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We study a relativistic model of the nucleus consisting of nucleons coupled to mesonic degrees of
freedom via an effective Lagrangian whose parameters are determined by a fit to selected nuclear
ground-state data. We find that the model allows a very good description of nuclear ground-state
properties. Because of the relativistic nature of the model, the spin properties are uniquely fixed.
We discuss variations of the parametrization and of the data which suggest that the present fit has

exhausted the limits of the mean-field approximation, and discuss extensions which go beyond the
mean field.

I. INTRODUCTION

In this paper we investigate a relativistic mean-field
theory of nuclear ground-state properties. Mean-field
theories have been very successful in describing many as-
pects of the nuclear ground state and nuclear dynamics.
The most prominent of these theories is probably the
Hartree-Fock and time-dependent Hartree-Fock calcula-
tions using Skyrme forces; for reviews see Refs. 1 —4. The
Skyrme force is a zero-change, density, and momentum-
dependent effective interaction whose form can be de-
rived from a density matrix expansion of the nuclear G
matrix. It allows one to describe, with a few parameters,
bulk and single-particle properties of nuclei from ' 0 to
superheavy nuclei. The binding energies, radii, elec-
tromagnetic form factors at low momentum, giant reso-
nance excitations, and fission and fusion barriers are all
well described by the model. However, there are several
features which are not so well treated by Skyrme forces.
These concern spin properties. The spin-orbit force,
which is necessary to get the proper magic nuclei, is in-
troduced "by hand, " requiring an extra parameter, and
any further spin couplings are completely undetermined.
This happens because the Skyrme force is a nonrelativis-
tic model, and spin properties are genuine relativistic
effects.

Relativistic mean-field theories have been investigated
almost as long as their nonrelativistic counterparts ' and
they have proven to be a flexible and powerful
method; ' for a review, see Ref. 14. There are noted
advantages of this method: Firstly, nuclear saturation
has already been achieved at the lowest level of the model
without any extra density dependence, and secondly, the
spin-orbit force is implicit in the model without any need
for extra adjustment. A fair agreement of nuclear shapes
from ' 0 through Pb can be achieved by inclusion of
the Coulomb force and an isovector meson (p field).

With the inclusion of the nonlinear self-couplings of the
scalar field, a good agreement can be achieved for the en-
ergies ' ' and also the nuclear compressibility. The full
model reaches the high level of quality of its successful
nonrelativistic counterparts. ' Studies on nucleon-
nucleus scattering also show that spin and polarization
properties are very naturally described by a relativistic
optical potential at a mean-field level. ' A relativistic
treatment has also been very successful in a scheme
which goes beyond the mean field; namely, in a
Brueckner-Hartree-Fock model which accounts for two-
nucleon correlations. Here it is possible to describe the
binding energy and the saturation density of nuclear
matter within the ladder approximation of the many-
body diagrammatic analysis. ' '

In a relativistic mean-field theory, we describe nucleons
by the Dirac equation, and the interaction between the
nucleons is mediated by mesons. The Lagrangian of the
model is an effective Lagrangian in the same sense as the
Skyrme force is an effective force for nonrelativistic
mean-field calculations. The difference is that there is a
well-developed scheme to justify the form of the Skyrme
force from nonrelativistic many-body theory. ' However,
in the relativistic scheme, one is missing, up to now, clear
guidance as to how to map the many-body effects and the
quantum field effects into an effective Lagrangian of
mesonic degrees of freedom and nucleons. ' ' The selec-
tion of the mesons is inspired by the one-boson-exchange
models of the nucleon-nucleon interaction. This, quite
naturally, leads to a Lagrangian which is renormalizable
and which looks like a basic field theoretical Lagrangian;
however, these parameters are adjusted to describe as
many nuclear data as possible within a mean-field treat-
ment.

It is our aim in this paper to study extensively the
effects of the various meson parameters and look for the
connection to one-boson-exchange models. We fit the
model parameters to experimentally observable b»1I
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properties of the nuclear ground state: binding energy,
radius, and surface thickness. Other observables and nu-
clear matter properties are also considered; in the
language of least-squares fits, we consider them as extra-
polated quantities. The procedure closely follows compa-
rable investigations with the Skyrme-force model, ' and
thus allows a direct comparison between the nonrelativis-
tic and the relativistic approaches. Early results of the
investigation within the relativistic approach have been
published in Ref. 22.

The paper is organized as follows. In Sec. II we
present the Lagrangian, explain the approximations in-
volved and derive the coupled field equations of the mod-
el. In Sec. III we describe the evaluation of the nuclear

diffraction radius and surface thickness. In Sec. IV we
explain the least-squares techniques and the selection of
fit observables. In Sec. V we discuss other observables
that ar'e not directly used in the least-squares fits and nu-
clear matter properties. Finally, in Sec. VI we present
the results of the practical investigations.

II. THE FIELD EQUATIONS

In the relativistic mean-field model of the nucleus, the
nucleons are described by the Dirac equation, and the
forces are generalized to be mesonic degrees of freedom.
In practice, we start from the Lagrangian density

X =g(i y"d„m—)g+ ,'(8"—48„m—4 ) ——,'(O'V"B„V„—m V"V„)——,
'(O'R" B,R„mR—"R„)

—
—,'8 A "B,A„g4&&—gV"g—y„P ,'g R"—P—ry„P

— + o 2, 3, f. — fpeA "—Q y Q — 4 — 4 — 8"V"Piy y„f —8"R" Priy y, Q,2 " 3 4 4m " ' 8m p U

where the tilde denotes O'V" =O'V" —8"V". The notation
follows that of Refs. 23 and 24. This Lagrangian includes
a scalar (0) meson field, 4, which provides the medium-
range attraction for the nucleons, a vector (co) field, V„,
which describes the short-range repulsion, an isovector
(p) meson field, R„, which is needed to adjust the isotro-
pic properties of nuclei, and the electromagnetic field,

For the coupling to the nucleons, we first take the
simplest choice in each case; i.e., a scalar coupling (go) to
the scalar meson and a vector coupling (g,g, e) to the
vector mesons. This leads to a model which is linear in
the fields. It proves to be insufficient for describing nu-
clear properties. Therefore we include a second- and
third-order nonlinear self-coupling (bz, b3) for the scalar
field. It is interesting to note that, up to this stage, the
theory is renormalizable (besides a few refinements which
are necessary to make the p-coupling renormalizable but
which drop out again in a static and spherically sym-
metric treatment). However, renormalizability is not a
strong argument if one is dealing with effective theories.
It happens just to be the simplest choice which gives reli-
able results. We shall note that further improvement is
achieved by adding a tensor coupling (f,f ) for the vec-
tor mesons, leading to an extended model. The ~ meson,
which is the predominant and most long-ranged meson, is
not included. It cannot contribute in a mean-field treat-
ment of the ground state of even nuclei, because of con-
servation of parity.

The Lagrangian (1) is untractable on a full, quantal
field level and treats the model within the mean-field ap-
proximation, wherein the meson fields are treated as sim-
ple, classical c-number fields. As a consequence, the nu-
cleons move in classical fields as independent particles.
Thus we can expand the field operator P in terms of
single-particle wave functions P:

0= ga.0. .

Using this, we can evaluate the nuclear currents, which
are sources for the meson equations, in terms of the P;
for the scalar density we obtain

a= —oo a& F
(3)

0 +oo A

p, =
&

g 4.4. g4.4. + g 0—A'.
—oo F0 a=1

(4)

where A is the nucleon number contained between sur-
faces Fo and F. The first term therein describes vacuum
polarization effects, and the second term describes the

where the colons indicate the normal ordered product
with respect to the ground state with Fermi level F. In
Fig. 1 we show a typical nucleon spectrum in the pres-
ence of the meson fields. There is the negative energy
continuum which provides the unbound antiparticle
states. There are a few bound antiparticle states. Then
there come the positive energy bound states; these corre-
spond to the conventional nuclear shell model states and
are the states in which we are most interested, because
they mainly build up the nuclear mean field. Finally,
there comes the particle continuum. As an example, we
have drawn in Fig. 1 the Fermi surface F which corre-
sponds to an ' 0 nucleus. One can imagine that the
infinite summations involved in the density (3) are very
hard to handle. In order to see what they contain, we
rewrite the sums by introducing another Fermi surface
I'0 which corresponds to a state with total baryon num-
ber 0; see Fig. 1. Thus
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bulk properties of the A nucleons in the nucleus. As a
second approximation, we neglect the vacuum polariza-
tion, which we call the no-sea approximation. Thus, we
remain with a manageable expression for the nucleon
currents, e.g.,

iB,P=e sts

a', e=o,
3, V„=O,

V,. =0 for i =1,2, 3,
a=1

(5)
and similarly

where the sum runs only over the few occupied nuclear
shell-model states. In order to compute also nonmagnet-
ic nuclei, we will extend the sum to a slightly larger
valence space and allow for occupation numbers w,
where

0&w (1.

A;=0,
R;=0.

We furthermore consider the case that all single-particle
wave functions P have definite isospin, being either neu-
trons or protons. This yields the equations

We now take the Lagrangian (1) with these approxima-
tions and perform the standard variational procedure.
This leads to the coupled field equations. We write them
down here in a form which is already specialized to sta-
tionary solutions; that is, where

e ypsts = i y V +ms +go@+g„Voyo+ (V Vp ) ia.2' B

+ 2 gpR pppp7 p+ VR pp ia7 p
4mB

S.P

1+vp
+e~oyo

( —b, +m )4= —g p, b2Cs —b34—2 3
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(6b)
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(6d)

F0

negative energy
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with the densities given as

0
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0

Po= X wa(()ayp4'a ~

a=1
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0
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FIG. 1. Schematic spectrum of the Dirac equation for the
nucleons. The positive, energy-bound states exhibit a one-to-
one correspondence to the states of a classical nuclear shell
model. This is indicated by denoting these states with the usual

spectroscopic quantum numbers. The potential for negative-
energy states can also support bound states as indicated. The
Fermi surfaces F for the ground state of ' 0 and Fo for the vac-
uum state (zero baryons) are indicated by dashed lines.

1 ~Fermi ~a
wa= 1+ (e„„;—e ) +5

where

(7a)

The occupation weights w are still to be determined; we
use a schematic pairing model with a constant gap 6,
which gives
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6=11.2 MeV A (7b)

and eF„;is to be adjusted such that Xm reproduces the
desired proton number or neutron number, respectively.
The size of the valence space, Qz or QN, is chosen to in-
clude all occupied states up to the magic shell just being
opened; thus, for magic nuclei there will be no pairing.

In practice, we are solving this set of coupled equations
for spherical nuclei. This allows some further
simplification since one only has to determine radial fields
and wave functions. The details of the spherical reduc-
tion and of the numerical procedure are given in the Ap-
pendix. The energy for the system described by the La-
grangian (1) within the mean field and no-sea approxima-
tions is derived in the standard way. We obtain

0
EMF= g w E ,' J—d—'» g 4p, + ,'b, C-'+ ,'b34-'

a=1

+ o g ~o 2 ~ + g P 2 P + AP, o2mB 2mB

where the field terms of the type V"4V„4 have been el-
iminated by partial integration. The above expression is
advantageous for the numerical integration, because it re-
quires only quantities which are involved in solving the
coupled field equations.

There is an additional contribution from the pairing
energy

E~„,= —
—,'b, g w, (1—w )

where

2m AB
(loa)

a=1

—g (v v&+v v&u, u&)
~
(P

~

P
~ P&) ~

~,
a=1

(lob)

v =co, u =1—co, and the (P
~ ~ P&) are single-

particle matrix elements. This is a nonrelativistic center-
of-mass correction taken over from a comparable nonre-
lativistic mean-field model. ' We assume that it is
sufficient since the motion of the center of-mass will be
slow. Putting all the contributions [(8)—(10)] together, we
obtain the total binding energy

B MF+ p i . . B

where A times the nucleon mass has been subtracted in
order to give the binding energy.

The whole procedure outlined above looks, at first
glance, very fundamental; we start from nucleons and
mesons, do a few approximations, and derive coupled
field equations by standard variational techniques. How-

which will be small compared to the above mean-field en-
ergy. Finally, we have to take into account a center-of-
mass correction to the energy. As a simple approach to
the center-of-mass projection, we subtract the expecta-
tion value of the center-of-mass energy

ever, the mean-field and no-Fermi-sea approximations
implied are very dramatic. They neglect important
many-body effects as the exchange terms and short-range
correlations, and they neglect equally important quantum
field effects such as nucleonic and mesonic vacuum polar-
ization, coupling renormalization and mass renormaliza-
tion. If one is going to estimate these effects for a reason-
able parametrization, each one would contribute "correc-
tions" at the 100% level. On the other hand, there inust
be, as the zeroth order, an underlying mean field which
serves, at least, as an expansion basis for the further
correlations and for which, moreover, rich experimental
evidence of shell structure exists. The situation is compa-
rable to the nonrelativistic case, where we know that the
nucleon-nucleon interaction requires a diligent
Brueckner-Hartree-Fock treatment. Nonetheless, a nu-
clear shell model emerges at the end, with the Brueckner
T matrix serving as an effective force for the mean-field
calculations. These Brueckner-Hartree-Fock calcula-
tions never have led to a quantitative agreement with ex-
perimental data of nuclear bulk properties. Therefore,
one has cut off the lines to the microscopic history of the
T matrix and parametrize it in terms of an effective force.
The form of the effective force is usually motivated by a
density matrix expansion of the T matrix. ' This has led
to the Skyrme forces which have been extremely success-
ful in describing nuclear properties. ' We adapt the
point of view that the Lagrangian (1) is an eff'ective La-
grangian for relativistic calculations within the mean field
and no-sea approximations, in the same sense as the
Skyrme force is an effective Lagrangian for classical
mean-field calculations. Thus, the mesons are effective
mesons, and their parameters are considered as being the
free parameters of the model to be adjusted to reproduce
nuclear bulk properties as well as possible. From the pa-
rameters in the Lagrangian (1), the baryon mass is fixed
at the free nucleon mass because there is no mass renor-
malization in the mean-field approximation. We take for
both nucleons the same average mass, mB ——938.7 MeV.
The electromagnetic coupling is fixed because there is no
charge renormalization, and we wish to obtain the
correct asymptotic Coulomb field. Thus, we take
e =0.00730. The masses of the co and p mesons, m and
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m, turn out to have little influence on the results, pro-
vided the o mass is readjusted properly. We keep these
fixed at the empirical values,

m =780 MeV=3. 95 fm (12a)

m =763 MeV=3. 87 frn (12b)

There remain the following free parameters in the various
stages of the model

Linear: m, g,g„,g
Nonlinear: m, g,g„,gp 62 63

Extended: m, g,g,g, b2, b3,f,f
We shall describe in Sec. V how these parameters are
determined. The linear model is distinguished by its sim-
plicity. One can hardly imagine how to do it differently.
There is, however, some prejudice in selecting the
mesons: they are chosen according to their importance
in the OBEP's. The addition of the nonlinear terms is a
bit more ambiguous. We want to implement some densi-
ty dependence. That could be done in many different
ways, since a relativistic theory gives us a variety of
Lorentz invariants. The above choice, again, is the most
simple, and it reflects some influence from field theory,
since it still provides a renorrnalizable Lagrangian. The
choice of the tensor couplings for the extended model
may be even more ambiguous. Some momentum depen-
dence is needed, and the tensor couplings are suggested
because they appear already in the OBEP's. However,
we will find that the values for the couplings f~ and fz
are significantly different from the OBEP values, and that
no significant improvement is gained from the tensor cou-
plings. Here we come to a point where the refinement of

the model can proceed in so many ways that we need
good theoretical reasons for including further terms.

There is another problem with the phenomenological
adjustment of an effective Lagrangian. At some stage one
has to determine the parameters of the effective Lagrang-
ian directly from experiment. Thus, one has circumvent-
ed the explicit computation of two-body correlations.
Correspondingly, we concentrate on observables which
are not strongly influenced by correlations. In Sec. III we
will explain how to evaluate the form factor and how to
pararnetrize the low-momentum part of it by the
diffraction radius and the surface thickness.

III. ELECTROMAGNETIC FORM FACTORS

Elastic electron scattering provides us with rather
model-independent information on the nuclear shape. By
now, there have been established clear-cut procedures to
determine, from the measured cross section, a nuclear
charge distribution and, accordingly, the charge form fac-
tor. We want to use these data in our adjustment of the
meson parameters. To that end, we evaluate the charge
form factor from the form factors of the nucleon densities
within the nucleus,

F„(q)=4m J dr r jo(qr)p„(r),
0

(14)

where we take into account the proton distribution

pz ———,'(po+poo), the neutron distribution p„=—,'(po —p~),
and their tensor currents p r „———,

' (p„,0+p„,00), for
x =p, n. The full-charge form factor is superposed from
these form factors multiplied by the intrinsic form factors
of the nucleon, namely the charge form factor f, (q) and
the form factor of the anomalous magnetic moment
f2(q), yielding

Fc(q)= g [F„(q)f,„(q)+Fr„(q)f2„(q)]exp[+q l(8(P, ))],
x =P, N

where the overall exponential factor is the correction for the spurious center-of-mass motion, and where (P, ) is the
same momentum width as used in the energy correction E, , see Eq. (10).

The intrinsic nucleon form factors are taken from Ref. 29. They are given there in a classical reduction as the so-
called Sachs form factors Gs and G~. The f; „are related to these G by

f( „——
2

GF. I 0
—G~1 )+(1+P„) 2 GM

4m~2
1+

4m~2

(16a)
2

4m~2

1
f2,x (1+Px)GM

2
(GEI=0 E,l=1)—

and G are given by a four-term dipole fit

G, = as, i

i 1+q /b,
(16b)

where s denotes E,I =0 or E,I = 1, or M. The values for
the coefficients are summarized in Table I. We want to
remark that there is some ambiguity in choosing the in-
trinsic form factors off shell. We have chosen here the

most naive point of view, using for the vector coupling
simply I, 3"y„,and for the tensor coupling F23"A 'o„.

As discussed in the previous Sec. II, we have to judge
how sensitive the form factor will be to correlation
effects. This depends on the transferred momentum q.
Certainly, the region of higher q values (above, say, twice
the Fermi momentum) will be affected by various correla-
tions. The low q values will, probably, be rather insensi-
tive, except perhaps for collective zero-point vibrations;
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IV. MODEL PARAMETERS

As discussed in Sec. II, we consider the meson parame-
ters as the adjustable parameters of an effective Lagrang-
ian. We want to choose these parameters such that the
model as stated reproduces the measured ground-state
properties of nuclei. We do this, systematically, by
minimizing the accumulated squared deviation,

o "~—o'""'~ '
X'= g (23)

nn

with respect to the free parameters of the model. The
sum in g runs over all chosen observables 0„. In experi-
mental data analysis, the 60„ is the statistical error on
the data. In our case, we cannot use just the experimen-
tal errors, because a mean-field theory is too crude to
reproduce the nuclear bulk properties within the experi-
mental resolution. The systematic error of the theory is
too large. Therefore we insert, for 60„, what we expect
to be the ability of the theory to describe the observable
0„. The relation of the 60„'s, relative to each other, re-
gulates the relative weights of the contributions to the X .
We compute and compare the three observables, the
binding energy Ez, the radius R and the surface thick-
ness o for the eight nuclei i60, ~Ca, Ca 58Ni, ~Zr," Sn, ' Sn, and Pb. These are all spherically sym-
metric nuclei. The set contains, with the two Ca nuclei
and with the two Sn nuclei, some information on isotopic
trends which may be related to the symmetry energy and
other isovector properties. In Table II we give the exper-
irnental values for the Ez, R, and 0. in the eight nuclei. '

We also give the quadrupole fluctuation Pz (Ref. 35) and
the corrected surface thickness pro, according to Eq. (22).
The selection of the observables, their error weights b,0„
and the nuclei, is the same as in similar fits of a nonrela-
tivistic mean-field theory using Skyrme forces. ' This al-
lows a close comparison of the nonrelativistic and the rel-
ativistic theory. Note, however, that we do not include
extra information about the spin-orbit splitting here, as
we did in the nonrelativistic case. A relativistic theory
should predict this properly without further constraint.

For the minimization of the 7, we use the cURFIT
techniques, as described by Bevington. It is the advan-
tage of the systematic 7 techniques that one obtains not
only the minimizing parameters, but also the uncertain-

ties of it. There we distinguish between the uncorrelated
error and the correlated error. Both errors describe the
limits of an allowed variation of the parameters where 7
remains within one unit of the value at the minimum.
The uncorrelated error determines the allowed variation
of one parameter, while all the others remain fixed. The
correlated error determines the allowed variation of one
parameter when all the others are readjusted to give
minimal 7 . The 7 techniques allow even more. One
can estimate the uncertainties on extrapolated quantities,
i.e., observables which had not been included in the fit.
All these estimates use the curvature matrix

t) (X')
r)p r)p/

(24)

where p;,pi represent the free parameters of the model.
The uncorrelated error is given by the diagonal curvature
as 5p, =[2(a,, ) ']'i . The correlated error is given by
the diagonal of the inverse curvature matrix as
bp; =2(a ');;. The extrapolation error on any other ob-
servable A is also derived from the inverse curvature ma-
trix

' 1/2

bA= 2g (a ')i
t)p; t)pj.

(25)

V. OTHER OBSKRVABLKS

——,'g~4p, ,'b24 ,'b34————(26)

We have taken care to include in the fit of the model
parameters only such quantities which are directly acces-
sible to experiment and which, moreover, one might hope
are not obscured by correlation effects. There are other
observables which do not meet these strict requirements
but which are, nevertheless, useful to look at as, for ex-
ample, the properties of nuclear matter. We start from
the equation of state for symmetric nuclear matter, i.e.,
the energy per particle E/A as a function of the baryon
density po

kF
2

E/A =4f d k k + (mtt +go%) +—
po

0 rn~

TABLE II. The experimental values for the observables included in the fit. The E&, R, and u are
taken from Ref. 21, the Pz from Ref. 35, and the oo is computed from o and Pz using Eq. (22) and
r =0.9 fm A' '. In the last line we also give the adopted errors LO„ for the 6t.

16~

Ca
48C

"Ni
"Zr

116S

124sn

2ospb

Eq (MeV)

—127.6
—342.1

—416.0
—506.5
—783.9
—988.7

—1050.0
—1636.4

0.2%

R (fm)

2.777
3.845
3.964
4.356
5.040
5.537
5.640
6.806

0.5%

cr (fm)

0.839
0.978
0.881
0.911
0.957
0.947
0.908
0.900

1.5%

0.100
0.131
0.125
0.209
0.084
0.128
0.107
0.084

oo (fm)

0.835
0.967
0.868
0.872
0.949
0.925
0.891
0.885

1.5%
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where the scalar field is given by

4= —g p, —b24 —b342 2 3 (27a)

TABLE III. The experimental values of the pseudo-
observables spin-orbit splitting oe... reciprocal level density
Ae, and shell fluctuation o.e.

and the scalar density

kF 3 mg +g~
p, =4 d k

k'+(ms+g 4)' (27b) 5.98 6.07

6e, , in ' 0 (MeV)
Proton Neutron

1.086 1.057

b e in 'Pb (MeV)
Proton Neutron 6p in 'Pb (fm )

0.0023

and the Fermi momentum kF is related to the baryon
density

' 1/3
3K po

2
(27c)

Equations (27a} and (27b) are combined to one transcen-
dental equation determining 4 for a given po, kF, respec-
tively. With the 4 thus found, one can easily determine
the E/A according to Eq. (26).

Note that neither the Coulomb field, the p meson, nor
the tensor coupling play any role in the symmetric nu-
clear matter. Furthermore, the equation of state is in-
sensitive to the meson masses. All dependences on the
meson parameters can be reduced to the four-parameter
combination

2 2

C
g~mg

m

2 2
g ~my

m~

b2 b3
B2 ——

2 ' 4B3 ——

m~g~

(28)

This is the combination of parameters which dominates
the bulk binding energy also in finite nuclei. Therefore,
we will consider these combinations in some of the stud-
ies following in Sec. VI.

From the equation of state, E/A (po), we determine
the ground state of symmetric nuclear matter by the equi-
librium condition

B(E/A)
(29)

8
&NM =9PO (E/A) .

~po
(30)

The resistance for similar vibrations of the proton against
the neutron densities is measured by the symmetry ener-
gy a4, which we evaluate directly by'

This yields the equilibrium density pNM and, accordingly,
the equilibrium energy (E/A)NM. A further, interesting
quantity is the incompressibility I( NM which can be com-
puted as usual

m*=m&+g 4, (32)

for protons or for neutrons, respectively. The experimen-
tal value for 5e, , are given in Table III. They are de-
duced from the single-hole states with respect to ' O. It
is known that these experimental quantities contain rear-
rangement corrections and effects from core polarization.
In the case of ' 0, the rearrangement effects are larger
and the polarization effects are smaller. We expect that
these effects, together, give an uncertainty of about 0.3
MeV.

The level density near the Fermi surface is obtained
from the last-filled proton or neutron shell in Pb. We
take the spreading width of the single-particle energies as
a measure of the reciprocal level density,

which is a critical quantity, as we will see in Sec. VI.
There is some confusion about how to define an effective
mass. Already in the nonrelativistic theory, there are at
least three definitions from different physical viewpoints.
The effective mass, as defined above, is the mass deter-
mining the motion of a very slow nucleon (k~0) in the
nuclear medium. It represents the value of the mass
operator in the single-particle Green's function at k ~0.
This value is about 2 —4% smaller than the (8 e/Bk )

at the Fermi surface which is often considered as the
effective mass. The m', according to Eq. (32), also
represents the gap between nucleon and antinucleon solu-
tions in the presence of nuclear matter. It is thus a rough
estimate of this gap in finite nuclei.

We will also look at some properties in finite nuclei
which we did not include in the least-squares fits. These
are the spin-orbit splitting, the level density near the Fer-
mi surface, and the shell fluctuations. The first two quan-
tities have to do with the single-particle spectra, and the
shell fluctuations are seen in the charge densities. For
studies of trends and parameter dependences, we need to
represent each of these features by one single number.

The strength of the spin-orbit force is read off from the
splitting of the 1p, /2 and the 1p3/2 level in ' 0

(33)

k~

6[k +(m +g N) ]' 2 m

Finally there is the effective mass

(31}
E2 Q E2

' 1/2

a
(34a)

where the sum runs over the last-filled shell in each case,
i.e.,

3s&/2, 2d3/2 2d5/2 1g7/2 1A]]/2 for protons in Pb,
CX= 2083p, /2, 3p, /2, 2f5/2, 2f7/2, 1h9/2 li &3/2 for neutrons in Pb . (34b)
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0.10—

208

exp
cat.

for an illustration see Fig. 3. The experimental value is
given in Table III. The shell fluctuation 5p is related to
the form factor at a momentum of q=2k+=2. 7 fm
Here the form factor will certainly be influenced by
short-range correlations, mesonic exchange currents, gi-
ant resonances, and other correlations, and we know that
the nonrelativistic mean-field theories overestimate 5p by
more than a factor of 2. ' Again, it is interesting to see
how the relativistic mean-field theory behaves.

6
r(fm)

VI. RESULTS AND DISCUSSION

A. The linear model

The experimental values are given in Table III. They are
deduced from the single-hole states with respect to Pb,
as given in Ref. 37. Here the rearrangement effects may
be very small, but the effects from core polarization are
large due to the many low-lying collective states in Pb.
In the nonrelativistic calculations, the mean-field theory
always produces single-particle spectra whose level densi-
ty is, by a factor of 2, too small compared with the exper-
imental value deduced from the single-hole spectra. '

The calculated charge density in nuclei deviates from a
smooth Woods-Saxon distribution by a series of spatial
oscillations with a typical wavelength of 3.6 fm. Depend-
ing on the shell filling, there is also a pronounced peak or
dip at the nuclear center. As an example, we show in
Fig. 3 the charge density of Pb. These oscillations can
be understood as a shell effect with a spatial wavelength
of twice the Fermi momentum, the dominating momen-
tum in the valence shell. The shell fluctuations are best
obtained from the charge density in Pb as

&p=pc(0 0) pc(l 8 fm); (35)

FIG. 3. The experimental charge density p& for Pb (dashed
line) and the result from the relativistic mean-field model (full

line, fit "nonlinear" ). The pattern can be viewed as being com-
posed of: first, a smooth Woods-Saxon background correspond-
ing to radius R and surface o', second, a Coulomb repulsion of
some density towards the surface; and third, an overall oscilla-
tion with wavelength 3.6 fm.

In a first step, we have optimized the four free parame-
ters of the linear model, g, g, g, and m, to the stan-
dard set of data. We achieve an average precision of 2%
for the energy, of 1.2% for the diffraction radius and of
23% for the surface thickness, adding up to a X =2730.
This is a very bad reproduction of the data; in particular,
the surface thicknesses are far too small. There are also
strong misadjustments for some of the quantities not ap-
pearing in the 7 . In particular, the compressibility,
E =584 MeV, is far above commonly accepted values;
also, the spin-orbit splitting in ' 0, E'so 10 MeV, is far
too large. The detailed figures can be found in the row la-
beled "Lin" in Table IV (parameters) and Table V (ob-
servables). Altogether, the linear model is inappropriate
for a quantitative description of nuclear properties; one
has to proceed to the nonlinear model.

B. The nonlinear model

In a second step, we optimize the six free parameters of
the nonlinear model g, g„, g, m, b2, and b3 to the
standard set of data. This gives a much better fit with a
precision of 0.32% for the energy, 0.70% for the
diffraction radius, and 3.7% for the surface thickness,
adding up to a X =85. This is comparable, in quality, to
a similar fit within the Skyrme-Hartree-Fock descrip-
tion, ' showing that the relativistic mean-field theory is
just as powerful as its nonrelativistic counterpart. We

TABLE IV. The dimensionless parameters according to Eqs. (28) for some of the sets in this paper. "NL-Z" comes from the full

fit to energy, radius, and surface. "Eand R" comes from a restricted fit to energy and radius only. "E"comes from a restricted fit to
energy only. "CS"comes from a fit to energy, radius, and surface where the surface thickness' has been corrected for contributions of
the surface vibrations. "Lin" comes from a full fit with a restricted parametrization where the nonlinear self-couplings of the scalar
meson have been switched off. "NL1" is the full fit from a previous publication (see Ref. 13); it is slightly different from "NL-Z" here
because a simplified zero-point energy has been used previously. "VT" is a full fit including a tensor coupling for the scalar meson
(see Sec. VI I). In all fits, the vector meson mass has been 780.00 MeV, except for the set "NL1" where it was 795.36 MeV. The
isovector-vector meson mass has been 763.00 MeV throughout.

NL-Z
E and R
E
CS
Lin
NL1
VT

C2

373.250
371.020
370.575
373.308
363.383
373.176
361.601

C2

241.439
245.332
245.570
243.236
276.960
245.458
232.104

2

142.44
130.84
123.53
138.58
179.52
149.67
128.90

—0.279 222 X 10
—0.237 150X 10
—0.234 809X 10-'
—0.265 466 X 10-'

—0.245 78 X 10-'
—0.294 804 X 10

B3

—0.393 463 X 10
—0.326 815 X 10
—0.325 573 X 10
—0.371 885 X 10

—0.34334X10 '
—0.414921X—

m, (MeV)

488.67
500.55
502.71
492.45
551.31
492.25
483.42

f, ig,

0.3416
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TABLE V. Nuclear matter properties and other observables for the parametrizations given in Table IV. The nuclear matter prop-
erties are the following: E/A is the binding energy per particle, given in MeV; p is the density, given in fm; K the incompressibili-
ty, given in MeV; m */m is the effective mass; a4 is the symmetry energy, given in MeV. The other observables are the following: 5e
is the spin-orbit splitting of the lp level in ' 0 [see Eq. (32)] for both protons and neutrons, given in MeV; 5p the width of level distri-
bution in the valence shells of ' 'Pb [see Eqs. (34)], for x= proton or x=neutron, given in MeV; 5p is 100 times the amplitude of the
shell fluctuations in 'Pb [see Eq. (35)], given in fm

NL-Z

Eand E
E
CS
Lin
NL1
VT

E/A

—16.185
(0.047)

—16.162
—16.138
—16.171
—17.071
—16.43
—16.088

0.1509
(0.0007)
0.1489
0.1501
0.1501
0.1492
0.1542
0.1531

173.5
(7.4)

221.1

222.0
187.9
584.4
212.0
173.3

m */m

0.5830
(0.0028)
0.5826
0.5788
0.5826
0.5318
0.5709
0.5918

a4

41.8
(1.1)
39.4
38.6
40.9
48.8
43.6
39.8

5.79

6.47
6.70
6.02

10.01
6.06
5.32

5.87

6.56
6.22
6.10

10.11
6.12
5.39

2.06

2.16
2.17
2.07
3.19
2.07
2.06

1.61

1.67
1.68
1.61
2.38
1.56
1.66

—0.63

—0.67
—0.68
—0.63
—0.73
—0.61
—0.62

will call this optimal nonlinear parametrization "set NL-
Z," and we will discuss some results for this set in more
detail. The Z indicates the consistent zero-point energy
(10), as distinguished from the previous fit, called here
in NL1. The charge density from set NL-Z was already
plotted and compared with experiment ' in Fig. 3. It ob-
viously provides a good reproduction of the overall
features of the density, except for the shell fluctuations 5p
which are, by a factor of 2.5, too large. Set NL-Z and all
further fits in this section share this disease with the non-
relativistic mean-field theories. ' One very probably has
to go beyond the mean field in order to properly describe
this quantity. In Fig. 4 we show the single-particle levels
in Pb for the set NL-Z in comparison with experi-
ment and results from Skryme-Hartree-Fock. ' The
shell closure and the rough level ordering are reproduced
very well. However, the level density in the last occupied
and in the first unoccupied shells is too small. This is
very well expressed by Ae, the level width of the last oc-
cupied shell. Set NL-Z gives De=2 MeV, and the experi-
ment gives De=1 MeV. Again, the relativistic mean-field
theory shares this problem with the nonrelativistic case,
and again, we know that correlation effects are responsi-
ble for the deviation from experiment.

In Fig. 5, we show the single-particle levels in ' 0 for
set NL-Z in comparison with experiment and results
from Skyrme-Hartree-Fock. ' We are interested here, in
particular, in the spin-orbit splitting of the 1p level. Ob-
viously, it is reproduced very well. Note that this is
achieved without the need to adjust an extra parameter,
as was the case for the Skyrme forces.

The fit included the data of eight nuclei, but we see
that the fit gives a good overall description of other nu-
clei. This is illustrated in Fig. 6. There obviously remain
interesting trends within the isotopic chains which are
not resolved by the model. The same behavior occurs in
the nonrelativistic models, ' and again we have to consid-
er effects beyond mean field. The trends very probably
are due to low-energy collective modes. These are
known to have a strong inAuence on the form parameters
R and o..

It is clear that we cannot discuss all variations of the
data and of the parametrization that follow in such detail

208pb
Protons

Skyr.

3pln3p+-
2fsn

1)~—
2f~
1hsn

Rel. Exp.
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FIG. 4. The proton and neutron single-particle spectra for
'Pb. We compare the results from the relativistic model, set

NL, with Skyrme-Hartree-Fock (fit Zo from Ref. 21) and with
experimental spectra.

as in Fig. 6. The discussion of spectra1 properties is re-
duced to a discussion of 5e, , and he, as introduced in
Sec. V. The discussion of the charge density is reduced to
the form parameters R, 0., and the 5p. The distribution
of the errors on E, R, and o displayed in Fig. 6 is dis-
cussed in terms of an aUerage error

Obs. = g (Obs. '"t' —Obs. '""""}

and of a rms error

1/2
+Obs = y„(Obs. e~v —Obs. '"~or"

}



RUFA, REINHARD, MARUHN, GREINER, AND STRAYER 38

16

CD

Q
V)
CD
CJ)
CD

C)

2P1~ 1ty,2
2p+

14~—
25 1y

251~ —]4~
14~—

1P 1n1~ 1P1)p—

Protons

1P
Ref. skyr.

Neutrons

Re). Skyr. Exp.

1P1)2

1p1y—
lp fqq—

ltvjp-
2p&

14~ —&4~—

25+— 251'

14'251

14syq—

6E(%)-

0.5

-05-

6R (%)l
2

0
1p~-1PR— 1pyp—

151jt

151gp—

-2

60 (%) .

FIG. 5. The proton and neutron single-particle spectra for
' O. We compare the results from the relativistic model, set
NL-Z, with Skyrme-Hartree-Fock (fit Zo from Ref. 21) and with

experimental spectra.

5

where Obs. can be E, R, or o, and the sum runs over the
eight nuclei included in the fit. The average error
displays unresolved trends, and the rrns error shows the
quality of the overall fit. Note that it is the rrns error
squared which enters, with the chosen weight, in the X .

C. Variations of the data

In order to check the sensitivity to the various observ-
ables included in the fit, we consider alternative fits of the
nonlinear model with less data included, namely, first, a
fit including only the energy E and the difFraction radius
R, and second, a fit including only the energy E. In Fig.
7, we show the average and rms errors on E, R, and o. for
the various data selections. If we compare set E and R
with set NL-Z, we see that E and R are indeed improved.
The reproduction of o, of course, gets worse. It is impor-
tant to note that this is due mainly to a shift of the aver-
age error in o; set E and R underestimates the surface
thickness for all nuclei by about 5%. This trend persists
if we proceed to set E. Here it is rather surprising that
the radius R is still well reproduced, although it was not
included in the fit.

Thus, we have seen that the relativistic mean-field
model would like to produce less diffuse surfaces. We
know that there are correlations from collective surface
modes which smooth the surface. As discussed in
Sec. IV, we can implement a phenomenological correc-
tion to o. coming from the quadrupole surface vibrations.
The corrected values, oo, are shown in Table II. We have
included a fit comprised of all data, but using the
surface-corrected o.0. The resulting errors on the observ-

I

&50

I

200 A

FIG. 6. The relative errors for energy E, diffraction radius R,
and surface thickness 0 for a variety of nuclei. The results are
drawn vs mass number A. Isotopic chains are connected by a
line. The 8 nuclei included in the fit are distinguished by an ex-
tra circle around the dot.

ables are given in Fig. 7. We see that set CS gives some
improvement compared to set NL-Z, in particular with
respect to surface properties. This shows that the correc-
tion goes in the right direction. However, more surface
modes need to be included to make up a consistent pic-
ture. It is interesting to note that the Skyrrne forces are
more flexible to fit the uncorrected o, see row Sk. in Fig.
7.

In Table IV, we present observables calculated for the
various parameter sets discussed above. The nuclear
matter properties are also given with their extrapolation
errors. The linear parametrization differs dramatically in
all its predictions from any other set and from commonly
believed reasonable values. It is clearly ruled out. There
are only small differences between the predictions of the
other parametrizations. Comparing Skyrrne results '

with liquid drop values, we see that the relativistic mod-
els tend to give somewhat larger binding energies, some-
what lower densities, and rather large symmetry energies.

In Table V, we give the corresponding parameter sets,
since all parametrizations discussed up to now may be
useful for other investigations.
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D. Fits close to OBK potentials

As discussed in previous sections, we do not yet know
how to draw the connections from a microscopic picture
of the nucleon-nucleon interaction to the effective mean-
field Lagrangian. Nevertheless, it is interesting to ask
how close the mean-field parametrization can be to OBE
potentials. We take the point of view that the o. meson is
the most unphysical meson, and that the cu and p mesons
should come quite close to those in the OBE potentials.
Thus, we take some current OBEP's, keep the p and the
co meson parameters fixed, and fit only the four 0. meson
parameters g, b2, b3, and m . In particular, we discuss
in the following set HEA from Ref. 41, called OBE1, set
EHM from Ref. 41, called OBE2, and the set from Ref.
20, called OBE3.

In Fig. 8, we present the average and rms errors for the
OBE fits in comparison with the optimal set NL-Z. Ob-
viously, there are differences in the quality of the fits be-

tween the three OBEP's. However, there is at least one
surprisingly good fit, OBE1, showing that indeed there is
still some relation of the effective Lagrangian to the more
microscopic OBEP's. It is interesting to note that the
quality of the fits is related to the strength of the p cou-
pling. The relativistic mean-field theory obviously likes
to have large p couplings. We will discuss the p coupling
in Sec. VI E.

E. The eÃect of the p meson

The above studies of OBE-related sets hint that a siz-
able p coupling is needed for a good fit to the binding en-
ergies. We now study the effect of the p meson separately
by examining fits within the nonlinear model for a fixed p

23%
22%

05-
1.5-

R

Lin NL ERR E CS Sk

FIG. 7. The average errors (op|;n cases) and the rms errors
(shaded cases) for the observables E, R, and cr and for various
sets: Lin denotes the linear model fitted to full data; NL the
NL-Z nonlinear model fitted to full data; E and R the nonlinear
model fitted to E and R only; E the nonlinear model fitted to E
only; CS the nonlinear model fitted to full data with a corrected
for surface vibrations; Sk the result of Skyrme force fit for com-
parison.

I

NL QBE1 OBE2 QBE3

FIG. 8. The average errors (open case) and the rms errors
(shaded cases) for the fit observables E, R, and 0. and for the
various OBE sets (after fitting the o meson). The result of the
"set NL-X" is given for comparison.
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a~ ™vl coupling constant. The results are shown in Fig. 9 as
functions of the effective p coupling, cz ——(g.mz/m~) .
The 7 demonstrates the need for a p meson, and it clear-
ly displays the tendency to rather large p couplings corn-
pared with the c values in the OBEP's. These are neces-
sary to properly adjust the isotopic trends in binding and
radius.

From the observables we show in Fig. 9, there are only
two which depend significantly on c . Not surprisingly,
the most dramatic effect is seen on the asymmetry energy
coefficient, a4. We see that the large p coupling gives rise
also to a too large a4 and a slightly too large binding en-

ergy, E/A. This is all a bit puzzling. One needs to study
excitation data in order to see whether the large c is
compatible with isovector giant resonances.

I

10 20 30 40 C

F. The e8'ect of the nonlinear coupling b3

E/A {MeV).

16.0 .

t

10
k 4

20 30 40 Cp

COO-

200-

I

10 20 30
I

40 Cp

FIG. 9. The quality measure 7, the binding energy E/A and
symmetry energy a4 in nuclear matter from fits within the non-
linear model but with fixed p coupling, drawn as a function of
the eftective p coupling cp (gpmz/mp)

In Secs. VI A and VI B, we have seen that the non-
linear self-couplings of the 0. meson are very important to
achieve a decent reproduction of nuclear ground-state
properties. It is interesting to see how the results depend
on the strength of the nonlinearities. Of course, it is in-
convenient to trace dependencies on two parameters.
Thus we investigate the effect of the quartic self-coupling
63. This is done again by performing fits within the non-
linear model, but keeping b3 fixed. The results are drawn
in Fig. 10 as functions of the effective coupling

displays a sharp minimum at the optimal value of
83 from set NL-Z. Here, 83 is negative and there is little
chance for a second minimum with positive B3. A nega-
tive 83 makes the equation of state for the cr field asymp-
totically unstable. This, of course, would be disastrous if
we believed the Lagrangian to be an ab initio microscop-
ic Lagrangian. For then, any quantum Auctuation of the
cr field would trigger a tunneling to the unstable region.
However, since we are working with an effective La-
grangian for use in connection with the mean-field ap-
proximation, this is not a problem. Here the cr field is a
classical field, and it cannot overcome the high barrier in
the equation of state. Thus, we think that the negative
83 is not a point of concern if one stays within the limits
of the model. One has to be careful, however, in applying
the parametrization to a dynamical calculation; if the sys-
tem acquires sufficient excitation energy, the 0. field may
be kicked over the barrier and run to infinite values.
Here is a point where we urgently need more theoretical
development to get definite statements about higher non-
linearities, which could render the equation of state
stable, or about an energy dependence of b2 and b3,
which stabilizes the o. field for energetic processes.

In Fig. 10, we also show the results for those observ-
ables which depend sensitively on 83. Most interesting is
the strong variation of the compressibility E. Small 83
gives too large a compressibility. There is a clear relation
between E and the average surface thickness, small sur-
faces correspond to large E, and vice versa. This connec-
tion was also observed in classical mean-field models. '
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The trends in E/A and po favor the solution with
B = —0.4. For larger values of B3, these observables de-
viate even more from the local density mode

3=
el, LDM)

values. The spin-orbit splitting has a maximum at——0 2 d decreases monotonically with rising 3.
f B areThis is an additional hint that positive values of 3 are

not desirable. Finally we see that the effective mass
m'/m undergoes strong changes. We will discuss t is
topic in Sec. VI G.

particle potential
Ala

"Ca
SRt NL

2 +nut:. mott.

G. Constraining the effective mass

The fits in the linear and in the nonlinear mo eels all
have very smail effective masses, m */m =0 58, or even
lower. With the nonrelativistic Skyrme force, one usually
obtains values around 0.8. This is a large difference, even
in view of the fact that we are comparing different
definitions o t e e ec

'f th ff ctive mass. The small effective
masses cause some problems with yh the stabilit of relativ-
istic calculations and are probably nonphysical. Also,
one obtains an unstable equation of state for neutron star

In Fi . 11, we show the particle and antiparti-
We seecle otential for Ca evaluated with set NL-Z. e see

that the shell Auctuations diminish the gap between the
particle and antiparticle potential to a value below the

e a 2m*. A small enhancement of the central
ti article o-density generates a situation where the antipartic e po-

tential crosses the 1s, &2 particle state, and then the model

0 ~ I I

r (fm)

FIG. 11. The particle-potential, Usca]ar+ vector++m, and theU, for neutrons inantiparticle potential, —mB —
scalar vectors

d f " t NL-Z" and drawn as functions of the ra-Ca evaluate or se
dial distance r.
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becomes unstable with respect to excitations out of the
vacuum.

We have performed fits within the nonlinear model to
the standard set of data, plus a contribution to 7 which
enforces a desired value of m */m in nuclear matter. The
result is shown as the straight line in Fig. 12. We see that
the P clearly favors m */I =0.58. Values around 0.60
may be acceptable if a somewhat increased stability is
desired. However, larger values for m '/m are clearly ex-
cluded. It is not only the X which rises dramatically
with rising m /m, but also the spin-orbit splitting 5e, ,
is decreasing substantially. The proper value of 5e, ,
seems to depend critically on large scalar and vector
fields which cancel to yield a small nucleon potential, but
which also yield very low effective masses. We also have
performed fits which include, as additional data, the 5e, ,
and 5e, , in ' 0, the dashed line in Fig. 12. Obviously,
there is no chance to decouple m'/m and 5e, , within
the given model.

In Fig. 12, we show also those nuclear matter proper-
ties which display sufficient variation with m'/m. It is
comforting to see that the values which come closest to
the commonly believed nuclear matter properties (see line
LDM in Table V) occur just at low m'/m. We see,
furthermore, a surprising sensitivity of the extrapolation
to nuclear matter with the inclusion of the extra data,
5e... in the fit. This shows the degree of ambiguity in all
those extrapolations to nuclear matter.

H. Varying the nucleon radius

As pointed out in Sec. IV, there are already some
correlation effects taken into account in the evaluation of
the charge density: the folding with the charge and mag-
netic density distributions of the proton and the neutron.
This is certainly an important effect, and it cannot be
neglected. However, the uncertainty in this procedure is
that free-nucleon form factors are used for bound nu-

cleons which move off the mass shell. In the same con-
text, there are investigations which estimate the quark
structure of nucleons moving in a nuclear medium and
which conclude that the nucleon radius should increase.
Thus, we have tried to check the effect of a changing nu-
cleon radius.

To this end, we have simply scaled the intrinsic nu-
cleon form factor by a factor (1+g)

F; (q)~F;[(1+rl)q ] (38)

which means that the nucleon radii are also increased by
a factor (I+g). For a fixed increase rl, we have per-
formed fits to the standard data within the nonlinear
model. The results as functions of the percent increase g
are shown in Fig. 13. The effect of the increased radius
on 7 is dramatic. However, we see that the fits with the
corrected surface thickness 00, dashed line in Fig. 13, are
less biased towards larger nucleon radii, and it is not yet
clear what would happen if all collective surface modes
were included in the correction of e. Here we have two
effects which soften the surface: collective surface modes
and an increase of the nucleon radius.

In Fig. 13, we have also shown those nuclear matter
properties which depend sensitively on the nucleon ra-
dius. The trend towards smaller pz is understandable:
the nucleon radius becomes larger and less extension
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FIG. 12. The quality measured P, the nuclear matter prop-
erties E/A, E, and a4, and the spin-orbit splitting in ' 0 5E,
for fits within the nonlinear model to the standard set of data
and with constraint on a certain effective mass m */m, drawn as
a function of this m*/m. In addition to the fit with standard
data (straight line), we also give the results of fits to the standard
data plus the spin-orbit splitting 5e, , as an extra datum in J,
weighted with an average error of 0.3 MeV (dashed line).

FIG. 13. The quality measure P and the nuclear matter
properties E, a4 and po from fits within the nonlinear model
with the intrinsic nucleon radius increased by g. Results are
drawn as a function of the radius increase g in percent. Fits are
performed once to the standard set of data (straight line) and
once to the set of data with corrected surface thickness o.o
(dashed line).
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needs to be provided by the mean-field solution. The
effect on K is also clear from the correlation between
compressibility K and surface thickness o. already ob-
served: smaller o. correspond to larger K, and an increase
of the nucleon allows smaller o in the mean-field solu-
tion. It is interesting to note that there is also an effect
on the surface symmetry a4. All three trends are very
desirable and bring these nuclear matter properties closer
to the LDM values (see Table V).

ground-state properties; namely to binding energy E,
diffraction radius R, and surface thickness 0. for eight nu-
clei. The energy is the least problematic quantity because
it can be derived consistently from the given effective La-
grangian. Other observables are more ambiguous since
one should derive for them effective operators which in-
clude the same type of correlations which have been as-
sumed in the effective Lagrangian. These correlations are
not known in detail. We have chosen, with diffraction ra-

I. The eftect of tensor couplings

As a first extension beyond a minimal coupling theory,
we have introduced tensor couplings for the p meson and
the r0 meson in the effective Lagrangian (1). This is a use-
ful extension for a comparison with OBE potentials be-
cause these already include such tensor couplings (see
Sec. VID). This coupling adds some momentum and
spin dependence, and it is interesting to see how this
modifies the model.

First we have examined the sensitivity to a tensor cou-
pling for the p meson. In Fig. 14, we have given X its in-
dividual contributions, and the surface symmetry
coefficient a4 as a function of the relative p coupling

f /g . We see that nothing is gained by the p tensor
coupling. It is just insensitive for a broad range off /g
The nuclear matter properties are also rather insensitive,
as illustrated by a4 in Fig. 14. It is interesting to see,
however, that the single contributions to X show more
dependence on f /g . The surfaces seem to like tensor
coupling, whereas energies and radii do not.

Next we investigated the tensor coupling for the cu

meson. In Fig. 15, we have drawn the 7 and the nuclear
matter properties E and m'/m as functions of f /g .
Here we see some improvement in X . Most of the ob-
servables are insensitive, and they do not change
significantly within their extrapolation errors. However,
the compressibility decreases further with decreasing f„,
and m /m increases. The larger m'/m is a desirable
feature and is achieved without destroying the good
spin-orbit splitting. This is an important result and
should be included in future studies with relativistic
mean-field models.

a~ (MeV)

42:

40-

total

0.35

I I

fp lg

VII. CONCLUSIONS

We have investigated the strengths and the weaknesses
of a relativistic mean-field description of the ground state
of nuclei. The theory is considered to be the relativistic
generalization of a nonrelativistic mean-field theory em-
playing effective forces like the Skyrme force. In the rela-
tivistic case, forces are generalized to include meson de-
grees of freedom. Thus, we work with a seemingly basic
Lagrangian of coupled mesons and nucleons. This La-
grangian, however, is an effective Lagrangian, and the
meson parameters are the free parameters of the model.

We have studied systematically the possibilities and the
limits of the model by using least-squares fits to nuclear

2
XR

0
f /g

FIG. 14. The quality measure P and the symmetry energy a4
from fits to standard data within the tensor-extracted model.
Fits are done for fixed-tensor couplings f and f =0, minimiz-

ing 7 with respect to all other free parameters. Results are
drawn as a function of the p-tensor coupling f /g . For X' we

also show the three partial contributions coming from energy E,
radius R, and surface thickness o.
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dius R and surface thickness o, those parameters of the
charge form factor which are least sensitive to correla-
tions. However, certain corrections which go beyond the
mean field are already included: the center-of-mass
correction to the binding energy, the form factor, and
also the folding of the charge density with the intrinsic
electric and magnetic nucleon form factor. These are
unavoidable and rather clear corrections. Additional in-
sight into properties of the model is gained by looking at
a few other observables which are either not experimen-
tally accessible or which are shadowed by correlation
effects.

We find that the linear model is insufhcient for a
reasonable description of nuclei. The nonlinear model,

on the other hand, gives a very good description with an
error of 0.3% for the energies, of 0.7% for the radii, and
of 3.7% for the surfaces. This description reaches the
quality of the Skyrme forces with the additional bonus
that the spin-orbit force and other spin properties are
given without extra adjustment. This nonlinear model
with this parametrization provides a good starting point
for any further investigation with the relativistic mean-
field theory.

The inclusion of tensor couplings improves a bit the
reproduction of surfaces. We have to keep in mind, how-
ever, that the choice of tensor couplings as the next ex-
tension is somewhat arbitrary, guided again by a similari-
ty to OBE potentials. The nonlinear self-couplings of the
scalar meson are an essential ingredient which brings the
model to quantitative agreement with data. One problem
is that the parameters of the nonlinear terms are such
that the meson equation of state is asymptotically unsta-
ble. We have studied systematic variations of the non-
linear coupling and found no chance to construct an
asymptotically stable equation of state. We think that
this possible instability is no problem within a mean-field
treatment since the unstable region is separated by a bar-
rier which cannot be penetrated by a classical meson
field. However, problems may occur if one applies the
parametrization to dynamical calculations.

All the parametrizations which we find lead to low
effective masses, m*/m =0.58. This causes problems in
extrapolations of the model to neutron matter, high den-
sities, and high temperatures, and it yields instabilities for
some nuclei with large density fluctuations.

We have also studied, in a preliminary fashion, two
correlation effects: the influence of quadrupole surface
vibrations and an increase of the nucleon radius in the
nuclear medium. Although very different in origin, both
effects act in the same direction increasing the surface
thickness. This increase is very desirable. It improves
substantially the quality of the reproduction of the nu-
clear surface. The optimal parametrization found by our
fits provides a good basis for further studies in this direc-
tion. We conclude that the nonlinear relativistic mean-
field model, with the appropriate choice of parameters,
allows a very good description of nuclear ground-state
properties, competitive with and, in some sense, superior
to the Skyrme force models. We clearly reach the limits
of the parametrization and perhaps of the mean-field ap-
proximation, as such. Further investigations should look
for more correlation eff'ects (surface modes). They should
include more observables, e.g. , dynamic properties, in or-
der to critically explore the parametrization. Also, one
needs more theoretical development which draws the
lines from a microscopic Lagrangian to the effective
mean-field Lagrangian. For many of these investigations,
the optimal parametrization presented in this paper pro-
vides a good starting point.

FIG. 15. The quality measure P and the nuclear matter
properties effective mass m /m and compressibility E from fits
to standard data within the extended model. The tensor cou-
plings have been kept fixed during the fit, f at fq ——0 and f at
various values. Results are plotted versus f„lg .
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J d t I
G I'+ IF. I'I=l.

With the above choice of relative phases, both G and F
are real. The densities then become

(A2)

F are the remaining radial wave functions for upper and
lower components. They are normalized so that

APPENDIX: SPHERICAL REPRESENTATION
AND NUMERICAL PROCEDURE

p, =
2 g w (2j +1)(G F—),

4mr a

po= 2 g w (2j +1)(G +F ),
4mr

(A3a)

(A3b)

We restrict the present considerations to the case of
spherically symmetric mean fields, i.e., 4=4(

i
r

i
),

Vp = Vp(
i
r

~

), etc. The nucleon wave function can then
be expressed as

Pop= g w (2j +1)rp (G +F' ),
4m.r

P p, o= (Po+P—o,o)

(A3c)

(A3d)

G (r)
l

T Jalama

F (r) o.p
r r Jalama

(Al)

where Pil is the spinor spherical harmonics and G, and

Pp —— g w (2j +1)28„(F G ),
4nr

(A3e)

Pop= 2 gw (2j +1)28„(F G )rp~ .
4mr

(A3f)

The meson field equations become simply radial Laplace
equations. The nuclear radial wave functions are deter-
mined by the coupled equations

eG =

e+ =

fv fa 1+zo+ + B„Vp+ BRprp F + ma+gs4 +gv Vp+ &gg Rp prp +earp G
T T m mg

d &a fv fs o+ +
2

~.Vo+
4

B,Roro, Ga — ~a+gs@—gv Vo ,'gzRp prp ——eAp
—F

r r m mg 2

(A4a)

where

—(j+1/2) for j=1+1/2
+(j+1/2) for j=1—1/2 . (A4b)

W(r)= fv f~+ av+ aRr,
r 2m " 4m

(A5d)

The F~ is needed for the normalization (A2) and the den-
sities (A3). It is reconstructed from

eG =— —W(r) M,s + W(r) G + U,trGGr dT

(A5a)

jef ~~+ m g +gg@

1+vo—gv ~o ——gzRo o&oa —~~o (Asb)

1+wo,ff
——m~g~4+gv Vo+ —,'g~Ro ohio +ego

(A5c)

These equations are solved numerically by standard tech-
niques from conventional Skyrme-Hartree-Fock. To this
end, we transform Eq. (A4a) to resemble a Schrodinger
equation. This is achieved by eliminating F . We obtain
as equation for G

F =Mes' +W(r) G
dT

(A5e)

The effective mass in the "Schrodinger equation" (A5a)
depends itself on the single-particle energy e . This
causes no problem since we are, anyway, going to solve
Eq. (A5a) iteratively. We have seen that this additional
energy dependence does not destroy the stability of the
procedure. The effective Schrodinger equation (A5), to-
gether with the field equations for the mesons, is solved
with an accelerated gradient iteration which is taken over
from an existing Skyrme-Hartree-Fock code. The pro-
cedure goes as follows. In the nth iteration step, we have
arrived at a set of wave functions G'"'(r) and F'"'(r), oc-
cupation numbers w'"', and a scalar field 4'"'(r). First,
we add up the densities p~g'(r), pp"'(r), po"o(r), and pp„'p(r)
according to Eqs. (A3) and using G'"', F'"', and w'"'.
Second, we determine the meson fields by solving the ra-
dial Laplace equations



RUFA, REINHARD, MARUHN, GREINER, AND STRAYER 38

d2 +m' (re("+")
r2 S

G(n+)) (r) + W(r) (M'(r+" )
' + W(r)

dr

[g (n)+ b (@(n))2+ b (@(n))3]

(A6)

+( U(n+1) e( n))G( n)

ff Ccz (A7a)

2

+m v ( r VI)" + "
)= rg vpc"',

dr

and similarly for Roo+" and 3 o" +". Third, we combine
the meson fields to M(,(r+" and U(,(t+", as given in (A5),
and iterate the 6 by an accelerated gradient step

where 8 means orthonormalization of all G such that

dr(G(n+)) +G(n+1) +F(n+() +F(n+() )a P a p ap' (A7b)

Accordingly, F'"+"are evaluated from the 6'"+"using
(A5d) with M', tt+". Fourth, we evaluate new e by
averaging the Dirac equation

(n+1) Ff + Pr G +G~ +W(r) F,+G U, ttG F(M—,tt E'"))F—
r

(n+1)

(A8)

where every quantity on the right-hand side bears itera-
tion index (n+1). Fifth, we determine the w'"+" ac-
cording to the e~" +"by adjusting a Fermi surface ez"„+'
such that the particle number is given with (A5c). This
completes one iteration step. The iteration is continued
until the binding energy is stable up to six digits. The
wave functions and the fields are represented on a grid in
r space with a spacing of r =0.3 fm and an extension up

to R,„=1.16 fmA' +6.4 fm. We use five-point for-
mulas for integration and differentiation. The Laplace
equations are solved with a scheme which achieves five-
point precision for the Laplacian by using only three-
point connections. Altogether we obtain a very fast code
which allows us to run it over and over again a least-
squares fit.
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