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Although a number of dift'erent types of boson-fermion interactions are possible in the interacting
boson-fermion model, empirical results have shown that the exchange term is of cardinal impor-
tance. A recently constructed similarity transformation which reexpresses the Dyson boson images

of the single-j shell fermion operators in terms of seniority bosons is used to confirm that the origin
of the exchange term in spherical nuclei is linked to the quadrupole pairing interaction between

identical nucleons. The relative importance of the exchange and direct boson-fermion interactions
is also discussed and it is indicated that the direct term is essential for a complete description of that
excited state which carries the j value of the shell.

I. INTRODUCTION

The interacting boson model (IBM) provides a success-
ful description of collective states in even-even nuclei in
terms of J=O+ (s) and J=2+ (d) bosons. ' Furthermore
the model can be extended to describe odd-A nuclei by
coupling an odd nucleon to the system of bosons.

In its most general form the boson-fermion interaction
which appears in this interacting boson-fermion model
(IBFM) contains a large number of free parameters which
complicates a meaningful phenomenological analysis of
observed spectra. Iachello and Scholten have subse-
quently illustrated that a simplified version of the boson-
fermion interaction, in which an exchange term plays a
crucial role, is sufficient to describe a variety of observed
odd-A spectra. For the case where the odd fermion is
considered to be restricted to a single-j shell, this ex-
change term is taken to be

where A denotes the coupling strength. Here 20 =2j + 1

while normal ordering (::)has been introduced. The d bo-
son and odd fermion creation (modified annihilation)
operators are denoted by d" [d„—= ( —1)"d „] and
a J [it'J:—( —1)J aj ~ ], respectively

Kaup et al. have tested the simplified version of the
IBFM in a region where the boson part of the Hamiltoni-
an possesses U(5) dynamical symmetry to a good ap-
proximation (i.e., for approximately vibrational nuclei).
Using a single-j shell approximation, in which the ex-
change term appears as in Eq. (1), they determined A to
be about 10 MeV (see also Ref. 5). The initial attempts '

to derive this strength of the exchange term from an un-
derlying fermion-fermion interaction (by focusing on
proton-neutron interactions) have not been able to yield
quantitatively the above empirical value of A. Recently,
however, Otsuka et al. have illustrated that the origin
of the exchange term in spherical nuc1ei can be traced
quantitatively to the fermion quadrupole pairing interac-
tion between identical nucleons. Although not elaborat-

ed at the time, this possibility was already pointed out by
Geyer and Hahne.

We note that in the single-j shell approximation given
above, the exchange term is characterized by the fact that
the boson operators and odd fermion operators are only
coupled to the angular momentum of the chosen j
shell. ' Although a cursory reference to a similar struc-
ture in nuclear field theory (NFT) can be found in Ref. 3,
no thorough motivation for the neglect of coupling to the
other allowed angular momentum values has yet been
given, either within the framework of IBFM or NFT. In
this paper a satisfactory resolution is presented, at least
for the specific fermion-fermion interaction considered.
It should be mentioned that for j= —', , the above-

mentioned restricted coupling leads to a spin (6) symme-
try as discussed by Iache11o and Kuyucak. ' The transi-
tion from fermion microscopy to boson phenomenology
requires a transcription from fermion to boson space and
the identification of the appropriate collective bosons.
The actual mapping procedure we prefer, namely the
generalized Dyson boson mapping (DBM), characterized
by finite boson images, has been demonstrated '" ' to
be a very efficient tool for investigating boson models
directly linked to fermion microscopy. However, the
direct application of the DBM leads to a description in
terms of pair bosons, which in general presents an un-
favorable point of departure when a truncated descrip-
tion in terms of the physically relevant bosons, such as s
and d bosons of the IBM is considered. "

Among other considerations, the numerical results
given by Otsuka, Arima, and Iachello (OAI)' and by
Halse' seem to indicate that an association between (fer-
mion) seniority and the number of non-s bosons presents
a more favorable point of departure as far as the
identification of the "physical" bosons is concerned.
(This seems to be the case for vibrational-type situations,
at least. Halse's results seem to indicate that the seniori-
ty association has wider validity, but this requires further
investigation. )

For even-A nuclei the OAI formalism' involves a
Marumori-type mapping of fermion seniority states onto
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the IBM bosons states, from which the boson images of
fermion operators are subsequently constructed by re-
quiring equality between boson matrix elements and the
corresponding ferrnion matrix elements. The mapping of
the states in the OAI scheme implies that the seniority in
the boson space should be associated with twice the num-
ber of non-s bosons. This requirement has recently led to
the construction of a similarity transformation' which
reexpresses the Dyson pair boson images of bifermion
operators in terms of the physical seniority bosons.

The seniority transformation of Ref. 14 can simply be
extended to odd-A nuclei by associating seniority with
the sum of twice the number of non-s bosons and the
number of unpaired fermions. This leads to a structure
analogous to IBFM where basis states are most con-
veniently described in the weak coupling scheme. ' After
a short introduction of the DBM we discuss the above
construction in Sec. II. In Sec. III we show the results
when the formalism is applied to the monopole pairing
plus quadrupole pairing Hamiltonian previously dis-
cussed by Otsuka et al. , while Sec. IV contains some
concluding remarks.

[8 p, B„„]=[8P,B"']=0,
8aP

8aP 8Pa

(4)

(5)

(6)

Ideal fermions represent the unpaired fermions in the
IBFM and by construction the operators R constitute a
complete realization of the biferrnion algebra.

For a single-j shell it is convenient to introduce spheri-
cal pair boson operators

8 =(1+5 )
'~ g (j&m&j2m2 ~

JM)8 '

Here we have used a summation convention over repeat-
ed indices which represent the shell-model quantum num-
bers jm. [Creation (annihilation) operators are dis-
tinguished by superscripts (subscripts), e.g. , the fermion
creation (annihilation) operators in the original space are
denoted by c (c ).] The ideal fermion operators satisfy
the usual fermion anticommutation relations and are
defined to commute with the ideal bosons which satisfy
the boson algebra

[8 p, B""]=5"5p 5~p5—",

II. DYSON MAPPING AND CONSTRUCTION OF THE
SENIORITY TRANSFORMATION

mlm2

(7)

The generalized DBM for an odd system is defined by
the mapping

b P=c cP

—:8 p —8 ~Bp 8 —8 ~apa —8~pa a

From the generalized DBM and the transformation to
spherical pair bosons the pair boson images of the spheri-
cal fermion operators

gJM [ j j]J1 I
b~p =cpc —+R p

——8 p,
bp=c cp~Rp —=8 8 +a a

(2)
1

~JM [cj~jVM ( ~1M ( 1) [~ ]

UM —[C Cj ]M

between the bifermion operators b and the ideal boson
and fermion operators, denoted by 8 and a, respectively.

[with c =( —1)j cj ] can be obtained by using stan-
dard angular momentum coupling. These images are

i
( A )D 8 2g—— J)J—2J3L j

J(J2J3L
3

i
J2 J [(8 '8 ')'BJ ]xt+2X( —1)'+'J'J' J [(8'a')'a, ]M

L J J'J'

( ~1M)D BJM (10)

J, J~ J
(UM)D=2 g ( —1) J,Jz '. . . '[8 'BJ ]I+[a a, ]M .i i j

1 2

Here the standard notation J=&2J + 1 is used.
We define the s-, d-, g-boson creation (annihilation) operators as s (s) =8 (Boo), d"(d„)=8 "(82„),

g"(g„)=8 "(84„),etc. The pair boson image of the monopole pairing interaction Ho —GOAA Aoo, is——of particular
importance in obtaining the seniority transformation. From expressions (6) and (7) we obtain the pair boson image Ho
of Hp

Hp ——Hp+ 8
with

(12)
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0—1

Hp= Gp An, —n, (n, —1) —n, 2 g nzJ+n,
J=1

(13)

Ji Jq J3
W=G pg'B B ss —Gp02QQ'J[(B a')Ja ] s —Gp&20 g' J,JzJ~

' . . [(B''B ') 'BJ ]ps . (14)

Here n, and npJ Q:n„denote boson number opera-
tors while n, denotes the fermion number operator. The
primed summation implies a summation over J values
other than zero. We note that when Hp is represented in
an ideal boson basis, its matrix representation is of tri-
angular form. [In Ref. 13 it has been proved that the use
of a (complete) ideal boson basis in conjunction with a
mapped operator, such as Hp, is always permissible. ]
This means that Hp has the same spectrum as its diago-
nal part Hp. However, when the ideal space equivalent of
seniority is (naturally) chosen as v=2+'n~+n„ then
H p in contrast with its fermion counterpart H p does not
conserve seniority. In order to retain the above ideal
space association for the seniority and have a boson
counterpart of Hp which conserves this seniority, a simi-

larity transformation is needed which will transform
away the seniority breaking part W of Hp. This similari-

ty transformation, denoted by Z, should therefore satisfy

I

at most, a discussion of this further transformation is
postponed to a sequel paper. ) From the structure of Z
it can be inferred that the inclusion of terms with k ) 1 in
the sum will only introduce higher-order multiboson con-
tributions to the seniority images of bifermion operators
without changing the structure of the lower-order contri-
butions which resulted from k =0 and k = l. (When the
similarity transformation is applied to many-body opera-
tors such as the Hamiltonian, this observation does not
necessarily hold and terms with k & 1 may contribute to
terms of the same order as those generated by the k =0
and k =1 terms. In the present discussion, however, this
aspect is not crucial, since we eventually focus on states
with one boson at most. } In what follows, we adopt the
lowest-order approximation to Z which retains only
the k =0 and k =1 terms:

Z =1—Zi+Z~+Z3,

Z(Hp+ W)Z '=Hp . (15)
where

Operating from the left with Z ', and reordering, one
has

00z-'=—y
/&

—p Ap Hp

k

W h, (17)

[Z ', Hp]= WZ

The solution of this commutator equation is given by (see
Appendix A)

2 0+3—2N+2n, —n,

0+2—2N+2n, —n,

Jz Js
Z, = J1J2J30+2—2N+2n, —n, JJJ ' J J J

[(B 'B ') 'B ]
3

(19)

(20)

where a positional operator 8p is introduced. ' The posi-
tion of the hat indicates where in an expression a
number-dependent hat operator is to be evaluated.

By construction Z is therefore the seniority transfor-
mation which transforms the pair bosons into the seniori-
ty (physical) bosons (of the vibrational limit) of the IBM.
(When states with more than one d-boson are involved,
one actually needs a further similarity transformation to
retain the precise association between seniority and non-s
bosons. Since we deal here with states with one d boson

(21)

and

Z =1+Zi —Z~ —Z3 (22)

8 =ZSZ '=8 —[8,Z, ]+[S,Z, ]+[8,Z, ] . (23)

with N= g'nzJ+n, In the sa. me approximation Z and
the seniority image of a pair boson operator 8 are given,
respectively, by

III. APPLICATION AND RESULTS

We now turn to the seniority image of the quadrupole pairing Hamiltonian

H~= —G(A A~)

which has the pair boson image

(24)

J
Hg= G(d d )+2G —g J,J,J,L j

Jl J2J3L
al 3

Ji ~ ~ J
Jz j [[(B 'B ') BJ ] d) —2GQ( —1)J+iJj'',

2 'f[(B a ) a. ] dj.
L 2

JJ'

(25)
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G is taken to be 1.043 MeV as used by Otsuka et al.
The seniority image of HD is now obtained by normal ordering the creation and annihilation operators appearing in

the various terms of Eq. (23) and recoupling the angular momentum of the resulting terms. Number operators that ap-

pear are absorbed into number-dependent coefficients. We only retain those terms which, without their number-

dependent coefficient, are one- or two-body operators. We then truncate to s and d bosons, i.e., retain those terms
comprised of only s- and d-boson creation or annihilation operators with coefficients which may depend on n„nd, or
N=n, +nd Th. e seniority image of Hg is then finally obtained as

(26)

with

H, =e, ( ss)+ed(d. d)+ g ez[(d d ) (d d) ] +uo(d d )ss+uiis s (dd)
J=0,2, 4

+u2[(d d ) (ds) ] +uz[(d s ) (d d) ]

and

H, "=A
u[( ss)(a~0', ) ] +I [(std) (aja ) ] +I"[(dts)2(a'if ) ] +A&[(dtd) (a~a, ) ] +V,„+Vd;, .

(27)

(28)

Here V,„denotes the exchange term which has been obtained microscopically from the fermion quadrupole pairing in-

teraction (there is no contribution to V,„ froin the monopole pairing interaction) and is given by
r

10 0—N-n„-n.
V,„=— G :[(d &, )'(a'd )']

P20 0 2nd —n, — (29)

The 6nal term of H, " is a direct term which can be rewritten as an exchange term where the boson and fermion opera-
tors are coupled to angular momenta other than only the angular momentum of the j shell (the possible role of such
terms was also pointed out in Ref. 19). This direct term is given by

N —nd+1
Vd;,

——106 g ( —1)~ +~j '
20 0+2—2nd —n,

N —nd 2 2 4 2 2 4

n 2n, n-. -
(30)

=106g ( —1)J +Jj ' N —n~+1 j 2 j
, '+18( —1)1+1

0+2—2nd —n, J 2 J
N —nd 2

t

0-2n, -n.
4 2

J J

x:[(d d, )'(a'd)'] (31)

e„(d d)+ V,„+Vd;, .

Since

(32)

(33)

it follows that only the first two terms in Eq. (32) can con-
tribute when J&j and

(dj;J&j
~
HP

~
dj;J&j ) = —6+ 106W(j 22j;jJ ) (34)

The (number-dependent) coefficients in Eqs. (27) and (28)
are given in Appendix C.

In order to illustrate the role of the direct term (31), we
compare for 43Tc the spectrum of the interaction H, "
within our formalism with the one obtained in Ref. 8 for
states with one d boson. An inspection of the matrix ele-
ments of the terms in H~ reveals that the only terms
which could contribute to the matrix elements of the
states

~
dj;J) (which are considered in Ref. 8), are those

in the combination

which is exactly the same as the result obtained by Otsu-
ka et al. Here, however, the similarity transformation
yields, without any additional considerations, a direct
term Vd;, in addition to the exchange term which is the
only one mentioned in Ref. 8. [The term H3" mentioned
in Ref. 8 can only couple states with respectively one s
and one d boson. It has been indicated that a direct
term can also be obtained in the OAI formalism. In this
case the siinple result (33) is not immediately obvious.
Furthermore the special role of Vd;„ to be discussed
presently, is not mentioned at all in Ref. 8.]

A comparison of the result (34) with a matrix element
of the phenomenological exchange term (1) now clearly

implies the relationship A =10G. Taking G =1.043 MeV
from a 6t to 42Mo, this leads to A=10.43 MeV, which
compares favorably with the strength of about 10 MeV
required by phenomenological fits (as already observed
in Ref. 8).

A diagonalization of H~+Ho, expressions (26) and
(13) with the strength parameters of Ref. 8, in the j =—', +

subspace of one boson plus one fermion yields the 43Tc
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spectrum shown in Fig. 1(a}. This is identical to the spec-
trum given by Otsuka et al. in their Fig. 1(b). If the
direct term Vd, , is not included, the resulting spectrum is
shown in Fig. 1(c). As expected from expression (33},it is
only the excited j=—', + state which is significantly

infiuenced [the matrix element in Eq. (33) contributes
about 0.25 MeV]. (It is therefore at present not quite
clear how the spectrum given in Ref. 8 could have been
obtained without a direct term, as seems to be implied by
the discussion given by Otsuka et al. ) For comparison
we also show in Fig. 1(d) the spectrum obtained by re-
taining k =2 terms in Z '. For states with one d boson
at most, terms with k & 2 will have no influence and, as
can easily be checked, Fig. 1(d) therefore also corre-
sponds to the exact shell-model calculation for the mono-
pole plus quadrupole pairing interaction.

The above analysis in a single-j shell indicates that the
(phenomenological) choice of retaining only an exchange
term in the IBFM Hamiltonian can be partly justified.
For a complete description of the first excited state which
has the j value of the shell involved, a direct term seems
to be called for too. [For J=j, W(j22j;jJ)-1/Q; a
comparison of Eqs. (33) and (34) therefore indicates that
there is also a suppression —1/Q of the direct term rela-
tive to the exchange term. This will obviously be more
significant for larger values of 0, but even then specific
numerical coefficients and details of the fermion interac-
tion will play a role in determining the relative impor-
tance of exchange and direct terms. When states with
more than one boson have to be considered, the present
analysis will also have to be extended to determine the
relative role of these two interaction terms. ]

As a final example of the implementation of the senior-
ity transformation (23) we consider the seniority image of
the quadrupole operator U„ in Eq. (8). We use the same
method as in the case of the quadrupole pairing Hamil-
tonian, which now means that we eventually only retain
terms that are one-body boson operators with possible
number dependent coefficients. The seniority image of
the quadrupole operator we obtain in this way is given by

2.25-
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I
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FIG. 1. A comparison of IBFM calculations for 43Tc with

measured levels (b), supplemented by two calculated values (+ +)
from Ref. 21. The spectrum (a) includes the direct term (30) as
described in the text, while (c) was obtained without the direct
term. The spectrum (d) corresponds to an exact she11-model cal-
culation and was obtained by retaining higher-order terms in Z
(see text).

' 1/2

(U )=—2 2
n

0—N —nd —n,
s d„+d"s 0—1 —2nd —n,

Q —2N n, —
+10' . . ' [d ]„j j j 0—2nd —n,

Q —2N —n,
+ 0—2nd —n, 0+2 —2nd —n~

2 2 J
+ g'( —1}'J . [[d's]'[a'a ]']'s

0+2—2nd —n, J
' j j j (35}

It is evident that the procedure based on the DBM leads
to seniority images that violate Hermiticity relationships
in the ideal space which exist in the original fermion
space. As discussed, however, in Ref. 14, there arises
from the formalism a well-defined prescription for calcu-
lating ideal space matrix elements and transition ampli-
tudes for such non-Hermitian operators. Using this
prescription, we can, e.g., show that all quadrupole tran-
sition amplitudes between three-particle states in the

j=—', + subspace considered above, are reproduced by
( U„), in the ideal space of one boson plus one fermion.

In Ref. 14 it was also indicated that if the individual
terms in a non-Hermitian seniority image coupled
different ideal space states, a Hermitian equiUalent opera-
tor could be written down for which transition ampli-
tudes are simply calculated in the usual way. From ( U„),
it is however clear that there are different terms which
can couple the same ideal space states. The factorization
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needed to construct an exact Hermitian equivalent opera-
tor is therefore impossible.

This is precisely the reason why the quadrupole opera-
tor given by Otsuka et al. is different from ours and
could only be constructed to reproduce fermion matrix
elements approximately. It is namely necessary to resort
to some approximation (as discussed in Ref. 8) to enforce
a Hermitian structure on their quadrupole operator.

This is a particular example of a more general difficulty
encountered with the OAI method. For general boson
number it is namely not always possible to disentangle
from the one equation which equates fermion and ideal
space matrix elements the coefficients of terms which can
couple the same ideal space states.

Although the approximation needed to get a Hermitian
operator might still be able to yield acceptable numerical
results (although this requires further investigation) the
above exposition again serves to illustrate that one cannot
always achieve a complete IBM-like structure equivalent
to a given fermion structure. (See also Ref. 15.}

To this end we make the ansatz

00 ]Z '=g W A,
k=p p

—Hp
(A2)

The first commutator above simplifies as follows:

[(8p—Hp) 'W A, Hp]=(8p Hp) —'W AHp

Hp(B—p —Hp) 'W A

=8p(Pp —Hp) 'W A

(A4)

—Hp(hp Hp) W —A (A5)

where 8 is defined' to be evaluated at the position indi-
cated by the lone hat. Inserting this ansatz into the com-
mutator equation (36) yields for the left-hand side

[(+p—Hp) 'W A, Hp]

+[[(8p Hp)—'W] A, Hp]+ . (A3)

IV. CONCLUSION AND OUTLOOK =8'A . (A6)

We have confirmed the result of Otsuka et al. that
the origin of the exchange term in the IBFM, when ap-
plied to spherical nuclei, is linked to the fermion quadru-
pole pairing interaction. From our analysis a comparison
between the direct and exchange terms [Eqs. (29) and
(31)] is immediately possible, since the formalism based
on the Dyson mapping and subsequent similarity trans-
forrnation yields the complete seniority boson image of
any fermion operator.

We have found some support for the phenomenological
choice of the IBFM exchange term in a single-j shell
where only angular momentum coupling to the j value of
the given shell is retained. It was however pointed out
that even for the special case investigated, the direct term
plays an important role in the complete description of
that excited state which carries the j value of the shell.
Furthermore the role of the direct term for multishell sit-
uations and for states with more than one boson requires
further investigation, as well as the effect of the fermion
interaction in determining this role.

We have also constructed the IBFM seniority image of
the quadrupole operator U„using the similarity transfor-
mation as in Eq. (23). This seniority image differs from
the analogous operator given by Otsuka et al. As dis-
cussed, the difference stems from an unavoidable approxi-
mation made in order to enforce a Hermitian structure
on the quadrupole operator.

We would like to thank Fritz Hahne for numerous
helpful discussions and a critical reading of the final
manuscript.

Similarly the second commutator becomes W(8p
Hp) W—A. Continuing in this manner, one obtains

exactly the right-hand side of Eq. (36) with Z ' given in
Eq. (37}, which proves that the ansatz is indeed a solu-
tion.

APPENDIX B: Z ' COMMUTES WITH s

We show that s commutes with Z '. Define

M=n, +n&+n,

with

(B1)

ng =Z n2J (B2)

Now, since sf(n, )=f(n, +1)s and sf(&, ) A
=f()t, +1) As, where f is any function of n, and S„and
from the fact that

[si8 ]l~p [S~BJM]J~p 0 i
JM

it easily follows that Z ' and ( App)D =s commute.

(B4)

APPENDIX C: NUMBER-DEPENDENT
COEFFICIENTS OF H ~

The structure of W in expression (14) implies that for
any state

i
M, n„na, n, ), the eigenvalue of M is left in-

variant under operation of 8. We can therefore write

8p Hp = —Gp[(tt, n, )(0—+ 1 —2M+8, +n, +n, )]

(B3)

APPENDIX A: SENIORITY TRANSFORMATION

We seek the solution of the commutator equation

[Z ', H ]=WZ (A 1)

The number-dependent coefficients of H~ which are
obtained after implementing the Dyson mapping and the
subsequent similarity transformation Z, are as listed
below:
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ES

26 N —nd —1

0 0—1 —2nd —n,
(C1)

ed ———G
0 2N—+2nd 2 (N —n„—1)(N —nd )

0 +—
0 0—1 —2nd —n,

'2
2 2 4 2 2 2180. . . +200J J J J J J

'2
N —nd

0—2nd —n,
(C2)

6 0—2N+4nd —4
Vp= +20+3—2n„—n,

6
V p 0

Q J J 2

0+3—2nd —n, J J
(C3)

(C4)

2 2 2 2
U, = —G 5v'10Q . . . 100 j

j'
. 2

j 2 —18'.
2 2

4
J' j 2

J J 2.
4 2 2

X
1

0+2—2nd —n,
—10

10
' 1/2

0 j
2 2 N —2nd+1

0+2—2nd —n,

0+ 1 —4N+ 2nd —n,
0+1—2nd —n,

v2 ———10
10 2 2 2

0 'J J J
0—2N —n,

0—2 —2nd —na
(C6)

J
cJ ——5JG 10 j

2

J 2

j 2 —20

2 J J J J

2
N —nd+1

&J20+2—2nd —n,

1

20
(N nd+1)(N—nd+2) (N n—d

—1)(N—nd ) 2—2 4
5Jp+ 30 '

0+3—2nd —n, 0—1 —2nd —n, J J J
I

2

N —nd+1
0+2—2nd na

J4

2 2 2 2 2 2 2 2 4 2 2 4
2 2 J ' ' '

2 2 JJ J J J J J
N —nd

0—2nd —n,

10 1
Ap —— 6F20 0—2nd n, — (C7)

2 2 2
A q

———120&5G '

J J J
N —nd

0—2nd —n,
(C8)

10
0

1/2 0—2N —n,6 0—2 —2nd —n,
(C9)

1/2
10
0

0—2 —2N +4nd j j+10' .0+2—2nd —n, J J
0

0+2 —2nd —n

2N —2nd

0—2nd —na
(C10)
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