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Scattering of charged particles in a time-dependent approach
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We test a new time-dependent method to compute proton-proton scattering using the Graz plus

Coulomb potential.

In Ref. 1 we have shown that the S matrix for proton-
proton scattering can be computed with good accuracy
using a time-dependent approach. In that work we have
used a realistic short-range force, namely the Graz poten-
tial, plus the long-range Coulomb potential. The time
evolution exp(iHt) has been computed by approximating
the full Hamiltonian H by a finite dimensional H(N) us-

ing a momentum-space lattice, then diagonalizing H(N)
and finally evaluating exp[iH(N)t] in its eigenrepresenta-
tion. The usefulness of a coordinate-space lattice for lo-
cal short-range potentials within the time-dependent
framework has been discussed in Ref. 2.

In Ref. 3 we have discussed an alternative to compute
the time evolution exp(iHt), which can be briefly de-
scribed as follows: Firstly one computes exp(iHr) for a
small value of v, using the Taylor expansion or Pade ap-
proximation, and then generates exp(iHt) (t »r) by
iterative squaring of exp(iHr) We hav.e suggested this
alternative because we think that for large matrices H (N)
it has more advantages than the former way: It allows us
to use easily out-of-core computer memory, it is ap-
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propriate for vector computing, and we believe it is also
more suitable for statistical methods (Monte Carlo) than
the first alternative. In Ref. 3 we have applied it to a sim-

ple NN short-range interaction, the separable Yamaguchi
potential. In the numerical results for the S matrix, we
found agreement with the first alternative to a very high
accuracy. In this context we would like to mention also
the work of Carlson, using small slices of the time evolu-
tion within the Green's-function Monte Carlo method.

The purpose of this note is to show that the second al-
ternative time-dependent method also works for p-p
scattering, in particular when the Graz-plus Coulomb po-
tential is employed.

The Graz-plus Coulomb potential is given in Ref. 5 (for
more details on the following, the reader is referred to
Refs. I, 3, and 5). We have computed s-wave scattering
of an asymptotic wave-packet state 4, which is bell
shaped (cosine), has a peak at q „k=0.20 fm ' and a
half-width of q„;d,h =0.02 fm '. A momentum-space lat-
tice has been used to describe the !q! dependence of the
wave functions. The lattice discretizes the interval

[O,q,„,] with q,„,=40 fm using 30 lattice nodes distri-
buted in a geometric progression [according to Eq. (3.3)

22+
20~

21
I I

I

--- Ap

I

2

O O

I I i I I I I I I I I I I I I I I

0 4 8 12 16

TAYLOR

-16—
4 6

a I a I a I a I I

8 10 12 16

FIG. 1. Deviation in the S matrix Az computed in the second
alternative method (Taylor expansion and squaring) as a func-
tion of MT„the number of Taylor terms, and n~ (indicated in

the figure), the number of squaring operations. The reference
values have been computed from the first alternative (diagonali-
zation). The scattering time is T =3000 fm
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FIG. 2. Deviation in the S matrix b& and in the expectation
valueS Of the energy 50, b l, and Of energy b2 aS a funCtiOn Of

MT, . n,q=18, T=3000 fm '. The reference values have been
computed from the first alternative. The straight line at the bot-
tom gives the internal machine precision.

38 2955 1988 The American Physical Society



BRIEF REPORTS 38

0—

O

O -l2—

&s

I

CJ -8—
O

-}2

of Ref. 1 with e, =ez= 1]. That defines the finite dimen-

sional Hamiltonian H(N} (in the s-wave channel). We
denote by

U(N, T) =exp[iH (N)T],

U '(N, T)=exp[iH '(N, T)],
Q'(N, T) = U(N, —T) U '(N, T),
S'(N, T) =Q'(N, —T) Q'(N, T),

(3)

(4)

the full time evolution, the asymptotic time evolution in-
cluding Dollard's anomalous term, the wave operator in
Dollard's form, and the S matrix, respectively. We com-
pute the following matrix elements:

(4~S'(N, T) ~C ),
(@iS'(N, T) H (N)S'(N, T) i@),
(4~Q'(N, T} H(N)Q'(N, T)~4),
(@iQ'(N, T) H(N) Q'(N, T)~4) . (8)

The second and third one give the expectation value of
the energy (note: [H,S']=0,HQ'=Q'H in the contin-
uum limit), while the last one gives the expectation value
of the square of the energy.

In order to compute all these quantities, one has to
compute U(N, T}. This can be done by diagonalization
of H(N) (first alternative). The new alternative goes as
follows: The exponential function has the scaling proper-
ty

exp[iH (N) T]= I exp[iH (N) T/m] I

n,Choosing m =2 ",such that ~= T/m is small, one firstly
computes exp[iH(N)r] via Taylor expansion in r and
then obtains exp[iH(N)T] by squaring exp[iH(N)r]
iteratively n times. We have computed the matrix ele-
ments given by Eqs. (5)—(8} using both alternatives, i.e.,
where U(N, T) hence Q'(N, T) and S'(N, T) have been
computed in both ways. The relative deviations are
denoted 6&,h[], h&, 62 corresponding to the matrix ele-
ments equations (5)—(8). The numerical results are
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FIG. 3. Deviation in the S matrix b z and in the expectation
values of the energy 6(), b &, and of energy' b2 as a function of
the scattering time T. n,q

=18, MT, =7. The reference values
have been computed from the first alternative. The straight line
at the bottom gives the internal machine precision.
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FIG. 4. Same as Fig. 3, but for MT, = 10.

displayed in Figs. 1—4. Figure 1 shows the deviation for
the S matrix as a function of MT„the number of Taylor
terms and n, , the number of squaring operations. One
obtains numerical agreement in the order of 10 ' with a
relative sinall number of squaring operations ( —18).
Note that the scattering time T =3000 fm ' is not small.
These calculations have been performed on an IBM/PC
with an internal machine precision of 15 digits. The re-
sults are quite stable, when MT, and n, q

is increased.
One should note that hz, which is in the order of be-

tween 10 and 10 ", is very small and we are display-
ing the region in the parameter space of MT, and nsq,
where hz takes its smallest values. If one increases MT,
or n, further for a given T value, then more matrix mul-
tiplications are involved, which enhances numerical
round-off errors thus leading to increased 6& and hence
produces the pattern in Fig. 1. This type of behavior has
also been verified numerically for exp(x) as a function of
an ordinary number x.

For this set of parameters, we have obtained in Ref. 1

an error in the S matrix in the order of a few percent
when comparing the first alternative time-dependent
method with an "exact" analytical solution as reference.
That means that the two alternatives are equivalent when
computing the S matrix. Figure 2 shows the deviation in
the S matrix and in the expectation values of the energy
for n, =18. One obtains for all functions agreement in
the order of 10 ' for 12 Taylor terms and stability for
larger MT, . Figures 3 and 4 display the deviations as a
function of the scattering time T for M» =7 and

MT, =10, respectively. A good numerical agreement is
obtained over a wide range of T values.

In conclusion, we find the same kind of behavior for
the Graz-plus Coulomb potential, as we found for the
Yamaguchi potential in Ref. 3, namely that the two alter-
native time-dependent methods give equivalent numerical
results. The results of this note also suggest that it is
sufficient to use the Taylor expansion of the evolution
operator, instead of constructing Pade approxirnants
(which would require more computer time and memory).
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