
PHYSICAL REVIEW C VOLUME 38, NUMBER 1 JULY 1988

Cluster-orbital shell model and its application to the He isotopes

Y. Suzuki and K. Ikeda
Physics Department, Niigata University, Niigata 950-21, Japan

(Received 29 March 1988)

A model is proposed in which we take full advantage of both the shell and cluster models in order
to describe a system of valence nucleons weakly coupled to a core. This is realized by introducing
radius vectors of the valence nucleons relative to the core, new coordinates of independent particle
nature. The model is applied to the neutron-rich He isotopes, 'He, with reasonable success.
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Recently, the interaction cross section has been mea-
sured by making use of exotic isotope beams produced in
the projectile fragmentation of high-energy heavy ion col-
lisions. ' A Glauber-type analysis' of the interaction
cross section has led to a determination of the root-
mean-square radii of unstable nuclei and demonstrated
that some of the neutron-rich nuclei in the vicinity of the
neutron drip line have anomalously large rms radii.
These observations have raised a number of questions
challenging the knowledge of nuclear structure which has
been established on the basis of the properties of nuclei of
normal density: These include the possible existence of a
very weakly bound neutron halo, the significance of the
magic numbers in extremely neutron-rich nuclei, e.g., a
"doubly magic" nucleus ' He, and the density depen-
dence of the nuclear interaction.

An attempt at understanding the structure of neutron-
rich nuclei has been undertaken in shell model and
Hartree-Fock like approaches. The purpose of this pa-
per is to propose a cluster-orbital shell model which takes
full advantage of both the shell and cluster models and to
apply it to a structure study of the He isotopes. The
model we propose does not require the heavy computa-
tional effort of the no core shell model, and we believe
that it gives a clear insight into the physics involved.

In neutron-rich nuclei like the He isotopes, He, we
assume that weakly bound neutrons move around a stable
core cluster. Let n and f be the number of valence neu-
trons and the mass number of the fragment core cluster,
respectively, and r&, . . . , r„,r„+&, . . . , r„+f be the posi-
tion vectors of the nucleons. The normalized center-of-
mass coordinate of the core cluster, Rz, is defined by

Rc=(r~+f +rn+f)/&f .

We introduce a system of coordinates which suits the
cluster-orbital shell model:

center-of-mass of the core to the ith valence neutron and
R the total center-of-mass coordinate. Using these coor-
dinates enables us to express the total Hamiltonian as
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where Hc is the core Hamiltonian and p = —ih'8/Bg
the momentum conjugate to gj. The interaction potential
v; acts between the valence neutrons and its radial
dependence is given by

' 1/2

(g; —gj) .

The U, denotes the interaction potential between the
valence neutron and the core. It would in general be non-
local and energy dependent. Although it is possible to
use a nonlocal potential in our model, we assume a local,
energy-independent potential U; depending on g';. It is
easy to show that the total angular momentum of the sys-
tem, J, is expressed in terms of the new coordinates as

J=Jc+ g (1;+s;),
i=1

where Jc is the angular momentum of the core and
1;=g;)&p; the orbital angular momentum of the ith
valence neutron. The difference of our model from the
usual shell model approach is rather conceptual: The
latter assumes the self-consistent Hartree-Fock field UH„
generated from all the nucleons and treats residual in-
teractions perturbatively. In our model the single-
particle Hamiltonian, h =1/2mp + U, is relevant to the
relative motion of the valence particle around the core
and can be used to define cluster orbitals for valence par-
ticles, and the interaction potential v is not a residual in-
teraction but considered a realistic effective interaction
acting between the valence particles. One of the advan-
tages of our model over the shell model is that any excita-
tion of the valence neutrons does not lead to spurious
center-of-mass excitations. The terms p; pj of Eq. (2) ap-
pear because the coordinate transformation from r,-, Rc
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to g, , R is not orthogonal. This nonorthogonality im-

poses the correct normalization of wave functions as

f I q(g, , . . . , g„) I'dg, . . .dg„

B(r, , . . . , r„,Rc)
B(g, , . . . , g„,R)
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EE(2)=2e3/2+ VO& ~E(3) 3e3/2+ p VO+ p V2
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AE (4)=4E3/2+ V0 + 5 V2

where s, = (jM I
h

I
jM ) is the single-particle energy of

the cluster-orbital j, and VJ ——(j JM
I

v Ij JM) the
two-particle interaction matrix elements. Note that the
p; p terms make no contribution to the energy, provided
that we take into account orbitals of the same parity
only. If the p3/2 orbits of the He isotopes are all identi-
cal, the observed values of b,E(n), listed in Table I, can
simultaneously be reproduced by the following:

~3/2=1. 02 MeV, Vo= —3.02 MeV,
(6)

V2 ———0.84 MeV .
Figure 1 displays the dependence of the three quantities
on radial form of the p3/2 orbit. Here the orbit is as-
sumed to be given by

1/4 2
64a r a r—exp

b 2 b
(r =&S/4g),

We assume He as a core in applying the cluster-orbital
shell model to the He isotopes. The neutron- (and
proton-) He interaction was extensively studied by the
cluster model. In particular, Kanada et al. nicely repro-
duced the s- and p-wave phase shifts at low energies by a
resonating group method (RGM) calculation with the use
of the Hasegawa-Nagata (HN) potential. The HN po-
tential is a realistic effective potential determined from a
reaction matrix calculation for He, Li and nuclear
matter and includes the spin-orbit and tensor components
as well as the central part. (See Table I of Ref. 6 for de-
tails). Based on their RGM calculation, Kanada et t2l.

further determined a parity-dependent, local nucleon- He
potential consisting of central and spin-orbit parts [Eq.
(10) of Ref. 6]. This potential can be regarded as includ-
ing the exchange effects between the nucleon and the nu-
cleons in the He cluster. We employ this potential as U;.
For U, we use the same HN potential consistent with the
calculation of Ref. 6. Since the valence neutron is not al-
lowed to take the same s, /2 orbit as that in the He clus-
ter and thus, the potential U becomes most attractive in
the p3/2 orbit (p3/2 the quantum number of j=l+s),
we assume the simplest configuration (j =p3/2 )" for
+ "He (n =2,3,4). Assuming the resultant angular

momentum to be 0, —,', and 0 for n =2, 3, and 4, use of
coefficients of fractional parentage leads to the energies
of the He isotopes relative to the core,
AE(n)=E( + "He) —E( He), as
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FIG. 2. The p3/2 single-particle orbits in the He isotopes.
The dash-dot-dot curve denotes the difference between the exact
and approximate solutions of the p3/, resonance wave function
of 'He.

FIG. 1. Dependence of the single-particle energy and the
two-body interaction matrix elements on the parameter a of the

p3/2 single-particle orbit. Also shown are the energies of the He
isotopes given in Eq. (5): Dashed curve; 4He, dotted curve; He,
and dash-dotted curve; He.

where r is the distance between the valence nucleon and
the core, b, set to 1.8 frn, is introduced to scale the length
and a is a parameter determining the radial extension of
the orbit. The interaction matrix elements Vo and V2 at
a —1 are close to those required in Eq. (6) but e3/2 is too
large. The p3/2 orbit actually extends over a wide region
because the single-particle Hamiltonian, h, does not have
a bound state but has a p3/z resonance at 0.9 MeV. To
simulate the p3/2 resonance wave function we take a
linear combination of (i), 's, (()= g, C, ())„and choose five

points of a at a =0.3, 0.54, 0.97, 1.75, 3.15. An approxi-
mate p3/2 orbit obtained by the best choice of C, 's is
shown in Fig. 2 together with the difference from the ex-
act resonance wave function which is obtained under the
correct resonance boundary condition and normalized at
the peak. The approximate p3/z orbit yields s3/~

——1.19
MeV, Vo= —1.66 MeV, V2 ———0.39 MeV, and the cor-

I

responding values of b,E(n) are listed in parentheses in
Table I. Although c3/2 is now close to the value of Eq.
(6), the interaction matrix elements are about half of the
needed values.

Now we extend our calculation by choosing an optimal
p3/2 cluster orbital, ()I), so as to minimize bE(n) for each
n. The same five points of a are chosen and coeScients
C, are varied to reach energy minimum. Figure 2 shows
the curves of (I) obtained for the He isotopes. They are
drawn inward more strongly than the resonance orbit and
do not differ very much from one another. The resulting
values of EE(n) are listed in Table I. They are under-
bound by 1.4 MeV, 2.1 MeV, and 3.6 MeV for n =2, 3,
and 4, respectively. This corresponds to 30-40% lack of
the strength of the needed two-body interaction matrix
elements.

The energy gain due to lifting the p3/2 neutrons to the

p»2 orbit is easily evaluated. For He the admixture of
the (p]/2) configuration is small, i.e., we have gotten
0.9911t)((p3/z) )+0.136tp((p]/2) ) for He, and the value
of b,E(2) becomes 0.36 MeV resulting in an energy gain
of only 0.1 MeV. We conclude that the effect of the p&/2
orbit and probably the s, /2 orbit can be neglected in the
He isotopes, He.

We estimate the rms radii of proton, neutron, and nu-

cleon, R ~„R~„and R rms. It is easy to derive the fol-
lowing equations for the He isotopes (f =4):

2

[R (
+ "He)] =[R ( He)] ~ " x f )

1 .~+1
rms rms

( +f)' f
n

[R, , (
+"He)] = [R, , ( He)] +

tl +2 n+2, ,
' n+ n+2 n+

[R M (4+nH )]2 [R ~ (4+nHe)]2
n+4

[R N (4+ H )]2+4 rms (10)

where the expectation values are calculated with the
wave function of the valence neutrons. It is noteworthy
that the proton radius R, includes the second term of
Eq. (8) which is determined by the extent of the neutron
orbits. Note that the matter radius R, is given by

I

Table I lists the rms radii calculated by usingR, ( He)=R, ( He)=1. 57 fm. All of the rms values
are in reasonable agreement with those of a Hartree-
Fock-type calculation. Although the R, , values are
smaller compared with experiment, we think that it does
not indicate a serious drawback of our model: According
to the authors of Ref. 2, the R, values are reliably
determined from their experiment but the deduction of
the R, , values is subject to a questionable assumption of
the proton distribution.
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In summary, we have proposed a model which is aimed
to apply to a system of valence particles weakly coupled
to a core cluster. We have introduced the radius vectors
of the valence particles measured from the core. This en-
ables us to utilize results of a recent microscopic study of
nucleon-nucleus potentials, including a derivation of opti-
cal potentials, and the effects of the Pauli principle. Our
model is also very convenient to take account of possible
Pauli-forbidden states between the valence particle and
the core. Diagonalizing the single-particle Hamiltonian,
h, in an appropriate basis provides us with orthonormal
cluster orbitals. Distributing the valence particles to the
cluster orbits, we can make best use of shell-model tech-
niques to calculate the matrix elements of two-body
operators. Note also that no spurious center-of-mass ex-
citation appears in our model. We have applied our mod-
el to the He isotopes. The input needed for the present
calculation has been taken entirely from the literature,
and no adjustable parameters have been included in the

calculation. We have calculated the energies and root-
mean-square radii, assuming (p3/p )" configurations.
Though the binding energies are a little short, the result
is rather satisfactory considering the simplicity of the cal-
culation. There are some effects to be examined in order
to improve the agreement between theory and experi-
ment. One of these is the state and density dependence of
the effective interaction to be used in neutron-rich nuclei
as emphasized in Ref. 9. Another is the possibility of the
core changing with the number of the valence particles as
studied in Ref. 10. These points will be investigated else-
where.
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