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A new technique for approximating solutions of the two-body Bethe-Salpeter equation is
presented. Coupled equations for the relative energy dependence and the relative three-
momentum dependence of the relativistic 7 matrix are derived. These equations are solved self-
consistently for the Wick-rotated 7" matrix in a simple model problem and the numerical results
are compared with exact as well as usual three-dimensional reduction results.

The Bethe-Salpeter equation! is the fundamental equa-
tion for the relativistic two-nucleon problem in a meson
exchange theory. Its solution depends on both the relative
three-momentum and the relative energy variables. Re-
tardation effects are included through the relative energy
dependence, since relative energy is conjugate to relative
time. Because the equation depends on relative four-
momentum, it is referred to as a four-dimensional equa-
tion. The most commonly used approximation techniques
for the Bethe-Salpeter equation involve two steps. First,
the interaction (or irreducible kernel) is truncated to some
low order in the coupling constant. For example, the so-
called ladder Bethe-Salpeter equation truncates the kernel
to second-order Feynmann diagrams so that only the one-
boson exchange diagram is included. The exact solution
to the ladder Bethe-Salpeter equation would then consist
of all iterations of this kernel (all ladded diagrams). The
second step one usually takes is to approximate the solu-
tion of the truncated Bethe-Salpeter equation by making a
three-dimensional reduction.2™* These reductions use a
fixed value of the relative energy variable to reduce the
dimensionality of the equation from four to three. Clear-
ly, such an approach limits the types of retardation effects
which are included. It is important to distinguish between
approximations to the full Bethe-Salpeter equation (a
four-dimensional equation) via a truncated Bethe-
Salpeter equation (also four-dimensional) and approxima-
tion to the truncated Bethe-Salpeter equation by a three-
dimensional reduction.

It is possible for one to avoid making the three-
dimensional reduction. However, for meson-exchange
theories, exact solutions to the truncated Bethe-Salpeter
equations have onl¥ been obtained for the ladder Bethe-
Salpeter equation.>® Unfortunately, the ladder Bethe-
Salpeter equation is not necessarily a good approximation
to the full Bethe-Salpeter equation. In fact, several au-
thors >3 have pointed out that some three-dimensional ap-
proximates to the ladder Bethe-Salpeter equation are
probably better than the exact solution of the ladder
Bethe-Salpeter equation as an approximation to the exact
Bethe-Salpeter equation. It should be emphasized that
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some of the three-dimensional approximations to the lad-
ded Bethe-Salpeter equation are designed to be an ap-
proximation to the fourth-order truncated Bethe-Salpeter
equation. However, since no exact solutions of higher-
order Bethe-Salpeter equations are yet available, one has
difficulty choosing the best three-dimensional approxima-
tion.?3> Thus, higher-order truncated Bethe-Salpeter
equations can only be examined with a single class of ap-
proximation techniques, all of which limit retardation
effects in a similar, restrictive fashion. In this Rapid
Communication we examine a new approximation tech-
nique which includes retardation effects in a self-
consistent fashion. This technique is general enough to be
applicable to higher-order truncated Bethe-Salpeter equa-
tions. However, as a preliminary study, we present here
the results of the application of our technique to the
ladder Bethe-Salpeter equation and compare it with exact
ladder solutions as well as with usual three-dimensional
approximations. We make the comparisons with the
three-dimensional approximations not to show their
disagreement with the exact ladder results (which they
are not necessarily designed to reproduce), but to show
the variability of results possible with that method. First,
let us present a brief formal description of our technique,
then show the results of our numerical study.

The procedure we advocate consists of approximating
the Bethe-Salpeter equation with a pair of coupled equa-
tions. The first equation is a three-dimensional equation
of the form of the usual three-dimensional approximation
equations, except that retardation effects in the kernel are
included by integration over a relative-energy-dependent
factor. The second equation is a one-dimensional equa-
tion which determines the relative-energy-dependent fac-
tor consistent with the first equation. These two coupled
equations are solved self-consistently. Since this tech-
nique involves the solution of, at most, three-dimensional
equations, some of the difficulties associated with using
higher-order kernels can be avoided.

Let us focus on the half-off-shell 7 matrix. For simpli-
city, we assume that an uncoupled partial-wave expansion
is possible; thus, we write> the Bethe-Salpeter equation for
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the half-off-shell 7" matrix for a single partial wave as

Top=Vapop+ 4m‘fdw'fq 2dqV up.0'qGorq Twrg » 1)

where @ denotes relative energy and p, relative momen-
tum. The interaction V and propagator G will be given
explicitly for a model problem later in this paper. The
on-shell relative energy is @ =0 and the on-shell relative
momentum is defined to be p=p. The functions in Egq.
(1) have an implicit dependence on the square of the total
four-momentum s and the orbital angular momentum /.
The range for all integrals in @ (or, later, in y) is
[—o0,+ ], and in q is [0,+ o], unless otherwise
specified. Now let us derive a pair of coupled equations to
approximate Eq. (1). We define two functions 7, and 7,
using some given weight functions as

p=QTwp= fdww.,,Tmp

and

me inmpEfp 2dppr0)P .

We can define two projectors in terms of 7, and 7, as fol-
lows: M,=7%,0%t;, and I,=t,0"/t;, where
=0°0PT,p is a number depending only on s through the
implicit dependence of T,, on s. The projector I, is
defined to act on the @ dependence of the function upon
which it operates, viz.,
f‘" n
anmp,m,q -dem wm"Ow”p’mlq ’

with IT, similarly defined. It is easily shown that 1% =II,
for either projector. We also note that

T,T
N, Top =M, Top =2

s

Thus, either of the projectors when operating on T yields a
factorized approximation to T, with one factor 7, de-
pending only on relative momentum and the other factor
7, depending only on relative energy. Our approximation
technique is easily defined in terms of either IT.

If we approximate T by the factorized form IIT in the
integral term of Eq. (1) and then operate on that equation
with Q ® we obtain

T,
T, =0, 05 +47rifq qu{ fdco’n Y wp.0'¢Go'q t—w }rq .
s
(2a)

Likewise, if we operate with Q7, we obtain

‘Em - Qmep’oﬁ +47ﬂfdw'{ fq qu anmp,m'qu'q _‘:i }T.w' .
s

(2b)

These are the two coupled integral equations for 7, and 7,
which define our approximation technique in the simplest
possible situation. Note that these equations can be made
manifestly Lorentz invariant by writing the center-of-
mass relative energy, wcm, and the magnitude of the

center-of-mass relative three-momentum, f‘m’ in terms of
Lorentz scalars as follows: @y =P ® "(7,,("')/\/.9_ and
pon =wly—p ™ p D where P and p "V are the to-
tal and relative momentum four-vectors, respectively.

Before discussing the model problem, let us examine the
structure of the approximate equations [Egs. (2)]. Equa-
tion (2a) is a one-dimensional integral equation for the
relative momentum dependence of the T matrix. It has a
kernel (enclosed in curly brackets) that depends only on
the magnitude of the three-momentum and, in this sense,
has the form of a usual three-dimensional reduction of the
Bethe-Salpeter equation. However, the kernel of this
equation is obtained by integration over the relative-
energy-dependent factor 7,. Thus, relative energy (retar-
dation) effects are included in a self-consistent fashion.
For the usual three-dimensional approximations the rela-
tive energy is fixed. Equation (2b) is an equation for the
relative-energy-dependent factor in which relative mo-
mentum (retardation in space) effects are included in a
similar self-consistent fashion. The wusual three-
dimensional approximations have no equation correspond-
ing to Eq. (2b).

As a first application of our technique, we examine the
ladder Bethe-Salpeter equation for two scalar “nucleons”
interacting via the exchange of a scalar “meson.”> For
this problem the interaction and propagator for S waves
are

A
Vmp,m’q = TZPW-QO(X) s

where
x=[p?+q*—(0— ") +u*—iel/2pq
and
Gog= (—DIs/2+0)?—E2+iel !
x[(Vs/2—w0)?—E2+ie]l 7!,

where E?2 =42+m? and Qy is the zeroth-order Legendre
function of the second kind. Note that /s =2E;. This
problem is sufficiently simple to allow us to solve it exactly
by performing a Wick rotation to imaginary relative ener-
gy and solving a two-dimensional integral equation.

Details of the Wick rotation procedure’ can be found in
the literature.® Let us briefly describe the procedure and
final results here. To perform a Wick rotation, a contour
in the complex o' plane is added to the o' integral in the
original Bethe-Salpeter equation. The new contour is
chosen so that (1) it exactly cancels the contribution of
the original contour along the real o' axis, (2) it adds a
contribution along the imaginary o' axis, and (3) it is de-
formed around all singularities of the integrand so that it
makes zero net contribution to the integral. This contour
closes at infinity in the first and third quadrants. After
the Wick rotation, the Bethe-Salpeter equation, Eq. (1),
(evaluated at w =¢) takes the form

2r? (5 To,q
Tep=Vipop— —\/; j:) qqu(V;p,,,,qq +Vep, —w,q) Eq;q
“4”2fdyfq2qu§pJ'yqGi-qui-yq ) 3)
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where w,=+/s/2—E,+ie. The one-dimensional integral
term in Eq. (3) comes from the residues of the poles of the
propagator and the two-dimensional integral term comes
from the contribution of the contour on the imaginary o'
axis. A pair of coupled linear integral equations is ob-
tained by evaluating Eq. (3) at £ =w, and £=i-z. For
the one-boson exchange interaction Eq. (3) no longer has
any singularities due to the interaction. The remaining
pinch singularity at the fully on-shell point can be re-
moved by performing a Kowlaski-Noyes subtraction®®
leaving one with nonsingular Fredholm equations which
can be solved numerically. Let us now discuss the numeri-
cal results.

We solve the model problem in three different ways.

(1) We solve the ladder Bethe-Salpeter equation exact-
ly (to within controllable numerical uncertainties) by
solving the Wick-rotated equation [Eq. (3)]. Those re-
sults will be referred to as the exact ladder results.

(2) We use our self-consistent retardation approxima-
tion technique [Egs. (2)] as it applies to the Wick-rotated
Bethe-Salpeter equation. We choose the weight functions
in the (p,i-z) space to be delta functions at the on-shell
points, i.e., w;., =8(z) and w, =8(p — p), so that elastic
unitarity is satisfied.!® For definiteness, the equations for
7, and 7., are

Toy

Eq0q,

272 (5
= VOp,Oﬁ - \/S_ J; q qu(VOP,mqq + VOp, —m,q)

7.
_4”2fqzd‘I{fdyVop.i'yqGi'yq ;y }711
s

and

2n% [
Ti-z ™ Vi~zﬁ,0ﬁ - _\/?J; qqu[Vl“zﬁ,mqq + Vi~zﬁ.—m,q]

7q |-
-4ﬂ'2fdy{fqquVi-zﬁ,i'yqGi‘yqt_q}Ti'y .
s

Eq0q

The equation for T, , is given by Eq. (3) with £ =, and
Tiyqg == 14%;-,/t;. This comprises three coupled one-
dimensional integral equations. Because they are non-
linear, we solve them iteratively and find that convergence
is extremely fast for all parameter sets examined. These
results are referred to as the factorized approximation,
since the Wick-rotated T matrix is approximated by a fac-
torized form.

(3) Last, we solve the model problem using usual
three-dimensional reductions of the ladder Bethe-Salpeter
equation. We calculated phase shifts using the same six
different three-dimensional approximations of the usual
kind which were compared in Ref. 2. These included the
Gross equation, the equation of Erkelenz and Holinde, the
Kadyshevksy equation, and the Blenkenbecler-Sugar
equation. However, we show here only the largest and
smallest phase shifts from those six. The largest phase
shifts were given by the Gross equation in every case and
are labeled by A in Fig. 1, the smallest phase shifts were
given by an equation which is similar to the Kadyshevsky
equation and, following the notation of Ref. 2, is labeled
by F. These equations are solved in the usual way,
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FIG. 1. S-wave phase shifts o in radians vs lab energy Eras
in MeV with (a) p=4.9 fm~! and A=—338.27 fm ™2, (b)
#=0.7 fm ! and 47vA=9.2 fm !, and (c) p=2.1 fm "' and
4L =27.6 fm ~!. See text for legend.

without performing any further iterations to find effective
interactions. (See Ref. 2 for exact definitions as well as
for references to the original work.) We show these re-
sults to emphasize the variability possible with three-
dimensional approximations.

Our numerical results for three different parameter sets
are shown in Figs. 1(a), 1(b), and 1(c). In all three plots,
the S-wave phase shifts §p in radians are plotted versus
the laboratory energy, Epas, in MeV. We used a nucleon
mass of m =4.758 fm ~!. The meson mass u and coupling
constant A differ for each parameter set and are listed in
the figure caption. In each plot the exact ladder results
are represented by open circles; the three-dimensional ap-
proximation results are represented by the labeled dashed
lines. Our factorized approximation results are indicated
by the solid line. It can be seen that for the three parame-
ter sets examined the factorized approximation results are
very good at reproducing the exact ladder results. For
comparison, one can see that the difference between the
factorized approximation and the exact ladder results is
small compared to the differences between the various
three-dimensional approximation results. This agreement
is due to the improved handling of retardation effects.
Note that four other three-dimensional reductions were
calculated and that those results all lie between the results
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labeled A and F. The parameter sets examined here cor-
respond to three parameter sets which were previously ex-
amined in Refs. 2 and 11.

As we have just seen, the factorized approximation re-
sults agree very well with the exact ladder results. This
represents an important development since our approxi-
mation scheme can, in principle, be applied to higher-
order Bethe-Salpeter equations as well. Thus, in the fu-
ture one should be able to examine retardation effects in
the fourth-order Bethe-Salpeter equation in a self-

consistent approximation scheme. We are presently ap-
plying our factorized approximation to the non-Wick-
rotated ladder Bethe-Salpeter equation and examining ap-
plications to higher-order equations. That work will be
described in detail elsewhere.
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