the g ~p E4
transition does not occur, because no member of the p
band seems to be excited by the (a,a') experiment. '

This point should be confirmed further by another experi-
ment. The four parameters determined are a, =1.106,
u2 ——6. 160, a3 ——5.001, e4 ——2. 869. The most striking pre-
diction is the strong excitation of K =3+ band. Its
B(E4)=50.8 spu. Unfortunately we cannot currently
compare this prediction with experiment, because the au-
thors of Ref. 19 did not derive the experimental B(E4)
for this excitation. A coupled channel analysis of their
experiment including the K =3+ band would be very
valuable for a test of the present model. The excitation of
the K; =03+ band is predicted to be weak [B(E4)=0.065
spu]. Predictions are summarized in Table XII. In Table
XIII diagonal E4 matrix elements of the g band are cal-
culated. These values change remarkably as the angular
momentum increases.

TABLE XII. The theoretical predictions of 8(E4) from the
ground state to excited states and their experimental values in
single particle unit.

Final band

y

0+
3+
4+
2+
4+

Expt'

3.9
16.5

0.6

Theory

39
16.54

0.0'
0.1

50.8
0.64

18.9
2.8

QPNMb

0.8
3.3

QPNM'

5.0

0.8

'Reference 19.
Reference 9.

'Reference 28.
Fitted to experimental data.

'Assumed.

V. DISCUSSION AND CONCLUSIONS

One point which is not discussed in this analysis is the
variation of the moment of inertia in each band. Bohr
and Mottelson criticized the IBM on various points.
One criticism concerns the variation of the moment of in-
ertia from one band to another. In this calculation we do
not succeed in reproducing the L and L terms of exci-
tation energies (See Table I of Ref. 3). The moment of in-
ertia cannot be adjusted to experiment from band to band
in a simple manner because in the present calculation it is
fixed by the parameters chosen and the main part of the
moment of inertia comes from the L term of the Hamil-
tonian. Thus, the moment of inertia of the p band is pre-
dicted to be almost the same as that of the g band. On
the other hand, experimentally the p band has a larger
moment of inertia than the g band. It should be rernem-
bered that we have used only six parameters for the
description of the energy levels. It might be possible to
improve the calculated moments of inertia by introducing
more parameters. This is still an open question.

In the present calculation the Hamiltonian is limited to
include up to two-body interactions. This viewpoint is
satisfactory if we successfully reproduce the overall ex-
perimental data. Indeed we have reproduced the overall
data including the anharmonicity. It should be noted,
however, that the anharmonicity problem is easily solved
by introducing higher-order interactions, such as, three-
or four-body interactions. This corresponds to the intro-
duction of an anharmonic potential of y. Actually,

2+
4+
6+
8+

—2.083
—1.311

0.279
3.640

TABLE XIII. Diagonal E4 matrix elements of members of
the ground band in single-particle unit.

& I II T(E4) III )
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Heyde and his collaborators used cubic terms in the
IBM in order to analyze ' Ru.

Here we wish to show an example of a many-body in-
teraction. If one defines an operator T by

T= [B (42)B(24) ]'

then one finds the expectation value in the diagonal rep
for the w quantum number (A, +2p =4N ):

( T ) = —p(4N —@+1)——'&15(S), (5.1)
v'S

420&3

where the operator S is defined by Eq. (2.8). For w=0
states (S ) is equal to 0. In the large N limit ( T ) is pro-
portional to pN in states with m =0. This means that T
produces only a harmonic level scheme. The operator T
has an energy proportional to p as its leading term for
those states. This apparently gives an anharmonic effect
for the K =4+ band. This example shows that one can
very easily explain the anharmonic spectrum if one can
introduce many-body interactions such as a T operator.

Recently, Soloviev discussed the differences between
his model and the sd-IBM. His arguments may be di-
vided into two parts as follows.

(1) The drawback of the IBM and of the Bohr and
Mottelson model is the inclusion of a very small part of
the space spanned by the two-quasiparticle states under
consideration. These two models incorporate only p and

y degrees of freedom. Therefore these models can treat
only states made by p, y phonons, i.e., pp, py, y), . . . ,
phonons. He claimed that one must introduce such pho-
nons as s', d', and g to describe excited states higher than
the p and y bands.

(2) According to his microscopic calculation the
anharmonicity is so strong that no two-phonon states are
predicted below 2.3 MeV. He claimed that the low-lying
states below 2.3 MeV are not two-phonon states but one-
phonon ones.

On the first point we partly agree with Soloviev. This
is one of the reasons why we introduce the hexadecapole
degree of freedom. Regarding the introduction of s' or d'
bosons we do not have any microscopic reason to incorp-
orate such degrees of freedom up to now as far as low-
lying states are concerned.

The second criticism pinpoints the main difference be-

tween the Soloviev model and our model. His prediction
differs not only from ours but also from the prediction
made by Matsuo and Matsuyanagi. ' They recently ana-
lyzed the same nucleus by using the self-consistent collec-
tive coordinate method. They predicted that the two-y
phonon state lies around 2 —2.4 MeV. Their model too,
does not predict such a large anharmonicity as that of
Soloviev.

One great difference between our model and Soloviev's
model is seen in the prediction for the E4 transition
strength from the ground state to the I=4 state of the
K =3+ band. In our model this band has high hexade-
capole collectivity because of the explicit introduction of
the hexadecapole degree of freedom. Thus, it is highly
desirable to extract the E4 strength of this band experi-
mentally because this state is indeed populated in the
(a, a') experiment. '

In our model the K, =4~+ state found experimentally is
assumed to be a two-phonon state, whereas Soloviev pre-
dicts it as a one-phonon state. In the SU(3) liinit we pre-
dict the K; =4~+ bandhead state twice as high in excita-
tion energy as the K; =2&+ bandhead state. We have
determined the parameters concerning the anharmonicity
considering that the K, =4~+ band starting at 2055 keV is
a two-y band. However, the 4+ state at 2238 keV can be
another candidate as a member of a two-y band.
Higher-order interactions in the IBM would be really re-
quired when no two-phonon states are found experimen-
tally below 2.5 MeV. Any experiment which reveals the
nature of K; =4&+ band is highly desirable.

In conclusion we have given a self-contained formalism
of the sdg-IBM in the present paper. This model turns
out to be very successful for a consistent description of
energies and moments of ' Er. In particular, since we
have made predictions for E4 transitions using this mod-
el. The sdg-IBM seems to be a prominent theory for
descriptions of deformed nuclei. At the same time the
parameters of the phenomenological Hamiltonian must
be calculated from the microscopic point of view. This is
a problem for the future.
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cussion. We also express our gratitude to D. M. Brink
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