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The proton and neutron densities and nuclear potentials are calculated for the deformed sd-shell

nuclei "Si and "S in the framework of the constrained Hartree-Fock method and compared with

the results of the spherical nucleus Ca. Coulomb core polarization effects are responsible for
differences in the proton and neutron Hartree-Fock potentials. These charge-asymmetry effects in

the nuclear mean 6eld must be taken into account when trying to decide whether the charge asym-

metry observed in proton and neutron scattering is due to a genuine charge asymmetry in the nu-

clear force and, if possible, to put an upper limit on the magnitude of this effect. Our calculations
indicate that there is no enhancement of the charge asymmetry due to nuclear deformation. The
often proposed volume integral of the nuclear potential is found not to be an appropriate tool to in-

vestigate charge-asymmetry effects in nuclei due to a large cancellation in the integral.

I. INTRODUCTION

Several very precise experiments of elastic scattering of
neutrons on N =Z nuclei were performed recently in or-
der to study a charge asymmetry in the nucleon-nucleon
interaction. ' Through a comparison of these experi-
ments with those performed by elastic proton scattering
on the same nuclei, one hopes to be able to learn some-
thing about possible charge-symmetry violation in nuclei.
In this comparison, however, one has to account for the
effects of the Coulomb interaction of the protons in the
target nucleus.

The choice of N =Z nuclei as targets was made in or-
der to have a symmetric situation as far as the nuclear
force is concerned. Therefore, any asymmetry detected
would indicate a charge asymmetry in the nuclear force.
The comparison of the scattering of neutrons and protons
on the same N =Z target nucleus can be seen in complete
analogy with, and an extension to, the comparison of the
binding energies of two mirror nuclei, i.e., the determina-
tion of the Coulomb dispacement energy (CDE). For
example the comparison of the p + Ca and the n + Ca
scattering is analogous to the CDE for the 'Sc- 'Ca iso-
spin doublet. In the latter case one deals with the in-
teraction of a bound proton and neutron with the Ca
core, while in the former case the proton and neutron are
in an unbound state.

The theoretical attempts to calculate the CDE for con-
jugate nuclei such as the pair 'Sc- 'Ca have only been
partly successful and a discrepancy still exists between
theory and experiment, the experimental CDE exceeding
the theoretical one by 4—5%. This discrepancy is re-
ferred to as the Nolen-Schiffer anomaly.

In order to achieve very precise theoretical results for
the CDE, one must perform calculations of higher-order
Coulomb correction terms. These calculations are in-
volved and often model dependent. In particular one

should mention here mixed second-order corrections
which involve core polarization and which are of first or-
der in the Coulomb interaction and of first order in the
strong interaction. ' These core-polarization corrections
can be viewed as a small symmetry potential in the N =Z
core (see Refs. 5, 7, and 8 for a detailed discussion).
When we speak about symmetry potential we mean that
part of the nuclear potential that results from the
difference in the T =0 and T =1 parts of the n-p interac-
tion. In the case of a N =Z nucleus the symmetry poten-
tial is—due to the difference in the proton-neutron
density —a charge-asymmetric potential. In order to
avoid any confusion, we will speak about the just men-
tioned symmetry potential and about the charge-
asymmetric potential caused by a different distribution of
protons and neutrons in the nucleus.

When making the comparison between the proton and
neutron scattering from N =Z target nuclei, some of the
higher-order effects considered in the case of the CDE
should also be taken into account. Most definitely one
must add the small symmetry potential resulting from the
core polarization before any meaningful conclusions
about the asymmetry in the nuclear force can be drawn
from the scattering experiments. It is the purpose of this
paper to calculate these polarization potentials for several
nuclei and in particular for nuclei that are considered de-
formed. To our knowledge, this is the first time that such
effects are analysed for deformed nuclei.

II. THE CHARGE-ASYMMETRIC
CORE-POLARIZATION SYMMETRY POTENTIAL

The Coulomb interaction between protons tries to re-
pel the protons from each other and displace them with
respect to the neutrons, while the attractive nuclear
force, and in particular the proton-neutron interaction,
resists this tendency. As a result an equilibrium is
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reached in N =Z nuclei in which the proton density is
only slightly expelled with respect to the neutron densi-
t 5, 8, 9

In Fig. 1 we present an example of the difference in

p —p„obtained for Ca in the Hartree-Fock (HF) ap-
proach using the Skyrme SIII force. ' The difference in
the proton and neutron rms radii is (r )'~ —(r„)'~2
=0.04 fm, which is only about 1% of the Ca radius.
This difference is expected to give rise to a small symme-
try potential. The density, when correlated with the
strong nucleon-nucleon force, should lead to
U&

—= Uz —U„+0 where U and U„are the self-consistent
proton and neutron HF nuclear potentials (i.e., leaving
out the Coulomb potential for the protons). Since the
average n pi-nteraction (which contains the T =0 and
T =1 parts) is more attractive than the p pinte-raction,
one should expect in the nuclear surface a more attractive
potential for a neutron than for a proton. Our HF calcu-
lations for the spherical nuclei do indeed give a deeper
negative potential for neutrons than protons. One can
obtain this result explicitly using an interaction of the

I

Skyrme type

U(R, s)=to(l+xoP )5(s)

+—(1+x,P )[5(s)k'+k'5(s}]

+t, (1+x,P )k'.5(s}k

t3
+—(1+x,P )p (R)5(s),

where s and R are the relative and center-of-mass coordi-
nate of the two interacting nucleons and where the values
of the force parameters t;, x, and a differ from one
Skyrme interaction to another. "' (For this demonstra-
tion the spin-orbit interaction has been neglected since it
has very little influence on the proton-neutron potential
and densities. The full Skyrme force including a spin-
orbit interaction term was, however, used in all the calcu-
lations. ) The corresponding Skyrme-HF potentials are
given by

Uq(r)=to

r

Xp 1 X) Xp
1+ p —( —,'+xo)p, +— t~ 1+ +t~ 1+

2
r ——,'[t, (-,'+x, }—t, (-,'+x, )]r,

1 X)
3t) 1+

8 2

X2
1+

2
V p+ —,'[3t, ( —,'+x, )+t2( —,'+x2)]V p

t3

12

X3
1+ (a+2)p +' —( —,'+x3)[ap '(p„+p }+2p p~], q =In,p),

where p=p„+p is the total density and where ~„and ~ are the neutron and proton kinetic energy density. The
difference in the potentials is given by

Ut ——Up —U„= to( ,'+xo—)(p ——p„)——,'[t(( —,'+x) ) —t2( —,'+x2)](rp —r„)
t3+ —,'[3t, ( —,'+x, )+t2( —,'+x2)](V p~

—V p„)——
( —,'+x3)p'(p~ —p„) . (3)
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FIG. 1. Difference p~
—p„of the proton and neutron densi-

ties as a function of the radial distance obtained in a Hartree-
Fock calculation with the Skyrme SIII force for the nucleus

Ca.

A numerical evaluation of this expression for Ca is
shown in Fig. 2. We see indeed that U„ is more attrac-
tive than U at the surface. The difference U —U„at its
maximum (r =4.5 fm) is about 2% of the average po-
tential Uo—= —,'(U~+ U„).

Sometimes these potentials are characterized in terms
of their volume integral:

J= Urd r.
For potential differences that have a node, however, this
volume integral is not a very good characterization of the
potential, especially when the projectile is a strongly ab-
sorbed probe. But even for probes that are not very
strongly absorbed the use of a volume integral to charac-
terize the potential might be misleading. For example,
when the volume integral of U& in Eq. (3) is calculated
the leading term will vanish for N =Z nuclei since

p r —p„r d r=Z —N, (5)

but also the contribution from the third term in Eq. (3)
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that the extra proton and neutron have slightly different
radial wave functions inside the nucleus. This correction
should be present when actual optical model calculations
are performed.

III. METHODS OF CALCULATION
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FIG. 2. Same as Fig. 1 but for the difference in the HF
single-particle potentials U~(r) —U„(r).

will vanish identically since the volume integral of the
divergence of a vector field vanishing at infinity is zero.

For deformed nuclei, which are the main subject of this
study, the densities and potentials can be characterized
by their multipole decomposition which could be defined
as

F'"(r)=fF(r) Y&(Q)d Q,

where Y&(Q) is the spherical harmonic function of order I
and the integration dQ is over the angles. For example
we may consider the quadrupole contribution of the po-
tential

U' '(r)= f U(r)Y2(Q)dQ .

Thus a comparison of U'&" and Uo" is one of the possible
ways to characterize the charge-asymmetric potential re-
sulting from core polarization by the Coulomb force in
deformed N =Z nuclei such as Si or S. For an axially
symmetric nucleus one can define instead

p'"(r)= —,
' f p(r, 8)P~(cos8)sin8d8 (&)

and a corresponding expression for the potential U'"(r)

U'"(r)= —,
' f U(r, 8)P((cos8)sin8d8 .

For a spherical nucleus like Ca, of course, only the
monopole component (I =0) contributes.

We should mention that the core-polarization effect
discussed here could be obtained in the case of bound
states by performing a self-consistent calculation in the
A +1 system. As it is well known such a self-consistent
treatment can be presented as the coupling of the extra
particle to the self-consistent ground and RPA excited
states of the A particle system. So what we are present-
ing here is the charge-asymmetric aspect of such a cou-
pling. In our case the relevant excitations would be the
isovector monopole ' ' and because of the deformation in
the considered nuclei also the quadrupole state.

There is also a very small charge asymmetric effect in
the core-polarization process that has to do with the fact

Our main aim, as already mentioned, is to calculate the
proton-neutron density and one-body (HF) potential
differences in deformed nuclei, and to answer the ques-
tion of whether deformation can lead to an enhancement
in the difference of p —p„(or U~ —U„) as compared
with the case of spherical nuclei. The deformed nuclei we
studied are the sd-shell nuclei Si and S. For the
description of deformed sd-shell nuclei we have chosen
the constrained Hartree-Fock (CHF) method with
effective nucleon-nucleon interactions of the Skyrme
type. "' Some of the most successful of these forces not
only reproduce very precisely the total binding energy of
spherical as well as deformed nuclei throughout the
Periodic Table, but also describe very accurately the nu-
clear shape, its surface diffuseness and deformation. This
is not only evident by the reproduction in Skyrme HF
calculations of nuclear charge densities and cross sections
for elastic electron scattering, "' but also by the accu-
rate description of charge rms radii and measured mul-

tipole moments from sd-shell nuclei' ' to the strongly
deformed nuclei of the rare-earth region, ' ' and even to
the very large deformations encountered in the fission
process of actinides. ' ' The advantage of this method
over other more phenomenological approaches is given
by the fact that these calculations are based on a varia-
tional principle and are self-consistent, being all carried
out with the same effective interaction with no additional
parameters.

For deformed nuclei like those encountered in the
fission process, in the rare-earth region and also in the sd
shell, a mean-field calculation which constrains the nu-
clear shape has to be carried out. To describe such a de-
formed nucleus, CHF calculations with a constraint on
one or a few collective variables are usually performed.
In determining the nuclear structure of the deformed sd-
shell nuclei Si and S investigated here, a quadratic
constraint was used which was limited to the mass quad-
rupole moment, as done in most CHF calculations. The
stationary points of the deformation energy curve' like
the ground state or shape isomeric states, if present, are
correctly obtained in this way. Constraints on more than
one multipole moment can, however, be relevant if the
dynamical deformation path is to be described. Let us
mention here that the deformed sd-shell nuclei show, in
fact, secondary minima which are oblate for the prolate
ground-state nuclei Ne, Mg, S, and prolate secon-
dary minima appear for the oblate ground-state nuclei
26Si and 36Ar

In solving the Skyrme Hartee-Fock equations one can
take advantage of the following symmetries. We impose
axial symmetry on the solutions of the HF equations
which for the deformed nuclei Si and S considered
here is a very reasonable assumption. Taking the sym-
metry axis to be the z axis means that the Hartree-Fock



2924 N. AUERBACH, J. BARTEL, AND G. WENES 38

SP state i is eigenstate of the third component J, of the
total angular momentum with eigenvalue 0;, and of the
third component v., of the isospin operator with eigenval-

ues q; =—,
' for protons, ——,

' for neutrons. Since the state i
and its time reversed state i contribute equally to the lo-
cal density p(r), the kinetic energy density r(r) and the
spin-orbit density J(r), which enter the Skyrme Hamil-
tonian, it is sufficient to consider only positive values of
A. Restricting ourselves to reAection symmetric shapes
(left-right symmetry) results in the parity to be a good
quantum number. The HF single-particle states are thus
characterized by 0 .

To calculate nuclear deformation-energy surfaces, the
CHF equations are solved, for the imposed symmetries
(axial and left-right symmetry), by expanding the single-
particle wave functions in eigenstates of an axially de-
formed harmonic oscillator, " which in cylindrical
coordinates [z,g=(x +y )',P] is written as

V„o(r)=—(~',z'+ ~/')
2

(10)

Its eigenstates can be characterized by the number of
nodes n, and n& in z and g direction and by the projec-

tions A and X of the orbital angular momentum and of
the spin on the z axis. Characterizing a set of these quan-

tum numbers by a it can be shown' that the matrix H~&

of the HF Hamiltonian is block diagonal, each block be-

ing characterized by 0=A+ X and the parity

rr=( —1) *

Such an expansion necessarily involves a truncation of
the basis and attention has to be paid to the convergence
of this expansion. The oscillator parameters co, and co&

are determined by minimizing the total energy with
respect to these parameters for every given deformation,
as defined for example by the mass quadrupole moment.

As mentioned above, one has to correct the deforma-
tion energy curve obtained in this way for the effect of an
expansion in a finite basis. This truncation-energy
correction can be easily obtained for a spherical shape
where the HF equations can be directly solved in coordi-
nate space. We assume that this truncation effect is de-
formation independent, which is a good approximation as
long as the SP basis is not chosen too small and not too
strongly necked-in nuclear shapes are to be considered.
For the small deformations encountered in sd-shell nuclei
and the large basis used in our calculation (7 or 9 major
shells corresponding to 84, respectively, 165 single-
particle states for a spherical shape) these limitations do
not apply.

In these calculations the direct Coulomb energy is cal-
culated exactly whereas the exchange contribution is in-

cluded in the Slater approximation. ' The spurious
center-of-mass motion inherent in any mean-field ap-
proach has been corrected for its one-body part only, the
two-body part being neglected. As the parameters of the
Skyrme force SIII (Ref. 10) used in the calculations
presented here have been adjusted using exactly these ap-
proximations, this procedure seems the most adequate to
us.

Pairing correlations have not been included in our cal-
culations of deformed sd-shell nuclei, similar to previous
calculations. ' ' ' Pairing effects should, however, be
taken into account since the level density around the Fer-
mi surface is substantially larger for these than for the
neighboring spherical nuclei ' 0 and Ca. We have tried
to carry out a full HF+BCS (Bardeen-Cooper-Schrieffer)
calculation for these nuclei with a constant pairing
strength 6, which was determined at each deformation
(and, in fact, at each iteration of the HF cycle) by solving
the gap equation for the average level distribution ob-
tained through a Strutinsky smoothing procedure, the
so called "uniform gap method. " This resulted, howev-
er, in a very large pairing strength leading to spherical
solutions. Our understanding of this fact is that the ap-
proximation of a constant pairing strength is not applic-
able for these light nuclei and that the pairing matrix ele-
ments should be calculated explicitly. With very few ex-
ceptions, ' the correct description of pairing properties
has, however, not entered the process of adjusting the
different Skyrme-force parametrizations. As the pairing
properties are treated anyhow in a HF+BCS approach,
described above, as additional parameters (in the above-
mentioned uniform gap method the additional parameter
is the average pairing gap b, =12 MeV/& A ), one could
also use, for the inclusion of pairing correlations, a finite-
range effective interaction, like the Gogny force, which
has been explicitly constructed to have correct pairing
properties.

The nucleus Ca was treated as spherical and the HF
calculation was performed using the spherical HF code.
For consistency reasons the deformed code was also em-
ployed for Ca imposing zero deformation. The two cal-
culations gave very similar numerical results for the Ca
HF densities and potentials, indicating that covergence
has been obtained in the expansion of the HF single-
particle states in a finite basis.

IV. RESULTS AND CONCLUSIONS

The CHF calculations of the two sd-shell nuclei Si
and S lead to rather shallow minima around the
ground-state deformation corresponding to quadrupole
moments Qz"' ———40.6 fm and Qz~' ———41.7 fm for the
neutron and proton distribution in Si, and Qz'"' ——39.4
fm and Q'f'=40. 8 fm for S. Thus, the Si nucleus
turns out to be a somewhat deformed oblate nucleus
while S is prolate. Note that there is a significant asym-
metry of around 3% in the quadrupole moments of neu-
trons and protons in the two nuclei. For a better charac-
terization of the ground states we give in Table I the
charge rrns radii, the quadrupole and hexadecapole mo-
ments of these nuclei and compare them to available ex-
perimental data. While the rms radii (in the calculation
of the charge rms radii a Gaussian proton charge form
factor and the standard center-of-mass correction
b, r = —1. 1 fm/A have been included) are in excellent
agreement with the experimental data, the calculated
quadrupole moments are consistently too small' ' and
account only for about 70% of the experimental mo-
ments, obtained from measured B (E2) values.
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28S1 r, (fm)

Q, (fm')

Q4 (fm')

HF
SIII

3.14

—41.7
137.4

Exp.

3 14'
3.09+0.02

—57.7+ 1.0'

TABLE I. Charge rms radius, quadrupole moment

Q, =2Ir'P2(cos8)pi rid'r, and hexadecapole moment

Q 4=2f r P4(cos8)pir)d r for the deformed ground states of
'Si and "S obtained in a constrained HF approach with the

Skyrme force SIII as compared to experimental data.
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FIG. 4. Same as Fig. 3 but for the nucleus S.
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In Figs. 3 and 4 we present the monopole component
of the density differences p' '(r) —p'„'(r) and of the aver-
age density —,'(p +p„) for Si and S [the difference

p~(r) p„(r) for —Ca calculated using the spherical HF
code was shown in Fig. I]. In Fig. 5 the monopole com-
ponents of the difference in the HF potential
U~ '(r) U„' '(—r) and of Uo '(r) are shown for Si and in

Fig. 6 for S. For these two nuclei we also show in Fig. 7
the quadrupole contribution of the potential, Uz '(r)
—U„'2'(r), as defined in Eq. (9).

As seen from the above figures the difference of the
densities pI '(r)=pz '(r) —p'„ i(r) in the surface (defined,
e.g., by the 90—10% fall off) atnounts to about 3—5% of
the average density —,'(p +p„). (It even becomes much

bigger, of the order of 30%, in the far surface where the
density falls off exponentially. ) The same applies also to
the inside part of the density, however, the sign of pt '(r)
is reversed. The same features appear also in the poten-
tials. The difference U' ' —U„' ' is equal in the surface re-
gion to about 3 —4% of the average potential —,'(U' '

+ U„' '). The same is true in the case of Si and S for

the I =2 components of the potential. That is, the size of
U' ' —U„' ' in the surface region is several percent of the
quadrupole contribution of the average potential U0 '.

We should point out, however, that when the volume
integrals of the potentials are calculated one finds that
the difference of the proton-neutron volume integrals is
only 0.5-1% that of the corresponding volume integral
of the average potential. This is true in the case of the
deformed nuclei Si and S as well as for the spherical

Ca. The reason is that, as already pointed out, there is
a large cancellation taking place in the volume integrals
and that, at least in the framework of Skyrme forces, the
leading term, which is linear in the density, vanishes
completely in the case of N =Z nuclei when its volume
integral is computed. One should expect therefore that
for weakly distorted projectiles this charge-asymmetric
potential will affect the cross section only a little leading
to a 0.5 —1% effect. However, for particles that experi-
ence stronger distortion effects and are absorbed at the
surface, the calculated charge-asymmetric potential
should lead to 3 —5 % asymmetries in the cross sections.

To make sure that our conclusions do not depend on
the particular choice of the effective interaction used, the
Skyrme force SIII in our case, we have performed the
same calculations with a more recent Skyrme force, the
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FIG. 3. Monopole part of the difference in the proton and
neutron densities pp '(r) —p'„'(r) (solid line) and of the average
density —,'(pp+p„) (dashed line) for the nucleus 'Si.

FIG. 5. Monopole part of the charge asymmetry potential
Ul ——U~ —U„(solid line) and of the average potential
Uo= 2(Up+ U„) (dashed line) for Si.



2926 N. AUERBACH, J. BARTEL, AND G. WENES 38

0.08

E
0.0

E)
0 0.04—

CCl

-1.0
aC)

-2.0
2 4 6

Radial Distance r (frn)

-20 =
C

-40
C) ~

-60 CV

-80
8

o.oo —.—~
= -0 04—

FIG. 6. Same as Fig. 5 for the nucleus S.
-0.08

0 2 4 6

Radial Distance r (fm)

SkM' (Refs. 18 and 31) interaction. The conclusions
reached with this force are the same as those obtained
with SIII. The ground states are very well reproduced as
far as binding energies and charge rrns radii are con-
cerned, but the magnitude of the quadrupole moments
are underestimated in deformed sd-shell nuclei. The
core-polarization effects are large and of the same size as
those found with SIII and a large cancellation takes place
when volume integrals of the charge-asymmetry poten-
tials are calculated.

We have also studied the question of whether the ten-
dency of nuclei to become deformed (such as the ones in
the middle of the sd shell) enhances the charge-
asymmetry potential. The spherical solutions of the po-
tentials U and U„ in Si and S were calculated and
compared with the ground-state solutions. The deforrna-
tion did not produce larger U, U„asymmetries than in
the corresponding spherical case. Thus, the core-
polarization correction in deformed nuclei is not
significantly larger than in spherical nuclei.

However, we should stress again that the charge-

FIG. 7. Quadrupole part of the charge-asymmetry potential

U& ——U~ —U„ for the oblate nucleus Si (solid line) and the pro-
late nucleus ' S (dashed line).

symmetric core-polarization potentials in Si, S, and
Ca are large, of the order of several percent of the cor-

responding charge-symmetric potentials in the nuclear
surface.

Whether these difference can account for the asym-
metries found in proton and neutron scattering on these
N =Z nuclei can be answered after a detailed reaction
calculation is performed in which the calculated HF po-
tential are taken as the real parts of the optical potential.
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