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Bag-model nuclear equation of state in the Wigner-Seitz approximation
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The nuclear equation of state is calculated using the soliton bag model and the %'igner-Seitz ap-
proximation for baglike states on a lattice. Since the Wigner-Seitz treatment averages over lattice
structure, it is more realistic for a fluid like nuclear matter than is a periodic crystal mode1. A cru-

cial feature of the model presented here is the manner of filling the Bloch band of independent parti-
cle states: We argue for a dilute filling of the entire band. Quark wave functions sigma field

configurations, and energies are calculated as a function of baryon density. The energies are only

qualitatively similar to semiempirical nuclear energies. Within the context of this crude model, we

find a first-order phase transition corresponding to a nuclear matter phase which sets in at about six

times normal density and a plasma phase at roughly 12 times normal nuclear density.

I. INTRODUCTION

The description of individual nucleons as three-quark
bags or clusters has had remarkable success in reproduc-
ing elementary properties of hadrons. The treatment of
interactions between such structures is more complex,
and the calculation of N-N scattering has been studied by
a number of research groups. Nuclear matter is still
more complicated, particularly if one wishes to go
beyond the independent pair approximation. Even the
analog of the Fermi gas is already a very complicated
problem.

An alternate, albeit simplistic, approach is to consider
nuclear matter as a collection of bags, like the holes in
Swiss cheese, and to study the structure of the system un-
der compression. We anticipate that the interstices be-
tween the bags —the physical vacuum —should disap-
pear as the density is increased leading ultimately to a
quark plasma. Is the transition continuous or discontinu-
ous, i.e., what is the order of the "phase" transitions
Models which place nucleon bags on a regular lattice
have already received considerable attention.

Achtzehnter, Scheid, and Wilets' calculated the equa-
tion of state for a periodic lattice in the nontopological
model. The scalar sigma field was taken to have the sym-
metry of a cubic crystal and the quarks are then Dirac-
Bloch waves. In the mean-field approximation (MFA)
which was used, the valence quarks occupy one-fourth of
the lowest Brillouin band, since each site can accommo-
date 12 quarks (two spin, two flavor, three color) and
here each site is identified as a baryon consisting of three
quarks. Zhang, Derreth, Schafer, and Greiner solved
the problem using the MIT model on a crystalline lattice.
This was a remarkable feat, since the quarks are then sub-
ject to boundaries which are hard with sharp corners.
Banerjee, Glendenning, and Soni employed the hybrid
topological soliton model utilizing the Wigner-Seitz ap-
proximation. Reinhardt, Dang, and Schulz also used the
Wigner-Seitz approximation, but with a nontopological
soliton bag model. Goldman and Stephenson have stud-

ied a periodic quark model in order to understand quark
tunneling in nuclei.

In the present work, we use the soliton bag model in
the Wigner-Seitz approximation. However, inasmuch as
nuclear matter behaves more like a fluid than a crystal,
we believe that the Wigner-Seitz approximation is more
physical than the crystal model since it represents an an-
gular average over the location of neighboring sites and
carries no reference to particular crystalline symmetry.
This approach has been used very successfully in con-
densed matter physics to calculate the equation of state of
liquids. The original arguments were that the approxi-
mation should be good for a close-packed crystal since
the Brillouin zone surface is close to spherical.

An important consideration in our calculations is the
manner of filling of the Bloch states within the lowest
band. The filling is clear in the pure MFA, or
independent-particle tnodel (IPM), since then the lowest
states would be occupied with unit amplitude up to some
Fermi energy determined by the density. In fact, howev-
er, quarks are strongly correlated by color electric and
magnetic forces. Hence, levels within a band are mixed.
This mixing leads to an effective probability of occupa-
tion within a band, and has (as we shall see) a crucial
eff'ect on the equation of state and the stability of the sys-
tem.

II. THK SOLITON BAG MODEL

We utilize here the soliton bag model of Friedberg and
Lee. The model is qualitatively similar to the MIT
model, but has several important factors not present in
boundary-condition models.

The first is that for each dynamical coordinate which
appears in the Lagrangian, the time derivate of that coor-
dinate also appears. Thus, a Hamiltonian can be con-
structed and dynamics calculated utilizing techniques fa-
miliar from nuclear physics. For the calculations
presented here, however, dynamics are not yet involved.
The second feature —more important in the present
context —is that the model leads to solutions with a
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smooth, finite bag surface. This is important computa-
tionally and, we believe, physically as well.

In the soliton model, the (effective) Lagrangian density

tions then satisfy Bloch's theorem

P„(r)=e' 'P„(r), (3.2)

1S

(2.1)

where k is a continuous vector and Pi,(r) is periodic in

the a„

where the individual terms have the following interpreta-
tions:

gf Qf ( y p —mf )gf describes the quarks as
Dirac particles of mass mf, where f is the flavor. We
take m„=md ——0.

= —,'(Bo ) —U(cr ) describes the scalar soliton field o,
which represents the complex structure of the vacuum,
arising from virtual gluons and quark-pairs interacting
among themselves. The momentum operator conjugate
to 0. is ~=a, and the two satisfy the canonical equal-time
commutation relations. The nonlinearity of the soliton
field enters through the self-interaction function

U(o )=—o +—o + o+8—.
2 3~ 4t

(2.2)

III. THE LATTICE MODEL

The polynomial terminates in fourth order to ensure re-
normalizability. U(0)=B is to be identified with the
"bag constant" or volume energy density of a cavity.
With suitable adjustment of the constants, the function
has two minima, one at 0.=0, and another, lower
minimum, at 0.=o„„.The physical vacuum corresponds
to the lower of the two minima, and the constant B is
chosen so that U(cr„„)=0.

= —ggo g gives the interaction of the quarks with
the soliton field. In the presence of valence quarks, the
sum U(o )+gfcrP may have a minimum (depending on
the parameters) near o. =0 (the perturbative vacuum).
This leads to a cavity in the cr Geld, referred to as the
"bag."

Color gluon fields are introduced as in QCD, ex-
cept that they interact with the soliton field through a
dielectric function ir(cr), chosen such that a(0)=1 and
ir(o„„)=0. The magnetic susceptibility is p=a '. The
dielectric function is not uniquely prescribed in the mod-
el, and a choice must be made as to its functional form.
This and other matters relating to gluonic effects in the
model have been discussed elsewhere. However, we note
that the general requirements on ~ do yield absolute color
confinement.

Qi, (r) =Pi,(r+a„), (3.3)

although it need not possess the other symmetries of o..
The P„satisfy the Dirac equation

[a.(p+k)+gPo (r)]Pi, ——ei,Pz, (3.4)

where the eigenvalues e& have the characteristic band
spectra of the fcc crystal.

At very low density —well separated bags —the self-
consistent solutions for o and P are those of isolated bags
and the low-lying energy spectrum becomes discrete. As
the bags are moved closer together, the eigenvalues e&

spread out into bands.

IV. THE WIGGLER-SEITZ CELL

and

du& Idr = (ger +Ei, )v&,

du& Idr+2v&/r =( —go+@& )u&,

(4.2a)

(4.2b)

Although the lattice calculation is feasible, as has been
demonstrated by the work of Achtzehnter et al. ,

' we
choose to use the Wigner-Seitz spherical cell approxima-
tion. As discussed in the introduction, we believe that it
is more physical than the lattice model for nuclear
matter, and use it here as a model in its own right, rather
than as an approximation to the crystal model. However,
certain boundary conditions associated with the model
are conveniently determined by reference back to the
crystal.

A single "bag" is enclosed in a Wigner-Seitz sphere of
radius R such that its volume is the same as that ascribed
to each bag in the crystal. (In solid state literature this is
usually denoted by rs )Becau. se of the assumed spherical
symmetry, the lowest band assumes the form for s states;
1(& can be represented by

u&(r)
1(„(r)= . X (4. 1)io"ru&(r)

so that

o(r) =o (r+a„), (3.1)

As an introduction to the Wigner-Seitz approximation,
we first consider the replacement of the moving, fluctuat-
ing bags by a regular, periodic face-centered cubic (fcc}
lattice of bags. These are characterized by the lattice dis-
placement vectors a„. We work in the mean-field approx-
imation, with o a c number. We take o (r) to be periodic
in the crystal translation vectors,

Vo(r }+—U'(o }+ f k dk[ui, (r) vq(r)]=0, —
k'

(4.2c)

where k is the highest k value in the band that is filled,
and is determined below. The factor 9/k assures three
quarks per bag irrespective of k. 7 is the spin-flavor-
color function. Here the quark functions are normalized
to

and to contain the reflectional and discrete rotational
symmetries of the fcc lattice.

In the absence of OGE interactions, the quark func-

4~ r2dr uk2 r +vk2 r —1
0

The boundary conditions on 0. are

(4.3)
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o'(0) =cr'(R) =0 . (4.4)

The lowest member of the quark band satisfies the bound-

ary condition

ub(R)=0 Ub(R)=0 .

At the top of the band, we have

uE(R)=0 .

(4.5}

(4.6)

Using these boundary conditions and a given 0(r), we

can solve for the corresponding eb and e, . The inter-
mediate e's lie in the continuum of the band and do not
require the solution of an eigenvalue problem. Rather E'p

is specified and Eqs. (4.2a) and (4.2b) are integrated from
r =0 to r =R without an eigenvalue search. Let
s =k/k„~ (k„z is inversely proportional to the lattice
spacing); s ( 1. We make the reasonable ansatz that

&(&)=Eb+(e —Eb) sin '(m's/2) . (4.7)

Using the reduced momentum label s instead of k, the in-
homogeneous term in (4.2c) can now be written

9 f 'ds(u —U )
S

(4.8)

V. BAND FILLING

Each level is 2(spin) &(2(flavor) X 3(color) =12-fold de-
generate. If we were to neglect gluonic interactions, the
lowest band would be densely filled one-fourth of the way
up, implying s =(—,

')' . However, the nucleon and delta
are each particular linear combinations of products of
single-quark states, and we are interested in the nucleon
states.

For isolated bags, there are

12
=220

three-quark states which can be constructed from spacial-
ly identical orbitals. Of these, there are only 20 color-
singlet states; the four nucleon and 16 delta states. The
soliton model guarantees color confinement for isolated
bags, although color percolation can occur for overlap-
ping bags. The color-electric matrix elements (required
for color confinement) are of the order of a, /(r ) 'r,
which is several hundred MeV. The color magnetic in-
teraction is responsible for at least half of the N-6 split-
ting of 293 MeV; the rest can be interpreted as pionic in-
teraction (which must also be included in the following
argument). In the case of band structure in crystals or
the Wigner-Seitz model, these gluonic matrix elements
lead to a mixing of the band members and a separation of
the many-particle states into nucleon bands, delta bands,
and bands of different color symmetry. In the results
presented below, we find that the width of the lowest
band varies from zero (for well-separated bags) to about
400 MeV at R =0.8 fm, which corresponds to about 3.4
times normal nuclear density. For large separations the
mixing matrix elements are large compared to the band
width; for small separations they may become compara-

VI. THE UNIFORM PLASMA

In the high-density limit we may assume that a uni-
form plasma is the preferred phase. In the MFA, the en-
erjry per unit volume of this uniform plasma is given by
(d k=dk /(2m) )

—=12f d k[k +(gcr)]'~ 8(kp —k)+ U(0)
V

2k~Ep (ger ) keep-= 3 3 2

4m

kF +eF +U(0), (6.1)—(ger) ln
go

with ez ——[kz+(gcr) ]'; 12 is the degeneracy factor.
The baryon density, which is one-third of the quark den-
sity, is given by

—=( ', mR } '=4 f d'k—8(k~ k)= k~3, —(62)

or

k~ = —,'(9m )' R (6.3)

The energy (6.1) must be minimized with respect to cr
for fixed volume. Since U(cr) has a local minimum at
o.=0 and the integral has an absolute minimum there, we
see that cr =0 is always a local minimum (and usually the
lowest minimum) of the full energy density. For those
cases we see immediately that

kF+aE 3

2m'
(6.4)

ble. We are thus, led to the reasonable assumption that
band levels are fully mixed by the color electric and mag-
netic forces, and that all levels within a band have equal
probability of occupation. This corresponds to setting
s =1.

Note that the next band, corresponding to the first ex-
cited s level, lies, in the MIT model, at 2.645 times the
lowest s level, roughly 500 MeV above the lowest level.
Hence, we ignore mixing to the higher bands.

The issue of the occupation probability of levels within
a band could be clarified by diagonalizing the Hamiltoni-
an matrix for a discretized band. The matrix elements
are well defined within the soliton model. Combinatorics
expand the size of the matrix very rapidly, but a two,
three, or even four level approximation should be feasi-
ble. This exercise is left to the interested researcher. A
similar approach has been used by Kerman and Dagde-
viren' to produce three-quark correlations in the plasma
phase. There the calculation of gluon-exchange energies
is simplified by the fact that the Block waves are simply
plane waves.

As will be seen below, the structure of the Wigner-Seitz
cells appear to scale approximately under compression.
In order to obtain a simple estimate for the color-
magnetic interaction for each cell, we take one-half the
N-6 splitting and multiply it by the ratio of the rms ra-
dius of quarks in a proton to that of quarks in a cell of ra-
dius R.
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or
2—=—'k + B=3.4273R +—mR 8 .E 3m ] 4

N ' 2kF
(6.5)

(6.6)

where as is the strong coupling constant appropriate to
the Fermi momentum. The leading-logarithm expression
fo ~s'

(k )
12m

29]n(k /A )
(6.7)

where we use A = 150 MeV for the QCD scale parameter.
At sufficiently high densities, other flavors of quarks

would also appear. Strange quarks, for example, could be
created when kF(u, d)=ms-280 MeV, which is compa-
rable to normal nuclear matter density. We do not pur-
sue that interesting possibility here. '

For some values of the volutne (or R), there is another
minimum of (6.5). These minima depend on the soliton
model parameters a, b, c, and g. This branch plays no
role here since it lies above either the o =0 plasma curve
or the nuclear matter curve; it was considered in Ref. 1.

VII. NUMERICAL RESULTS

We have performed calculations based on several sets
of parameters, all belonging to the family a=0. The pa-
rameters b and g were taken from the compilation of
Horn' which are to fit the mean baryon mass and the
proton rms charge radius, including recoil effects. To
study the dependence on the parameter c, parameter sets
were chosen from that compilation for c =10, 10, and
10 . The results do not differ appreciably even over this
wide range of values of c, except that solutions are "lost"
sooner (i.e., lower density) for the smaller values of c.
For c =10, for example, solutions were obtained for all
values of R; for c =10, the solution was lost somewhere
in the range 0.8 &R &0.9 fm. For calculations reported,
we choose the parameter set with c = 10 because it gives
a "reasonable" value for the glueball mass, '

[U(cr„„)]',although we appreciate that the glueball
has not been observed and that the lattice calculations

Note that (6.5) depends only on the bag constant 8 and
the cell radius R. It is of the same form as the energy ex-
pression in the MIT model, except that here the
coefficient of R ' is 3.4273 compared with the MIT
value (for three quarks) of 3 && 2.0428 =6. 1284. As
should be well known, the uniform plasma in the MIT
model has a lower energy per baryon than isolated bags
when gluonic effects are ignored.

As we have seen, gluonic effects will be needed if the
model is to provide more than a crude qualitative
description of the hadronic phase. Similarly we should
include gluonic contributions to the energy of the plasma.
These have been calculated by Freeman and McLerran'
and by Baluni. " To order as lnas, the plasma energy is

3 4 2as ~s3
kF '1+ +

&
[21n(2az/n)+6. 79] '+8,

3~ 3m3

remain uncertain. The full set used here is

a =0.0,
b = —700.43 fm

c =10

g =10.98,

500—
X

400—
O

~ 500—
CJ0

CO

~ 200—
OP

O
Ioo—

0
0.5

I

I .0
R (fm)

I

l.5 2.0

FIG. 1. Energies for the lowest s, zz Bloch band as a function
of the cell radius. The standard text parameters were used.

from which it follows that 8 =0.27 fm =53 MeV/fm,
go „„=2.3 fm ' =454 MeV, mG~ ——8.58 fm ' = 171
MeV.

The lowest s band ranges, bounded by eb and e„are
displayed in Fig. 1 as a function of the cell radius over
the range 0.9 (R & 2.0 fm. We note that stable Wigner-
Seitz solutions could not be obtained, even at the radius
of normal nuclear density (Ro ——1. 12 fm), with fillings

corresponding to s significantly less than unity.
The total energy per baryon is plotted in Fig. 2 for the

parameter set previously listed; the other sets did not
differ significantly, except where they terminated. For
filling corresponding to s significantly less than unity, the
energy was found to decrease with decreasing R. Since
these calculations are based on the MFA, they do not
contain the higher-order terms necessary to describe
recoil corrections nor details of the N-N interaction,
namely the effective attraction attributed to one and two
pion (or "sigma meson") exchange. The energies are too
high at low density inasmuch as the parameters have
been fit to yield the mean nucleon-delta mass including
recoil corrections. The magnetic energy, which splits the
nucleon and the delta, has been accounted for phenome-
nologically. This has been done by subtracting a term
equal to half the nucleon-delta splitting multiplied by the
ratio of the quark rms radius for isolated bags to that cal-
culated for the given cell radius. The curve should be
shifted downward (at least at low densities) to agree with
the free nucleon mass. On the same diagram, we have
plotted the phenomenological equation of state for nu-
clear matter in the vicinity of equilibrium: Saturation at
—16 Me V binding at a density corresponding to
R =Ro ——1.12 fm and a compressibility modulus

600
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The W-S energies shown in Fig. 5 have been shifted to
give the correct nucleon mass at low densities. For com-
parison we plot also the "empirical" values based on the
mass formula binding energy, the density of normal nu-
clear matter, and nuclear compressibility. In extending
the energy to high density, there is an ambiguity whether
to choose a quadratic form in the radius parameter or in
the density, or some other functional form. This is actu-
ally not a crucial question, since the Maxwell line is
tangent close to normal nuclear density. In Fig. 5, we use
the density form,

E E
N 18 po

—1 +923 MeV, (7.2)

with E =200 MeV the 923 MeV includes both the nu-
cleon rest mass and the binding energy of nuclear matter.
It is rather striking to note that nuclear matter is con-
sidered to be stiff under compression on a scale of nuclear
energies but it is actually very soft on a scale of hadronic
energies.

On the basis of the simple quark plasma model and
empirica1 data we can draw conclusions which are, how-
ever, somewhat dependent on the bag constant and the
QCD scale parameter. There is a first-order phase transi-
tion at zero temperature. The two phases in equilibrium
correspond to a nuclear matter phase at roughly 6 times
normal density and a plasma phase of roughly 12 times
normal nuclear density. It should be pointed out that

heavy ion collisions have already achieved densities of
about 4 times normal nuclear matter without a signal of a
phase transition. However, our W-S approximation to
the equation of state for nuclear matter is only qualita-
tively similar to the semiempirical one. The latter leads
to equilibrium between the two phases from roughly
6—12 times normal nuclear matter density.

VIII. SUMMARY

The soliton bag model is solved in the Wigner-Seitz cell
approximation to obtain quark wave functions, confining
sigma field configurations, and energies as a function of
baryon density. The manner of filling the Bloch bands is
seen to be critical. Combining this with a simple model
of the plasma' (consistent with both the MIT and soliton
bag models, plus gluon corrections) shows the existence
of a phase transition between nuclear matter and a quark
plasma. This is qualitatively similar to results found in
other models. ' '

ACKNOWLEDGMENTS

We wish to thank M. Bickeboller and H. Klein for
valuable discussions, and J. Mustre de Leon for assistance
in preparing the figures. One of us (M.C.B.) is grateful to
C. Engelbrecht for discussions about Ref. 15. This work
was supported in part by the U.S. Department of Energy.

'Present address: Department of Physics, University of Man-
chester, Manchester, M13 9PL, U.K.

'J. Achtzehnter, W. Scheid, and L. Wilets, Phys. Rev. D 32,
2414 (1985).

~Q. Zhang, C. Derreth, A. Schafer, and W. Greiner, J. Phys. G
12, L19 (1986).

B.Banerjee, N. K. Glendenning, and V. Soni, Phys. Lett. 1558,
213 (1985); N. K. Glendenning and B. Banerjee, Phys. Rev. C
34, 1072 (1986).

4H. Reinhardt, B. V. Dang, and H. Schulz, Phys. Lett. 1598,
161 (1985).

5T. Goldman and G. J. Stephenson, Jr., Phys. Lett. 1468, 143
(1984); T. Goldman in Quarks and Gluons in Particles and
Nuclei, edited by S. Brodsky and E. Moniz (World-Scientific,
Singapore, 1986), p. 363.

K. Huang and D. R. Stump, Phys. Rev. D 14, 223 (1976).
7R. Friedberg and T. D. Lee, Phys. Rev. D 15, 1694 (1977); 16,

1096 (1977); 18, 2623 (1978); T. D. Lee, Particle Physics and
Introduction to Field Theory (Harwood Academic, New York,
1981).

R. Goldflam and L. Wilets, Phys. Rev. D 25, 1951 (1982); L.
Wilets, in Chiral Soli tons, edited by K.-F. Liu (World-
Scientific, Singapore, in press).

M. Bickeboller, M. C. Birse, H. Marschall, and L. Wilets,
Phys. Rev. D 31, 2892 {1985);M. Bickeboller, M. C. Birse,
and L. Wilets, (unpublished); M. Bickeboller, Ph.D. disserta-
tion, University of Washington, 1986).

' B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1130
(1977); 16, 1169 (1977).

"V.Baluni, Phys. Rev. D 17, 2092 (1978).
' Cf. J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353

(1975); G. Baym and S. Chin, Phys. Lett. 628, 241 (1976); E.
Witten, Phys. Rev. D 30, 272 (1984); E. Fahri and R. L. Jaffe,
ib&d. 30, 2379 (1984).

' R. Horn, R. GoldAam, and L. Wilets, Comput. Phys. Corn-
mun. 4I, 105 (1986);R. Horn, private communication.

' A. Patel, R. Gupta, G. Guralnik, G. W. Kilcup, and S. R.
Sharpe, Phys. Rev. Lett. 57, 1288 (1986).

~5C. A. Engelbrecht and G. E. Browns, S. Afr. J. Phys. 8, 79
(1985).

' L. Wilets and R. A. Berg, Phys. Rev. 101, 201 (1956); L. Wi-
lets, Rev. Mod. Phys. 30, 542 (1958); N. K. Glendenning,
Phys. Rev. Lett. 57, 1120 (1986).

' G. Ropke, D. Blaschke, and H. Schulz, Phys. Rev. D 34, 3499
(1986).

' A. K. Kerman and N. R. Dagdeviren, private communication.


