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The single-particle potential in nuclear matter is calculated microscopically for several Hamil-

tonians for densities ranging from 0.1 to 0.5 fm . These Hamiltonians include nucleon-nucleon po-
tentials fit to scattering data and three-nucleon potentials fit to the binding energies of few-body nu-

clei and saturation properties of nuclear matter. The single-particle potential is a key ingredient in

Boltzmann-Uehling-Uhlenbeck simulations of heavy-ion collisions. Parametrizations of the density
and momentum dependence of the single-particle potential that may be useful in such simulations

are discussed and compared to phenomenological prescriptions currently in use.

The Boltzmann-Uehling-Uhlenbeck (BUU) equation
provides one of the chief methods for simulating heavy-
ion collisions microscopically. ' The BUU equation is a
transport equation which includes stochastic collisions
between individual nucleons, particle production, effects
of the Pauli principle, and propagation between collisions
controlled by a mean field. The mean field, or single-
particle potential, is a functional derivative of the interac-
tion energy for the system, and is thus directly related to
the nuclear matter equation of state. The single-particle
potential has frequently been assumed to take some rela-
tively simple form, such as the Skyme parametrization:

U(p) =a(plpo)+b(plpo)

Attempts to explain pion production data and collective
flow with this form led to the conclusion that the equa-
tion of state must be very stiff, in disagreement with mi-
croscopic calculations based on Hamiltonians fit to
nucleon-nucleon scattering data and attempts to deduce
the equation of state from supernova simulations.

The momentum dependence of the real part of the op-
tical potential is neglected in the parametrization of Eq.
(1). Several groups have started to study the effect of the
momentum dependence of U(p, k) in BUU simulations. '

They find that an equation of state with an incompressi-
bility of -215 MeV and a reasonable U(p, k) can fit
current heavy-ion collision data as well as a stiff equation
of state without momentum dependence.

In this paper I report microscopic calculations of the
single-particle potential for several realistic Hamiltonians
that fit nucleon-nucleon scattering data, few-body nuclear
binding energies, and nuclear matter saturation proper-
ties. The ground-state properties of these models were
recently studied by Wiringa, Fiks, and Fabrocini (WFF).
The models are also in good agreement with a variety of
neutron star data, although they may be too stiff to pro-
duce supernovae explosions by a prompt shock mecha-
nism. I also discuss parametrizations for U(p, k) which
could be used in BUU simulations of heavy-ion collisions.

The calculation of U(p, k) uses a method developed by

Friedman and Pandharipande' (FP} that is consistent
with the variational ground-state calculations of WFF.
The energy e (p, k) of a quasiparticle or quasihole state is
assumed to have the usual form:

e(p, k}= k +U(p, k} .
2m

(2)

The energy at the Fermi surface is given by a functional
derivative of the energy density of the system with
respect to changes in density,

S g FJ 4[(n)k =no(k)], (4)

where 4 is a Fermi-gas wave function with occupations
n (k) acted on by a syminetrized product of two-body
correlation operators F; . Here no(k} denotes the occu-
pation of a filled Ferini sea, i.e., no(k &kF)=1 and
no(k )kF)=0.

The FP procedure assumes that single quasiparticle or
quasihole states can be well described by simply altering
the occupation n (k), without changes to F; . The quasi-
particle or quasihole energy as a function of momentum
for a fixed density is then obtained by taking a functional
derivative of the energy density with respect to changes
in n (k). For quasiparticle (hole) energies n (k) is altered
by removing a small fraction x of the particles from a
thin spherical shell at k =kF (k =y & kF) in momentum
space and promoting them to a thin spherical shell at
momentum k =y )kF (k =kF ). This leads to

e (p,y) =e(p, k+)+ (E (p, ~,y) Eo(p))—, —1

BEo(p)
e(p, kF )=ED(p)+p

P

where Eo(p) is the ground-state expectation value of the
energy per nucleon. In variational calculations this ex-
pectation value is computed with a wave function
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where &(p, x,y) is the energy expectation value evaluated
with 4, [n (k) =no(k)+x(61, ~

—
51, I, )], and the plus

(minus) sign refers to particle (hole) states.
Friedman and Pandharipande used this method to cal-

culate the single-particle potential for the Urbana v&4

plus three-nucleon interaction (UV14 plus TNI) model
Hamiltonian" at densities from —,'po to po. They found

good agreement with optical potential analyses of
nucleon-nucleus scattering data. In this paper I calculate
U(p, k) for densities up to 3po for the UV14 plus TNI
model and for two Hamiltonians of the form

f2H=g V'+g v + g V~I, ,
i i&j i(j(k

where v; is either the Urbana v, „(UV14) or Argonne v&z

(AV14) nucleon-nucleon potential' and V, & is the Urba-
na model VII (UVII) three-nucleon potential. '

The UV14 plus TNI model attempts to simulate the
effect of three-nucleon interactions by adding phenome-
nological density-dependent terms to the two-body poten-
tial. These terms in the UV14 plus TNI model were ad-
justed to give reasonable empirical saturation properties
(recalculated by WFF to be Eo = —16.6 MeV at
p0=0. 157 fm, with ED=260 MeV). However, the
Hamiltonians with the UVII three-body potential were
also required to give reasonable binding energies for the
few-body nuclei H and He, and end up saturating nu-
clear matter with somewhat less binding at higher densi-
ty. The interaction models, variational wave functions,
ground-state calculations, and saturation properties are
discussed in detail by WFF.

The U(p, k) has been calculated here at densities of
0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 fm, and for momenta
from 0.25 to 5 fm '. The calculations should be con-
sidered to be only qualitative above -4fm ' because of
the nonrelativistic nature of the Hamiltonian. One prob-
lem in comparing the momentum dependence of the
models is the difference in saturation properties. At any
given density, U(p, kF) is determined by the saturation
curve for that model. To isolate the momentum depen-
dence, I use a single e (p, kF ) for the calculations, i.e., the
U ( k ) at any given density is calculated as in Eq. (5) ex-
cept that the e(p, kF) defined by Eq. (2) is always taken
from the UV14 plus TNI model. Thus at k =kF, all the
calculated curves are constrained to pass through the
same point.

The results are shown in Fig. 1 for the UV14 plus TNI,
UV14 plus UVII, and AV14 plus UVII models. The
e (p, kF ) points are also shown. The UV14 plus TNI
model gives a very smooth momentum dependence that
gradually steepens as the density increases. Results for
the UV14 two-body potential alone (not shown) are virtu-
ally identical once the e (p, kF) adjustment is made, so the
momentum dependence of the UV14 plus TNI model is
determined strictly by the two-body potential. The UV14
plus UVII model gives a very similar momentum depen-
dence at lower densities, but remains flatter and is not-
ably more repulsive for low values of k at higher densi-
ties. The AV14 plus UVII model is slightly flatter than
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FIG. 1. The microscopic calculation of the single-particle po-
tential U(p, k) for Hamiltonians: UV14 plus TNI (dashed line),
UV14 plus UVII (dash-dot line), AV14 plus UVII (solid line).
The points e (p, kF ) through which the curves are constrained to
pass are shown by +'s. A perturbation calculation of UV14
plus UVII (dotted line) and the parametrization by Gale,
Bertsch, and Das Gupta (short-dashed line) are also shown.

the UV14 models at lower density. At high density it is
significantly more repulsive for momenta below kF, and
more attractive above kF.

To better understand the inQuence of the explicit
three-body potential, I also made a perturbative calcula-
tion at the higher densities for UV14 plus UVII by using
the variational wave function optimized for the two-body
potential alone. This perturbation calculation follows the
UV14 plus TNI curve up to -kF but is more attractive
at higher momenta. Comparing the curves in Fig. 1, it
appears that the bulk of the difference between UV14
plus TNI and UV14 plus UVII at higher momenta is
directly due to the three-body potential. This can be at-
tributed to differences in the short-range structure of
VVII and the effective TNI model. The greater repulsion
at low momenta with VVII is due to nonperturbative
changes in the wave function, primarily an enhancement
of the long-range tensor correlations. The AV14 plus
UVII model has even stronger tensor correlations, and
more repulsion at low momenta.

In Fig. 1, I also show the simple parametrization for
U(p, k) suggested by Gale, Bertsch, and Das Gupta
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TABLE I. Parameters for fits to U(p, k) for three Hamiltonians.

p (fm ') a (MeV) P (MeV) A (fm ')

UV14 plus TNI 0.1

0.15
0.2
0.3
0.4
0.5

18.8
36.1

61.0
119
182
290

—76.7
—108
—142
—213
—286
—368

3.14
2.87
2.75
2.64
2.46
2.67

UV14 plus UVII 0.1

0.15
0.2
0.3
0.4
0.5

16.9
32.5
55.4

105
192
318

—75.1
—105
—133
—183
—252
—330

3.02
2.81
2.84
2.96
3.34
4.09

AV14 plus UVII 0.1

0.15
0.2
0.3
0.4
0.5

4.76
12.9
27.7
72.8

176
332

—62.3
—82.5

—102
—138
—211
—311

2.86
2.63
2.61
3.07
4.31
6.00

(GBD),

U (p, k) =a (p/po)+ b (p/po)

+
c (plpo) l

i+(kiA)' i+(k a~I') '

where the parameters are a = —145 MeV, b =203 MeV,
o =

—,', c = —75 MeV, and 4=1.5k+, and the brackets

indicate an expectation value. The momentum depen-
dence is very similar to the UV14 plus TNI model up to
kF but is more attractive above kF at all densities. It also
has a corresponding equation of state very similar to
UV14 plus TNI.

I have tried to fit the microscopic calculations with
forms similar to Eq. (7). To get good quality fits, it is
necessary to give a density dependence to the momentum
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FIG. 2. The microscopic calculation of U(p, k) for UV14
plus TNI (solid line) is compared to its fit from the parameters
in Table I (dashed line).

FIG. 3. The microscopic calculation of U(p, k) for UV14
plus UVII (solid line) is compared to its fit from the parameters
in Table I (dashed line).
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scale A. In the simplest form, one can write

U(p, k) =a(p)+ (p)
l+ [k/A(p)]

and use a least-squares method of fitting to determine
a(p), P(p), and A(p) at each density. Th values so ob-
tained are given in Table I and the corresponding fits are
shown in Figs. 2 —4. It is not possible with this form to fit
the low momenta in the AV14 plus VVII or UV14 plus
UVII models where they curve up at high density, so the
fit has been made for rnomenta from 1 to 4 fm '. The
values in Table I can be used as input to a simple interpo-
lating routine for use in BUU calculations.

In summary, I have calculated the single-particle po-
tential as a function of momentum and density in nuclear
matter for several realistic Hamiltonians. The general
similarity of the microscopic results for U(p, k) to the
GBD pararnetrization gives credence to their calcula-
tions. In turn, the success of BUU simulations with
reasonable U(p, k) in reproducing intermediate-energy
heavy-ion collision data suggest there is no conflict with
the equation of state predicted by Hamiltonians that fit
nucleon-nucleon scattering data.
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FIG. 4. The microscopic calculation of U(p, k) for AV14
plus UVII (solid line) is compared to its fit from the parameters
in Table I (dashed line).
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