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A detailed study of the results of correcting BCS approximation for the effects of particle-number

projection and blocking has been carried out. A low-seniority shell-model approximation was used

as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-
mass Ni isotopes and in odd-mass N =82 isotones. We discuss the results obtained for the energy
spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-

lying states have also been studied through the comparison of the low-seniority shell-model results
with those which arose from the corresponding full shell-model calculations.

I. INTRODUCTION

Because of the large dimensionalities inherent in the
shell model, the only practical approaches within this
framework to treating the structure of medium and heavy
nuclei with open shells are based on the quasiparticle
BCS approximation. The effects of spurious states due to
the nonconservation of the number of particles in the
quasiparticle method can be removed, although only par-
tially, by following the procedure of Kuo et al. ' The
complete elimination of such spurious states can be
achieved through carrying out the projection of particle
number, in the formalism referred to as the projected
BCS approximation (PBCS). However, with the PBCS
technique much of the physical transparency which is a
prominent advantage of the simple BCS method is lost.

Furthermore, the PBCS approach does not take into
account the fact that pairing correlations may be
different for different nuclear states. In the PBCS formal-
ism the diffuseness of the Fermi-energy surface for all
states in a spectrum is identical to that determined for
the BCS ground state. However, we know that the Fermi
surface should become sharper as the number of quasi-
particles increases, and that pairing correlations vanish
completely in highly excited states. Thus, the BCS and
PBCS methods shou1d be corrected by carrying out a new
energy rninirnization for each state. The importance of
this correction, usually called the blocking effect, in treat-
ing odd-mass nuclei, was first pointed out and discussed
qualitatively by Nilsson. The BCS formalism as correct-
ed for blocking effects (BBCS) retains most of the simpli-
city of the BCS method, but it still contains the effects of

spuriosity related to the nonconservation of particle num-
ber.

Several studies which compare the BCS and PBCS
methods as applied to the properties of odd-mass nuclei
have been done. However, no similar study has been
performed of the effects of blocking within the BCS for-
malism, even though the BCS method is much more
transparent than the PBCS formalism. The relative im-
portance of the effects of blocking and number projec-
tion, i.e., a comparison between the BBCS and PBCS
method, is also an open question. An initial study for
the three-valence-particle nucleus 53 I8) has compared
different BCS approximations within the model space of
one and three quasiparticles (lqp + 3qp) with exact cal-
culations. The results suggest that the effects of blocking
and number projection may play an important role in the
description of low-lying states in odd-mass nuclei. Stud-
ies in a similar view of nuclei with more than three
valence particles have not been done.

The principal aim of the present work is to study the
results of correcting the BCS approximation the effects of
particle-number projection and blocking. We study the
low-lying states of odd-mass nuclei as described within
the 1qp+ 3qp subspace. In order to establish the frame
of reference for these studies we also describe the same
nuclei with exact shell-model calculations which use the
same set of Harniltonian parameters. The results for two
different shell-model calculations will be presented. In
the first set of results, only configurations states with
seniority (v) equal to or smaller than three were included
in the space. This approach, which will be called the
low-seniority shell model (LSSM), is the exact limit for all
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BCS approximations within the subspace of 1qp+ 3qp.
In the second set of results, the model space consisted of
the complete set of configuration states for the active
single-particle orbits. From the comparison of these
complete shell-model (CSM) results with the LSSM re-
sults we are able to infer the extent to which the
configurations with v=5 participate in the structure of
low-lying states. A comparison with experimental data is
not our aim here, but this will be the subject of a forth-
coming paper in which the method explained here will be
used.

In Sec. II we describe the different BCS formalisms.
The shell-model formalism is fully discussed in the litera-
ture' '" and will not be described here. In Sec. III, we
give details of the numerical calculations. In Sec. IVA
we compare the CSM and LSSM calculations to study
the effects of configurations with v= 5 on the structure of
the low-lying states. In Sec. IV B the in6uence of
configurations with v=3 and 1 and with a number of
quasiparticles Nqp higher than five is studied by compar-
ison of the LSSM with the PBCS calculations. In Sec.
IVC we discuss the effects induced by the BBCS and
PBCS corrections. General conclusions are drawn in Sec.
V.

II. FORMALISM

A. Evaluation of the matrix elements

In order to calculate the matrix elements of the shell-
model Hamiltonian,

%= pe a a +—,
' g (aPi u

i
y5)a a13aba

a apy5

and
i
0) represents the particle vacua.

By means of the inverse transformation

a =Qo, ( u, d'+zv, d ),
a =+a, (u,'d +zu, d* ),

(2.8a)

(2.8b)

the Harniltonian reads
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and of the one-body operators,
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where a (a ) are particle creation (destruction) opera-

tors and a—:(j„m, ) and a =( —)
' '(j„—m, ), we in-

troduce a z-dependent canonical transformation
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o, =(u, u,'+z u, u,') (2.4) where the operators DJM(ab) and DIM(ab) are defined as

Here, (u„u, ) and (u,', u,') are the BCS parameters in the
ket states and bra states, respectively, and the symbol +
on the creation operator d' stands for the Hermitian
conjugation ( t) plus the transformation (u„u, )

~(u,', u,
' ). It is easy to see that

(2.5)

and

and
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d
i
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I
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The gap parameters 6, and the chemical potentials p,
are given by

where

i 0;z) = g (u, +zu, a a ) i 0),
a)0

(2.7)
and

6, = ——,'z8 ' g cgp(aacc)o, v, u,*, (2.12)
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p, = ——,'z& ' g cfo(aacc)cr, v, u,
' . (2.13} B. Residual interaction

The quantities fJ(abed) and gJ(abed) are antisym-
metrized matrix elements of the interaction and
a=(2j, +1)'

In the same way the transition operator (2.2) takes the
form

In this work we utilize an interaction for which the gap
equations, discussed below, are very similar to those of
the pairing force, viz. , the surface delta interaction
(SDI).' Because of this, the calculation of the pairing
parameters u, and v, is greatly simplified in the formal-
isms which include the effects of blocking.

The SDI has the form

V(1,2)= —4m'G5( Q&z)5(r
&

—R )5(r& —R ), (2.18)

X I [(—)"u, ub" z—u,'ub ]D&„(ab)

+ —,'z [u, vb + ( —)"u, ub ]Dz„(ab)

+—,'z [u,'ub'+ ( —)"u,*vb']Dz (ab) I

where G is the coupling strength, 0,2 is the angular coor-
dinate between the interacting particles 1 and 2, and R is
the nuclear radius. The corresponding matrix elements
for pair scattering are

+5„Q5„Qyau, u,'cr, &all Tglla ), (2.14} g (abed)=Gab cd( —)' ' ' i '

J, J$ J J, Jd J
where x =0 and 1 for electric and magnetic moments, re-
spectively.

The generating wave functions are rewritten as (2.19)

l
a;z ) =Qcr, zd"

l
O,z),

for a one-quasiparticle state (lqp),

l
(ab)JM;z) =(cr.ab)'"

X [z DJM(ab) 5JQ5 baz—

(2.15a)

and

go(aabb) = —2G& b, (2.20a)

In solving the gap equations one needs the matrix ele-
rnents

X(u, v,'z —u, u,')]
l

O, z ), (2.15b) fo(aabb) = —Ga b . (2.20b)

for a two-quasiparticle state (2qp) and The corresponding matrix elements for the pairing
force are

l
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Mm

zH(abJc, —I)dz~
l
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(2.15c)

and

go(aabb) = —2Ga b

fo(aabb)= —2G5,b .

C. Gap equations

(2.21a)

(2.21b)

for a three-quasiparticle state (3qp). Here

H (abJc;I)=5J05,b5,1&(u, u,'z u, u,' )—

In order to establish the gap equations for the state
l ri), which may contain zero, one, . . . , etc., quasiparti-

cles, we always start from the variational statements

and

J I '5J(ab; cI—)( u, v,'z —u, u,*}

5J(ab, cd)=5„5bd —( —)
' '5,b5b,

(2.16)

(2. 17) where

(2.22a)

(2.22b)

Utilizing the anticommutation relation (2.5), the ma-
trix elements of the operators (2.1) and (2.2) are easily cal-
culated. '

It should be noted that our formalism for blocking
differs from the one introduced by Allaart and Van Gun-
steren in that their quasiparticle transformation is not
canonical.

The results for the BCS, BBCS, and PBCS methods are
obtained with the above-mentioned formulas under the
following conditions:

u,*=u„u,*=u, (PBCS),
z =1 (BBCS),
u,*=u„v,*=u„and z =1 (BCS) .

A(A) =A —AN, (2.23)

r v„=no .~ 2 2 (2.24b)

When the effects of blocking are considered, the state
l
rl) is no longer the BCS vacuum but instead, the

no is the number of valence particles, A. is the chemical
potential, and X is the particle-number operator.

Within the BCS and PBCS formalism all the pairing
properties are defined in the BCS vacuum
(

l
r))—:

l
0;z =1)). From expressions (2.22) one obtains

the standard gap equations for the parameters u, and v„
2u, u, (s, —p, —A, ) —(u, —u, )b,, =0, (2.24a)
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blocked state, and the gap equations change correspond-
ingly. In the case of 1qp, the gap equations for the quasi-
particle in the state (

~ g ) =
~
a;z = 1 ) )

~

a ) become

[2u, v, (e, —p, —A. ) —b,, (u, —v2)](1 —2s 25„)

This fact, however, is irrelevant because when the
blocked particle is in the state j,=—,

' the quantities u, /2

and v&/2 do not appear explicitly in the calculation. This
can be seen from (2.15a) which, forj,= —,', reads

(u, —v, )u, v, 2Qs vs Qa vg
go(aass)+ fo(aass}=0,

28 $ 8 s

—,'m;z ) =za(in)m
a&0

j&—,m1 1

(u, +z, v, aa )~0) .

g (9 —25„)v„=no—1 .

(2.25a)

(2.25b)

Note that for j,=j,= —,
' these equations do not allow us

to determine the values of the parameters u&/2 and v&/2.
I

(2.26)

Before going to the 3qp case it is convenient to discuss
the gap equations for two quasiparticles. If the blocked
states are

~

a) and
~
P), (

~
ri) =

~
(ab)JM;z = I), then

Eqs. (2.22) lead to
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s
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' '

(u&vt, 5„+u, v, 5,& ) =0, (2.27a)
( I+5,b )s

g [r —2(5„,+5„1,)]v„=no —2 . (2.27b)

The number of gap equations which should be solved is equal to the dimension of the configuration space for two
quasiparticles (all allowed values of j„jb, and J). Akkermans, Allaart, and Boeker have adopted the simplifying cri-
terion of neglecting the quasiparticle residual interaction [which means ignoring the last two terms in (2.27a)]. In this
way the number of gap equations is drastically reduced, so as to depend only on the allowed single-particle states j, and

jb.
In the present work a similar approximation is made, but one which follows from a different criterion. It can be not-

ed that gap equations (2.24) and (2.25) yield the same results for the SDI and the pairing force, except for the self-energy
term p„which is equal to

p, =Gv, (2.28a)

for the pairing force, and to

gP zv2

I'

for SDI. Realizing, furthermore, that for the pairing force equation (2.27a) reduces to

[2u, v, (s, —p, —A, ) —(u, —v, )(b,, Gu, v,——Guqvt, )][1—2s (5„+5q, )]—2Gu, v, (u, —v, )5J05„5q,——0,

(2.28b)

(2.29)

it seems reasonable to work with this simplified equation in place of (2.27a). It should be noted, however, that Eq. (2.29)
is identically satisfied for all values of u3/2 and v3/2 when J =0. Thus, in this case we are obliged to use the unblocked
pairing parameters. There is, in principle, no problem in solving the gap equations for the remaining seniority-zero
two-quasiparticle states. However, bearing in mind that the seniority-zero states are not orthogonal to each other after
the effects of blocking are taken into account (this is what makes the BBCS formalism complicated), we decided to use
for all seniority-zero two-quasiparticle states the unblocked pairing parameters. With this procedure the basis is now
orthogonal and the spurious states are removed following the same technique which is used in BCS approach. It is
worth mentioning that, in general, the number of configurations with seniority zero is very small in comparison with
the number of states with seniority two.

For the 3qp states we adopt the same approximations discussed before for the 2qp states. Therefore, the gap equa-
tions for three quasiparticles blocked in the states

~

a),
~
P), and

~
y), (

~
g) =

~

[(ab)J, c)IM;z =1)), leads to

[2u, v, (E, —p, —A, ) —(u, —v, )[b,, —G(u, v, +u~v„+u, v, )] I 1 — (5„+5,„+5„) =0,
$

g [s —2(5„+5,~+5„)]v,=no —3 .

(2.30a)

(2.30b)
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TABLE I. Dimensions for some negative parity states of Ni

isotopes using the CSM and LSSM approaches. For the various
BCS calculations the dimensions for all isotopes are equal to the
numbers given in the second column. See text for details.

Spin

I
2

3
2

5
2

7
2

9
2

11
2

59,65N'

CSM-BCS

5

10

10

6

CSM

15

24

29

23

17

8

6 1 63Ni

LSSM

10

18

20

14

11

3

III. NUMERICAL CALCULATIONS

We restrict ourselves to single closed-shell nuclei where
only an odd number of total nucleons in the open sub-
shells are allowed. For this study we consider examples
from the Ni (Z =28} isotopes and N =82 isotones. In
the first case, we investigate nuclei with 3, 5, 7, and 9 ac-
tive neutrons occupying the subshells 2p3/2, lf5/2, and

2p&&2. Therefore, only negative-parity states will be con-
sidered. In the second case we investigate nuclei with 3,
5, 7, 9, and 11 active protons occupying the subshells

2ds/2, lg7/z, 3s(/2, and 2d3/z We calculate the structure
of the low-lying states (level schemes, eigenvectors, elec-
tromagnetic moments, and transition rates) using the
different approaches CSM, LSSM, BCS, BBCS, and
PBCS, which were explained in Secs. I and II.

In Tables I and II we note the dimensions of the
configuration spaces we use for the Z =28 isotopes and
N =82 isotones, respectively. The dimensions for all
three BCS approximations and for all nuclei are given by
the numbers in the second columns of these tables. For
further discussion it is convenient to introduce here the
label Nqp which specifies the number of quasiparticles.
Thus, the difference in the number of configurations be-
tween the BCS approach and LSSM approach comes
from the configurations with v & 3 and Nqp ) 5 It is clear
that the maximum value of Nqp is equal to the number of

valence particles or holes.
For the N =82 isotones we do not consider the 1h»»

orbital as its inclusion would make the dimensions of the
state vectors (for CSM and LSSM) too large for our com-
putational techniques. It is evident that in such a situa-
tion the utilization of approximations is essential.

For all five approximations (CSM, LSSM, BCS, BBCS,
and PBCS} the Hamiltonians which were diagonalized
were based on the following set of parameters.

The single-particle energies s(lj) for all Ni isotopes
were extracted from experimental results for the Ni nu-
cleus, with the results 0, 0.76, and 1.08 MeV for the orbit-
als p3/z f5/2 and p, /2, respectively Fo. r all odd N =82
isotones the single-particle energies were taken to be 0.0,
0.80, 2.62, and 2.68 MeV for the orbitals g7/z d5/2, d3/2,
and s, &2, respectively, as given in Ref. 14.

For the residual interaction between the valence parti-
cles we used the surface delta interaction with strengths

G =0.48 MeV (Ni isotopes},

G =0.20 MeV (N =82 isotones),

which follows from the estimate of Kisslinger and Soren-
sen. '

The energy spectra of Ni isotopes are shown in Figs.
1-4 and the wave functions of a few low-lying states in
'Ni and Ni are listed in Table III. The seniority struc-

ture of these states is presented in Tables IV and V.
In Figs. 5—9 the energy spectra of N =82 isotones from
I to ' Pm are exhibited, while comparisons of the

wave functions obtained within the different BCS approx-
imations are presented in Table VI. The seniority com-
position of the ' Cs wave functions is presented in Table
VII.

The calculations of the magnetic dipole moments p
and the 8 (M 1 ) values were performed with the following
gyromagnetic ratios: (1) g&

——0 and g,
' =0.7g,

"' for Ni
isotopes, and (2) g~ ——1 and g,

' =0.4g,"' for N =82 iso-
tones. The electric quadrupole moments Q and the
8(E2) values were evaluated with the following effective
electric charges: (1) e„' =1.7e for Ni isotopes, ' and (2)
e' =2e for N =82 isotones. The results for the elec-
tromagnetic properties of Ni and N =82 nuclei are
presented in Figs. 10—13 and 14—16, respectively.

TABLE II. Dimensions for some positive parity states of N =82 isotones. See the caption to Table

Spin

135I

CSM-8CS CSM

137C

LSSM CSM

139L

LSSM

' 'Pr and ' 'Pm
CSM LSSM

1

2

3
2
5
2

7
2

9
2

11
2

13
2

15
2

12

25

28

27

23

16

107

198

253

271

252

211

153

105

39

80

93

91

82

59

30

20

415

764

1005

1121

1091

974

783

577

73

149

174

173

159

117

62

41

790

1484

1965

2215

2214

2017

1669

1284

96

198

231

231

215

160

86

57
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I ) I

li I

7~3~
5
5

3
11
9

9—
7
5

5~1—
7~3
7/5

5
3

7L9
5—

7
5

11
9

9g, P(/y

11~z 5,9~/
LLJ 5

7
9O 3,5

X
UJ

7~X

93~5

7

5

3
5—

3,5
7
5

5 |sM LSSM

5

BGS

5
1

88GS
5

PIGS

FIG. 3. Calculated energy levels of 'Ni.

GSM BCS
3

BBCS

FIG. 1. Calculated energy levels for the negative-parity states
in "Ni obtained with the different model approaches (see text
for details). The spins J are listed as 2J. In this case the CSM,
LSSM, and PBCS results are identical.

7
5~

9

5L
7

5,9'7

11~5

9

7

9

UJ
CC 1

Z 1

LLI
7 9

Z.'
O

X
LLj

CSM

3
7, 5'1

1,5~
7

5—
LssM

9
7

13
5—

1
5

Sacs

7
9
5

7, 3
5

1

' pecs

li I

li I

CSM

7
~5

5~7~1~

BCS

5~7~

5

BBCS

FIG. 2. Calculated energy levels of 'Ni. The presentation is
described in the caption to Fig. 1. FIG. 4. Calculated energy levels of Ni.
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IV. DISCUSSION

A. EfFects of configurations with v= 5

on the low-lying states

In order to evaluate the degree to which configurations
with v=5 participate in the structure of low-lying states,

we compare the results obtained within the LSSM ap-
proxirnation with the CSM results. We first analyze 'Ni
and Ni (within the single-particle subspace considered
in the present work the states of Ni and Ni have only
v=1 and v=3 configurations even in the CSM space).
From Figs. 2 and 3 we can see that the LSSM energy

TABLE III. Calculated wave functions of some low-lying states in ' 'Ni using different BCS approaches. The basis states are

~
(j,j b )J,J„J;). Only amplitudes larger than 4% are listed.

3
21
5
21
1

21

3
22

1

22

5
22

7
21

3
2

3
2

3
2

5
2

3
2

5
2

3
2

3
2

5
2

5
2
3
2

3
2

3
2

1

2

5
2

3
2

5
2

3
2

1

2

5
2

3
2

5
2

5
2

3
2

1

2

1

2

3
2

5
2

5
2

5
2

3
2

5
2

1

2

1

2

5
2

3
2

5
2
1

2

3
2

1

2

3
2

5
2

1

2

1

2

5
2

5
2

3
2

3
2

3
2

I
2

5
2

5
2

5
2

1

2

1

2

1

2

3
2

5
2

5
2

5
2

5
2

5
2

5
2

3
2

1

2

1

2

5
2

5
2

3
2

5
2

3
2
5
2

5
2

5
2

1

2

BCS

0.960

0.981

0.890

0.203

—0.276

0.226

0.198

0.194

0.528

—0.317

0.483

0.517
—0.455

—0.306

0.254

0.444

0.407

—0.522

0.268

—0.305

—0.557

0.419

0.398
—0.221

0.231

0.418

0.453

0.629

0.312
—0.341

'Ni

BBCS

0.961

0.979

0.895

0.196
—0.265

0.224

0.224

0.257

0.416
—0.340

0.559

0.443

—0.446

—0.306

0.276

0.463

0.397
—0.510

0.220

—0.201

—0.478

0.556

0.489

0.307

0.630

0.525

0.399

0.222

—0.313

PBCS

0.968

0.984

0.834

0.208

—0.295

0.250

0.206

0.268

0.411
—0.340

0.579

0.439
—0.463

—0.435

0.451

0.368

—0.508

0.361

0.547

0.466

0.288

0.624

0.520

0.385

0.272

—0.306

BCS

0.953

0.987

0.941

0.634
—0.240

0.397

0.563

0.338

0.344

0.231

—0.473

—0.377

0.590

0.353

—0.343

—0.609

—0.512

0.240

0.216

0.328

0.418

0.266
—0.255

0.761

'Ni
BBCS

0.961

0.986

0.940

0.633
—0.217

0.396

0.586

0.341

0.353

0.242

—0.465

—0.345

0.604

0.328

—0.338

—0.584

—0.572

0.227

0.362

0.250
—0.200

0.750

PBCS

0.956

0.992

0.948

0.214

0.620
—0.218

0.384

0.594

0.316

0.432

—0.473

—0.345

0.609

0.462

—0.615

—0.540

0.240

0.346

0.437

0.261

—0.217

0.755
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TABLE IV. Seniority (v) decompositions in percent (%) and the values of the average seniority for wave functions of selected
states in 'Ni obtained with the CSM and LSSM approaches.

Spin

5
21
3
21
1

21
3
22
1

22
5
22
7
21
3
23
5
23
7
22
5
24
9
21
9
22
7
23
11
2 1

3
24
1

23
5
25

CSM

95.58

93.80

79.89

10.90

42.57

15.81

18.84

23.68

11.59

6.34

11.60

8.84

&=1 (%)
LSSM

97.01

94.01

80.47

11.86

40.80

14.62

18.33

15.96

CSM

3.66

6.15

19.84

56.53

72.96

94.90

60.92

52.65

91.86

80.73

98.69

84.03

68.21

97.68

46.51

57.40

53.63

&=3 ('Fo)

LSSM

2.99

5.99

19.53

88.14

59.20

85.38

81.67

84.04

100

100

+=5 (%)
CSM

0.76

0.05

0.27

0.90

11.23

5.10

20.24

23.67

8.14

7.68

1.31

15.97

31.79

2.32

47.15

31.00

37.53

CSM

1.10

1.12

1.41

2.17

2.91

3.10

3.03

2.99

3.16

2.94

3.03

3.32

3.64

3.05

3.83

3.40

3.46

LSSM

1.06

1.12

1.39

2.18

2.71

2.63

2.68

spectra are less compressed than are those of the CSM.
However, the numbers of states lying within the first 3
MeV of excitation energy are not very different in these
two models; there are 29 and 28 states for 'Ni and Ni,
respectively, in the LSSM spectra while the correspond-
ing numbers in the CSM spectra are 37 and 35.

In Tables IV and V the seniority structure and the
mean values of the mean values of the seniority v for
several low-lying states in 'Ni and Ni, respectively, are
presented. In both models the —2'&, », and —,', levels
have predominant v=1 character. The remaining levels
are dominated by v=3 configurations. As expected, the

TABLE V. Seniority structure of wave functions of 'Ni, as described in the caption to Table IV.

Spin

I
21
5
21
3
21
3
22
1

22
7
21
5
22
3
23
5
23
9
21
7
22
5
24
7
23
3
24
9
22
5
25

90.46

98.09

89.30

8.04

29.14

24. 14

13.72

21.53

3.99

~=1 (%)

90.65

98.43

91.20

6.88

28.76

23.41

17.50

9.49

1.77

10.68

88.07

70.44

94.45

66.46

71.84

80.51

94.43

87.15

45.94

72.23

66.54

86.14

54.49

v=3 (%)
LSSM

9.35

1.57

8.80

93.12

71.24

76.59

82.50

91.89

v=5 (%)
CSM

0.05

0.14

0.02

3.89

0.42

5.55

9.40

14.44

12.69

5.57

12.85

32.53

27.77

23.57

13.86

41.52

1.19

1.04

1.21

2.92

2.43

3.11

2.71

3.01

3.12

3.11

3.26

3.22

3.56

3.28

3.28

3.75

1.19

1.03

1.18

2.86

2.43

2.53

2.65
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135.-

13
11~9

11~13
9—59
S/j

9,
3y

15,

values of v increase with excitation energy. It should also
be noted that for a given total angular momentum J the
mean seniority of the state J„ is always smaller than that
of the state J„+,and that the influence of configurations
with v=5 commence to be pronounced for levels with
n =3.

We discuss the electromagnetic properties of Ni,
'Ni, Ni, and Ni in the following order: (i) the states

with v= 1, i.e., the levels —,
' i, —', i, and —,

'
i (with a fraction

of v=5 configurations smaller than 1%); (ii} the levels

», », —,'2, —,'2, and —,'z, for which v=3 and the admix-
tures of v=5 configurations range between 1% and 11%;

and (iii) a few selected additional levels ( —',z, —,'z, and

—,
& ), in which v=3 and in which the fraction of v=5

configurations varies from 8%%uo to 24%.
The results for the magnetic dipole and electric quad-

rupole moments are presented as a function of the mass
number in Figs. 10 and 11, respectively. As might be an-
ticipated the LSSM results are very similar to the CSM
calculations for all three levels with v= 1. For the second
group of states, i.e., the lowest states with v=3, the
differences between the LSSM and the CSM results are
significant. The only exception are the values of the mag-
netic moments of the —,'2 state. The differences between
the two calculations of the electromagnetic moments are
still more accentuated for levels which belong to the third
group of states.

The B(M1} and B(E2) values for Ni isotopes,
displayed in Figs. 12 and 13, respectively, always have as
the final state one of the levels —,', , », or —,', . One im-

mediately sees that when the transition is initiated in one
of the levels —,'&, —,'&, —,'&, —', , , », —,'z, and —', 2, which
contain relatively small amounts v=5 configurations, the
LSSM and the CSM calculations yield similar results.
Moreover, the differences between these calculations are
also small for the B (M 1 ) values in which the initial states
are —',

i and —,'2, and for the B(E2) values in which the
initial states are

p p 23, and —,'& . In other transitions the
deviations of the LSSM results from the CSM values are

11

5.13-
9,1

7

11
5,13
~3
71

3K
5»
9—
7w

Ii I

I I I
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9
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15'11
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11K

$1

1
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15

7
11

13,5
9,7

3
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15

15 15

0
CSHI BCS

FIG. 5. Calculated energy levels for the positive-parity states
of ' I obtained with different model approaches (see text for de-
tails). The spins J are listed as 2J. In this case the results with
CSM, LSSM, and PBCS are identical.

Q 7
CSM

7
LSSM

FIG. 6. Calculated energy levels of ' Cs.

PBCS
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quite important.
As a supplement to the study of the Ni isotopes we

next compare the LSSM and CSM descriptions of ' Cs.
From the results shown in Fig. 6 one observes that up to
1.4 MeV in excitation energy the LSSM level scheme is
very similar to the corresponding CSM spectrum. Both
spectra exhibit the same number of states, the energy
differences are very small ( & 120 keV), and, except for
the inversion of the —", 2+ and —,'3+ states, the ordering of
the levels is also the same. For the states compressed in
the energy interval between 1.4 and 1.6 MeV, the energy
differences are relatively small, but the ordering of the
levels is different and the density of states is slightly
smaller within the LSSM. Above 1.6 MeV excitation en-
ergy the influence of v=5 configurations is quite pro-
nounced and, as a consequence, the level density is
significantly diminished in the truncated configuration
space.

In Table VII the seniority compositions and the mean
seniorities for levels of ' Cs with excitation energy lower
than 1.6 MeV are presented. Only the first two levels in
the ' Cs nucleus have predominantly v=1 character, all
remaining levels have v =3. The fraction of v = 5

configurations is smaller than 6%%uo for states which lie
below 1.4 MeV, between 6% and 10% for levels with ex-
citation energy between 1.4 and 1.6 MeV, and for levels
above 1.6 MeV are in most cases larger than 10%%uo with
some going up to 50%.

The analysis of the electromagnetic properties of ' Cs
in the LSSM and CSM spaces performed for (i) the states
with v= 1, i.e., the levels —', ~+ and —', ~+; (ii) the first states
for each spin with v=3, i.e., the levels —,',+, »+, »+, —", ,+,
—", +, —", +, —,'+, and —,'2+; and (iii) the state —', + which for22
heavier isotones it turns out to be the lowest v=3 state
with spin and parity —,'+.

The LSSM and CSM magnetic-field dipole moments

—,'2+, and —7&+, as well as the B (M 1) values for the transi-
tions ~i 2 i and

2 i 2 i are compared in Fig. 14.
Except for the last transitions, the LSSM and the CSM
lead to almost identical results for all these observables.
We do not present here the results for the remaining M1
transitions which take place among the above-mentioned
states. It is due to the fact that, as a consequence of the l
forbiddenness, they are all very weak (smaller than 10

139

5,3L73
11»

15,5~9 1
11~

13'~
7
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11
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0 5
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FIG. 7. Calculated energy levels of" La. FIG. 8. Calculated energy levels of ' 'Pr.
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W.u. ) and therefore the tensor Ml operator [Yzcr]„
not considered in the present work, plays an important
role.

From the results, for the electric quadrupole moments
of the low-lying states in ' Cs, shown in Fig. 15, we can
see that the effect of configurations with v=5 on these
observables is negligibly small for the levels»+, »+, —", ,+,
and —', 2+. The differences between the LSSM and CSM re-
sults for the remaining six states, although relatively
small, are significant. It is worthwhile to notice that in
the case of the —,',+ and —,'2+ levels these differences arise
both (1) from the rearrangement of the v = 1 and v =3
amplitudes in the corresponding wave functions, induced
by the v=5 configurations (see Table VII) and (2) from
the destructive interference between the v=1 and v=3
contributions on the quadrupole moments Q( —,'~+) and

The results for the 8 (E2) values, exhibited in Fig. 16,
clearly demonstrate that relatively small admixture of
v=5 configurations in the low-lying states affect the mag-
nitudes of the —,

'+ —,'+, —,
'+ —', +, —', + —", +, and

—", ,+~—", ,
+ electric transitions to a great extent. In the

first two processes, the modifications are caused by the
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TABLE VII. Seniority structure of wave functions of ' 'Cs. The presentation is as described in the caption to Table IV.

v=5 (%)
CSM

v=3 (%)v=1 (%)
CSM LSSMLSSMCSMCSM LSSMSpin

7
21
5
21
5
22
3
21
11
2 1

9
21
15
2 1

1

21
9
22
7
22
3
22
5
22
13
2 1

11
2 2
15
2 2

9
23
3
23
7
23
11
2 3

5
24
7
24
13
2 2

9
24
13
2 3

1.041.050.181.782.0798.2297.75

1.20 1.080.123.9896.02 9.4090.48

2.96 2.953.6697.727.17 89.172.28

3.003.080.00 95.28 100.00

100.00

100.00

100.00

4.720.00

3.116.00 3.0094.00

3.116.02 3.0093.98

3.0896.03 3.97 3.00

3.07 96.41 3.023.59 2.9393.04 3.89

96.45 100.00 3.55 3.10 3.00

0.60 3.064.6698.801.20 94.74 2.98

3.07 3.033.86 93.63 96.14 3.30 2.92

3.061.74 1.50 95.10 98.50 3.16 2.97

3.1094.99 100.00

100.00

100.00

100.00

5.01 3.00

3.0697.75 2.25 3.00

90.47 9.53 3.19 3.00

14.86 3.3385.14 3.00

1.59 1.73 94.19 3.1198.27 5.81 2.96

8.671.15 4.71 95.29 3.1997.70 2.91

80.87 19.13 3.41100.00 3.00

4.473.17 86.88 95.53 3.179.95 2.91

48.20 41.47 58.53 2.1648.79 3.01 2.13

54.24 100.00

100.00

100.00

45.76 3.91 3.00

93.68 6.32 3.16 3.00

33.51 66.49 4.32 3.00
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above mentioned rearrangement of the v=1 and v=3
configurations in the wave functions of the —,',+ and —,'2+

states.

B. Influence of the conSgurations with seniority v= 1

and v=3 and Nqp )5

We compare in this section the results of PBCS ap-
proximation with the LSSM results. It is evident that for

Ni, 6~Ni, and ' 51 both calculations should lead to iden-
tical results but in the cases of 'Ni, Ni, and ' Cs
differences can arise from the effects of five-quasiparticle
states with v=1 and 3. For the heavier N =82 isotones
differences can also arise from configurations with

Nqp ) 5 in the LSSM spaces.
From the energy spectra for 6'Ni and Ni shown in

Figs. 2 and 3 we can see that the PBCS approximation
and the LSSM yield quite similar results up to an excita-

tion energy of 2 MeV. The number of states is the same
in both calculations and, except for one inversion in Ni,
the ordering of the levels is also the same. The
differences in excitation energies are smaller than 70 keV
in 'Ni and smaller than 40 keV in Ni.

The calculations of the electromagnetic properties for
the Ni isotopes displayed in Figs. 10—13, show that one
obtains identical results within the PBCS and the LSSM
approaches for: (1) magnetic dipole moments of the
states —,'&, —', &, and —,'&,' (2) electric quadrupole moments
of the states —',

&
and —,', ; (3) B (M 1 ) values for the transi-

tions initiated in the states 2& 2i 2& 2& 2i z2 22
and —,'2 ', and (4) B(E2) values for the transitions which

over, the corresponding differences for the remaining ob-
servables analyzed in the present work are of minor im-
portance. For example, the magnetic moments differ by
no more than 0.15 n.m. (nuclear magnetons).
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The energy spectra of the N =82 nuclei, up to an exci-
tation energy of 2 MeV, shown in Figs. 6—9, clearly
demonstrate that the effects induced by low-seniority
configurations with N ) 5 are relatively small. As a
matter of fact, the LSSM and the PBCS calculations gen-
erate the same number of states, the ordering of levels is
practically the same and the energy differences are & 50
keV.

To some extent the above statement is also valid for
the electromagnetic properties illustrated in Figs. 14—16.

There are no significant differences for the magnetic mo-
ments and transitions and the electric observables when
the states involved have v=1, i.e., the levels»+ and»+.
The differences are also small for the quadrupole mo-
ments of the remaining low-lying states and the B(E2}
values between states with v=1 and v=3. Only when
both the initial and the final states are predominantly of
v=3 character are the E2 transitions evaluated within
the PBCS approximation appreciably less collective than
those obtained within the LSSM space.
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C. Eftects of blocking and particle-number projection

We now analyze and discuss the differences between
the results obtained with the BBCS and PBCS approxi-
mations and those of the usual BCS approach. As a
reference frame we use the LSSM results. In the case of
three-valence particles it is easier to perform a shell-
model calculation than to make use of any of the BCS ap-
proximations. Therefore we will limit our discussion to
nuclei with more than three valence particles. However,
for completeness, the results for Ni, Ni, and ' I nu-
clei are also shown in figures and tables of the present
work.

For the energy spectra of 'Ni and Ni up to an excita-
tion energy of 2 MeV there are no significant differences
between the BCS, BBCS, and PBCS results {see Figs. 2
and 3). Above 2 MeV, and when compared with the
LSSM, the ordering of the states is different for each of

the three BCS approximations. The best agreement with
the LSSM spectra are obtained with the PBCS method
and the poorest with the BCS approach. Up to 3 MeV
the largest differences in excitation energies are of the or-
der of 250 keV.

In Table III we list the wave functions of a few low-
lying states in 'Ni and Ni obtained with the different
BCS approaches. One sees that for predominantly v=1
states ( —,

'
&, —,

' ~, and —', , ) the wave functions are not very
sensitive to either the effects of blocking or of particle-
number projection. Conversely, the wave functions of
the remaining states are rather sensitive to both effects.
It should be noted that the BBCS wave functions resem-
ble the corresponding PBCS wave functions more than
the BCS wave functions. The differences in amplitudes of
the wave functions are more pronounced for 'Ni than
for Ni. For 6'Ni they are of the order of 10%, but may
be as large as 25% (compare, for example, the amplitude
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of the [(p3&2) 4,p, zz] configuration in the —',
&

state). For
Ni the differences are of the order of 4%.
This model dependence of the wave functions is

rejected in the magnitudes of the electromagnetic ob-
servables presented in Figs. 10—13. This dependence is
more notable for the electric than the magnetic observ-
ables. When compared with the LSSM results the BCS
approximation exhibits significant differences in magni-
tude for several moments and transitions which involve
the —,', level in 'Ni [p( —', , ), Q(» ), B(M1;—', , ~ —', , ),
and B(E2;—,'& —+ —,', )] and the —', 2 level in Ni [Q(—',

~ ),
B (M 1;—,'2 ~—', , ), and B (E2;—,'2 ~—', , )]. For both nu-

clei the PBCS results are closer to the LSSM calculations
than are those obtained with the BBCSapproach.

From the energy spectra of N =82 nuclei displayed in
Figs. 6—9 it can be seen that the simple BCS calculations,
when compared with the results of the LSSM, yield
significant differences (up to =300 keV) for the excitation
energies of several states. As well, they yield quite
different level orderings. The last effect is particularly ac-
centuated in the energy regions where the level densities
are rather high. Although both the BBCS and the PBCS
approaches provide satisfactory results for the energy
spectra, the PBCS results are in somewhat better agree-
ment with the LSSM calculations.

In Table VI the wave functions of 1V =82 isotones with
more than five valence particles calculated with the
different BCS approximations are compared with each
other. For predominantly 1qp states, i.e., the»+ and»+
levels, all three calculations yield similar wave-function
amplitudes. For the remaining states only the BBCS and
PBCS amplitudes are close to each other. The most no-
ticeable differences between the BCS and the BBCS (or
PBCS) wave functions occur for the [(—', ) J,—', ]
configurations in ' La and for the [(—', ) J, —', ] con-
figurations in ' 'Pr.

The results for the electromagnetic properties calculat-
ed with these wave functions are compared with the
LSSM results in Figs. 14—16. It is seen that all four mod-
els furnish similar results for the magnetic observables.
The most notable discrepancy is found in the BCS value
for the —", 1+ ~—", 1+ M1 transition in ' La. Among all the
BCS results for the electric observables, only those for
Q( —2I+), Q( —', ~+), and B(E2;—', I+ —+ —', &+) are close to the
LSSM results. On the other hand, the electric quadru-
pole results obtained within the PBCS and BBCS ap-
proaches are not substantially different from those ob-
tained with the LSSM. With respect to the B (E2) values
it should be noted that the best overall agreement is
achieved with the number-projection method. It is also
important to note that when a B (E2) value strongly fiuc-
tuates in going from one nucleus to another, as happens
in the case of the —'+~ —'+ —'+~ —'+ and —"+~—'+

22 21 ' 21 21 21 21
transitions, the ordinary BCS calculations lead to more
satisfactory results than do the BBCScalculations.

We have mentioned that in most instances the electric
observables are more sensitive to the effects of blocking
and number projection than are the magnetic observ-
ables. We clarify this point with a qualitative discussion
of the matrix elements of the one body operator Tz. We
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(a)

3/2
1/2

X, (11) - - - --- - --45/2
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x(7)
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I

FIG. 17. Single-particle energies (solid line) and Fermi ener-
gies (dashed line) /}j.(no) where no is the number of nucleons for
Ni isotopes (a) and for X =82 isotones (b).

assume that both the initial and final wave functions are
predominantly of lqp or 3qp character (see Tables III
and VI}. Therefore the following matrix elements will ap-
pear:

(I) & 4(lqp}IIT. III'(lqp) ~

(ii) &4(lqp}IITglIP(3qp}& and
(iii) &@(3qp)IIT~II@(3qp)). The matrix element of the

type (i) and (iii) are proportional to the scattering pairing
factor F, (A, )—:[u, ub —( —) U, ub)] and those of the type
(ii) to the pair creation pairing factor F (A, )

:—[u,'Ub —( —} U,'ub]. One may distinguish two limiting
situations: (1} the valence shell is approximately half-
filled in which case the electric pairing factors are
F, (A, =2)=0 and F (A. =2)=1; (2) only a few particles or
holes are in the valence shell and therefore F, (A, =2)=1
and F~(A, =2)=0. In both limiting situations the magnet-
ic pairing factors are F, (A, =1)=1 and F~(X= 1)=0. On
the other hand, the results for the electromagnetic prop-
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erties shown in Figs. 10—13 and 14—16, correspond mostly
to the case (1) and thus the blocking effect is particularly
relevant for the electric observables of types (i) and (iii)
and for the magnetic observables of type (iii).

It is clear that the main differences between the BCS
and BBCS results arise from differences in the gap pa-
rameter. This quantity diminishes with the effects of
blocking and becomes configuration dependent. More-
over, as shown in Ref. 17, the pairing reduction depends
sensitively on the single-particle level distribution near
the Fermi surface and is particularly pronounced when
the blocked level is located close to the Fermi surface.
Thus, from the results shown in Fig. 17, one can easily
convince oneself that the blocking effect is very impor-
tant for the following wave-function amplitudes (and the
corresponding electromagnetic observables): (i) con-
figurations which contain two particles in the p3/2 single
particle state and participate in building up the wave
functions of 'Ni and (ii) components which involve the

g7/2 orbital in ' Cs and ' La and the d»2 orbital in
' 'Pr and ' Pm; the effect is particularly relevant for the
configurations

~

( —', ) J, —,
' ) in ' La and the configurations

~

( —') J —') in ' 'Pr.
However, conversely to what one would expect, the

structures of ' Cs and ' Pm seem to be less affected by
the blocking than those of ' La and ' 'Pr (see Fig. 17).
This fact indicates that a discussion of the blocking effect
based only on the analysis of a few diagonal matrix ele-
ments of H and/or on the most important contributions
to T& might be a oversimplification and inconclusive.

configurations on low-lying states has also been studied
through the comparison of low-seniority shell-model re-
sults with those which arise from the full shell-model cal-
culations. The following general conclusions can be
drawn from this study.

(1) A BCS approximation which includes corrections
either for particle-number projection or blocking yields
results which are in most respects very similar to results
obtained with the low-seniority shell model.

(2) The five-quasiparticle configurations with seniority
one and three do not play an important role in the struc-
ture of low-lying states.

(3) The effects of seniority-five configurations upon the
electromagnetic processes can be significant even among
the lowest-lying states and cannot be accounted for
through an overall renormalization of the residual in-
teraction or by the use of effective charges.

We have several calculations which include particle-
number projection and the blocking simultaneously.
These calculations are significantly more time consuming
than are the BBCS and PBCS methods separately, but
they do not pield appreciably better results than do the
individual BBCS and PBCS approaches. Thus, it does
not appear to be profitable to make both of these correc-
tions to the BCS method.

We have not presented a comparison between the ex-
perimental data and any of these calculations, but with
the parametrization listed in Sec. III, the complete shell-
model (CSM) yields a reasonable good overall agreement
with experimental data.

V. CONCLUSIONS

A detailed study of the effects upon the BCS approxi-
mation which are introduced by corrections for particle-
number projection and blocking has been carried out by
using the low-seniority shell-model as the frame of refer-
ence with which to investigate the mixing of one and
three-quasiparticle states in Ni isotopes and in %=82
isotones. In addition, the effects of seniority-five
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