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The linear response of the ' 0 nucleus to an external electroweak current is studied in a relativis-

tic model. The relativistic form for the nuclear linear response is applied using the random-phase

approximation, Dirac-Hartree single-nucleon orbitals obtained along with Lorentz-vector and sca-
lar self-consistent meson mean fields, and various particle-hole residual interactions. Form factors
for inelastic electron scattering are combined into complexes and compared with experiments and

previous nonrelativistic predictions. The agreement with electron scattering experiments is of simi-

lar quality for both nonrelativistic and relativistic theories with no obvious signature obtained
motivating the superiority of a relativistic treatment. For weak interactions, the relativistic ap-

proach yields a considerable variation in predictions depending on the residual interaction adopted
and whether pseudovector or pseudoscalar ~XXcoupling is assumed.

I. INTRODUCTION

There has been considerable recent interest in the role
of relativistic dynamics in nuclear structure and nuclear
reactions. The application of relativistic quantum field
theory to nuclei' and the study of relativistic nuclear
Dirac phenomenology has led, as examples, to one ex-
planation of (a) the large nuclear effective single-particle
spin-orbit potential and (b) the spin observables in inter-
mediate energy proton-nucleus elastic scattering experi-
ments. The relativistic models are characterized by large
(300—400 MeV) nuclear mean fields. The deep attractive
mean field due to scalar-isoscalar meson exchange is
largely canceled by a repulsion associated with vector
meson exchange. This results in the relatively small
( —50 MeV) nuclear potential commonly adopted in non-
relativistic nuclear models. It is important to determine
the validity of the main features of the present relativistic
models and also to determine whether it is more fertile to
use relativistic models or to adopt standard nonrelativis-
tic approaches treating relativistic effects as correction
terms.

The presence of the large attractive scalar field results
in the prediction of a small effective nucleon mass
(M -0.6M) in the nuclear interior. This, in turn, leads
to an enhancement of the lower components in the Dirac
single-nucleon orbitals. Thus there is interest in studying
static nuclear properties (such as magnetic moments) or
reactions (involving, for example, the nuclear linear
response) where the lower-components are expected to
play a non-negligible role. A significant difference be-
tween relativistic model predictions and standard nonre-
lativistic predictions with the relativistic predictions
confirmed by experiment would be an indication of the
fertility of the relativistic approach.

Because of complications associated with strongly in-

teracting probe-nucleus reactions, the most straightfor-
ward tests of the relativistic approach might be expected
from studies of electroweak nuclear reactions. Even for
electroweak reactions, isolation of effects associated with
the enhancement of the lower components is apparently
not straightforward. Many transition densities are sur-
face peaked where effective mass enhancement effects are
small. Relativistic prediction of magnetic moments or
magnetic elastic electron scattering must include correc-
tions due to "backflow" contributions in the closed-shell
+ one nucleon system. When these corrections are in-
cluded the large enhancements of magnetic moment
characteristic of relativistic models are reduced and the
results are close to the traditional Schmidt lines. Large
correction terms are expected for isoscalar matrix ele-
ments. Therefore, in the current investigation we have
studied the isovector linear response of ' 0 to electroweak
probes. Although we make contact with experimental re-
sults we also study the sensitivity of the results to changes
in the residual interaction and the approximation in-
volved in evaluating the nuclear linear response.
Specifically we have studied the predicted energy level
scheme for (particle-hole) excited states in ' 0 as a func-
tion of the assumed relativistic baryon-baryon interac-
tion, treatment of the nuclear continuum, and procedure
for obtaining single-particle energies. We have then used
the obtained wave functions and relativistic transition
operators to make predictions of transition rates for elec-
tron scattering and muon capture on ' 0, and beta decay
on ' N. Especially in the case of weak interactions there
exist identifiable significant differences between the
present relativistic treatment and previous nonrelativistic
calculations or other less complete relativistic calcula-
tions. For these cases we have investigated which effects
arise from the relativistic treatment and which effects are
due to a more realistic treatment of the nuclear continu-
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um (which could have also been included in earlier nonre-
lativistic calculations).

In the next section we briefly summarize the formulas
used to evaluate the nuclear linear response in the relativ-
istic formalism. Also in this section we discuss the vari-
ous different prescriptions, input parameters, and
particle-hole interactions adopted to obtain the nuclear
polarization propagator required to calculate the elec-
troweak linear response function.

The electroweak transition-matrix elements require the
evaluation of matrix elements involving single-baryon
Dirac-Hartree orbitals. Thus the electroweak nuclear
transition operators are expressed in full relativistic
form. The definitions and explicit forms for the operators
used in this investigation are summarized in the Appen-
dix. The general expressions used to obtain the
differential cross sections for (e,e'), beta decay lifetimes
and muon capture rates are given in Sec. II.

The results for the predicted excitation spectrum, elec-
tron scattering form factors, muon capture, and beta-
decay rates are given in Sec. III. In this section, we also
compare the predictions with experiment and previous
nonrelativistic results.

Finally, in Sec. IV we briefly summarize results and

discuss the main conclusions to be drawn from this inves-
tigation.

II. PROCEDURES AND FORMULAS

A. Linear response in the
random-phase approximation

We study the nuclear linear response to an electroweak
perturbation. The nuclear linear response is determined
by the density correlation function (or polarization prop-
agator) which is defined by '

i crap ~p(t —t')

= &4'~ T[C„„(t)C»(t)CH (t')C»(t')]~%'), (1)

where
~
4 ) is the exact normalized Heisenberg ground

state of the assumed Hamiltonian. The Heisenberg
creation and destruction operators (C,C) appearing in
the time-ordered product in Eq. (1}are taken to refer to
single-particle Hartree orbitals in our application. By
considering the Fourier transform, m(to), and inserting a
complete set of Heisenberg representation eigenstates,
~%'"), of the Hamiltonian, the Lehmann representation of
m ( tp ) is obtained:

&e'ic„'„c„,e")&e"ic'.C»ie')
&(tp ) =Pi

fitp (E„Ep)
—+i rt—

& e'ic„'.C»ie") &
e"ic„'„c„,imp)

Acu+ (E„Ep) i r—i—
The poles of m yield the energy spectrum of the nucleus,
including the final states induced by the electroweak per-
turbation. In order to explicitly evaluate n(tp) the pro-
cedure is to transform to the interaction representation
and consider diagrams involving appropriate time order-
ings of the interaction Hamiltonian (here involving
meson-baryon interactions) that are not already included
in obtaining the Hartree orbitals. The detailed form of
the interaction Hamiltonian depends on the theory under
consideration. In most nonrelativistic applications one
assumes an interaction that is a delta function in (t t')—
[see Eq. (1)]. Such an assumption suppresses meson
propagation effects. If meson propagation effects are in-
cluded, relativistically or nonrelativistically, the density
correlation function has a nontrivial frequency depen-
dence. In what follows we assume that the energies of
the excited states under investigation are much smaller
than the masses of the exchanged mesons, and that it is
therefore a reasonable approximation to ignore retarda-
tion corrections. We also drop terms associated with
nucleon-antinucleon pair excitations. Along with these
approximations we adopt the standard random-phase ap-
proximation (RPA} for evaluation of the particle-hole po-
larization propagator. Adopting this set of approxima-
tions one may keep the full Dirac four-component nature
of the single-particle orbitals and the particle-hole in-
teraction and still obtain the usual RPA equations for the
Dirac particle-hole admixture amplitudes.

We use standard angular momentum and isospin cou-
pling and label the nth excited state of the nucleus as

~%zr ), where J( T) denotes the total angular momentum
(isospin} of the nuclear excited state. In the RPA approx-
imation ~+jr ) is obtained from the exact ground state
~%' ) by creating or destroying a particle-hole pair. Thus
the excited state can be written

~%zr) =g gzr(ab)g (abJT)~%' )
ab

+ ggzr(ab)g(abJT)~% ),
ab

(3)

and

[ [Ep —(e. eb )] E„I yJr(ab)— —
—g [u,b t* /Jr(lm)+u, b I /Jr(lm)]=0 . (4b)

In Eqs. (4a) and (4b) above the ( , e)reebfer to single-
particle Hartree energies and

where g (g} is a particle (a) -hole (b) pair creation (de-
struction) operator appropriate for a pair having total an-
gular momentum J and isospin T. The RPA admixture
amplitudes, gzr and /Jr, can be determined by solving
the set of coupled algebraic equations:

I [Ep + (e eb )]—E„I /Jr(ab)

+ g [u,b I /Jr(lm)+u b t /jr(lm)]=0
Im

(4a)
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Jm Ja J
Z

v, b 1
= —g (2J'+ 1)(2T'+ 1)

J'T' Jb Ji

x [& lbJ'T'I Vl~m J'T'
&
—( —1) '

& IbJ'T'I VI m~J'T' &] (Sa)

with
JT —

( 1 )1/2 —1/2 —
T( 1 )Jm JI JT

~ab, lm "ab, mi ~ (5b)

where the matrix elements are doubly reduced in angular
momentum and isospin space.

Note that the single-nucleon orbitals (a, b) in Eq. (7)
are of the Dirac type so that the transition operator in
Eq. (7) is kept in its full relativistic form. The transition
operators appropriate for electron scattering, beta decay,
and muon capture applications are discussed later in this
section and the Appendix.

B. Dirac-Hartree single particle orb'itals

The RPA Eqs. (4a) and (4b) are an infinite set of cou-
pled linear algebraic equations. Reducing the problem to
a finite set of equations requires that one limit the num-
ber of p-h configurations contributing to the excited
states under consideration. We adopt the standard ap-
proximation for the low-lying excited states studied here
by restricting the sum over particle-hole pairs, Im, in Eqs.
(4a) and (4b) to particle states I in the low-lying unfilled
valence shell(s) and hole states m, in the highest filled or-
bitals for the closed-shell ' 0 nucleus.

In this investigation the single-nucleon Dirac-Hartree

The single-particle wave functions used in evaluating
the matrix elements of the effective N-N interaction V are
Dirac-Hartree orbitals associated with Hartree single-
particle energy eigenvalues e. The effective N-N interac-
tion Vis written in the general Dirac form

V(1,2)= As+ A 1 y"(1)y„(2)+&psy'(1)yg(2)

+ & ~ vy'( l )y"(1)y5(2)y„(2)

+ A To"'(1)cr„„(2),

where the A's are functions of Lorentz invariants and
isospin. The Hartree orbitals, single-particle energies,
and effective interaction V(1,2) comprise the required in-
put for solving the nonsymmetric matrix eigenvalue prob-
lem represented in Eqs. (4a) and (4b). The determined
eigenvectors contain the RPA particle-hole (p-h) admix-
ture amplitudes f and P. The corresponding eigenvalues
are the nuclear excited state energies. The input will be
discussed in more detail below.

The transition amplitude for a one-body operator 1'JT
defined in the nuclear many-body space, can be deter-
mined, given the RPA admixture amplitudes, via

& +JTII&»ll+'& = X [ & a II ~JTIIb &ADJT('/Jb)
ab

+ ( 1 )1/2 —1/2 —
T( 1 )Jb Ja

X&b

wave functions of Horowitz and Serot are adopted for
the pure particle-hole basis states. These single-nucleon
orbitals are obtained using a Hartree approximation
wherein the nucleon orbitals and the o. and co meson
mean fields are determined self-consistently. The pro-
cedure used is to assume a Lagrangian containing cou-
pled meson and nucleon fields. The meson fields are
treated in the mean-field approximation. For example,
for nuclei possessing good parity a typical mean-field La-
grangian is given by'

& =4[1y„~" g.—y'Vo ,'g—pr—iy'bo

—e—,'(1+r3)y Ap —(M —g 11)o)]/+pure mesonic

+electromagnetic Coulomb couplings

+counter terms,

where it is the nucleon field, M is the nucleon inass, A p is
the Coulomb potential, and Vp bp and Po represent the
isoscalar vector meson (co), isovector vector meson (p),
and isoscalar scalar meson (cr) fields, respectively. The
counterterms ensure renormalizability. Since the meson
fields are treated as C numbers, the coupled Euler-
Lagrange equations of motion can be solved. ' The pa-
rameters M, g, g, g, m, m, and m are treated as
phenomenological constants. ' The masses of the vector
mesons (m, m ) are taken from experiment. The satura-
tion properties of nuclear matter (density and binding
energy/nucleon) are used to determine the ratios of the
coupling constants to the masses for the 0. meson
(g /m~) and the co meson (g„/m ) . The mass of the
scalar isoscalar meson is obtained from fitting the surface
thickness or rms radius of a finite nucleus such as Ca.
The ratio g /m is obtained by fitting the bulk symmetry
energy/nucleon. We note for N =Z nuclei, such as the
present ' 0 ground-state application the p meson does
not contribute in the Hartree approximation for the or-
bitals. The parameters adopted in this study are listed in
Table I.

The Euler Lagrange equations of motion yield a set of
coupled equations which are solved in the Hartree ap-
proximation for spherical nuclei to obtain the desired or-
bitals. The equation obtained for the nucleon field is of
the Dirac type, and for N =Z nuclei of good parity is of
the form

[iy&B" gy Vo(r) —e—,'(1+F3)y —i (/)or
—(M gPp(r)]f(x)—=0, (9)

where r = lxl.
The Dirac-Hartree wave functions and single-nucleon

Hartree energies (6p, eh ) are the stationary single-particle
solutions and energy eigenvalues obtained by solving Eq.
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Couplings

Masses

2
ga

2
g CO

2
gp

2

m~
Pl p
m

109.626
190.431
65.226

180.956

520 MeV
783 MeV
770 MeV
138 MeV
939 MeV

'See Ref. 3.

(9) consistently with the associated mean-field equations
for the meson fields. The Dirac-Hartree single-particle
wave functions used in this investigation were generated
by the computer code HPLUS2C. Particle-hole states of
good isospin were desired so the Coulomb interaction
was, in fact, turned off in generating the single-particle
wave functions. The neutron and proton wave functions
for a given orbit are therefore identical as are the corre-
sponding single-particle energies. The code HPLUS2C
first solves for the core wave functions and then checks
for self-consistency by attempting to generate spherically
symmetric self-consistent potentials (mean fields). After
the self-consistent core has been generated, the valence
orbitals are solved for in the presence of the earlier deter-
mined core. Thus there is the usual assumption that the
presence of the valence nucleon does not appreciably po-
larize the core. This does not appear to be a particularly
good approximation for T =0 particle-hole excitations
and a "backflow" correction term is needed in such stud-
ies. Therefore we constrain our transition studies to
T =1 particle-hole excitations where, due to the proper-
ties of the pe% coupling the correction term should be
small. Backflow corrections due to the pion may be im-
portant and are an area of future investigation.

The Dirac-Hartree wave functions obtained are those
of a single Dirac particle in a central, parity-conserving
field. These functions are eigenstates of J, 5, T, J„
and T, and may be written

l [Gnljt(r)/r]@lm
Pnjmt [F {r)/r]g& 9l(r)=

In Eq. (10), the spin-orbit wave functions 4l are ex-
pressed in terms of the spherical harmonics Yl and theIm(
two-component Pauli spinors y as

S

(10)

(ml ,'m, ~1—,
' jm ) Yl —(Q„)y, (11)

mrm

where it should be noted that the order of coupling in the
Clebsch-Gordan coefficient is (ls)j, that is,

j=l+s . (12)
Furthermore, since g is not an eigenstate of X' but is an
eigenstate of the parity operator, l differs from l by one:

I=l+1, whenever j =l+—,
' . (13)

The two-component isospinor g, enters multiplicatively

TABLE I. Parameters used in particle-hole interactions
denoted QHD-I and QHD-II in the text. '

Parameter

in Eq. (10). The radial wave functions corresponding to
the upper (large) and lower (small) components are G and
F, respectively.

Note, from Eq. (9), it is natural to define an effective
nucleon mass M (r) via

M'(r)=M g—Po(r) . (14)

Because the effective scalar potential g Po is quite deep
(-400 MeV) in the interior of the nucleus, the efFective

mass can be substantially reduced from the free nucleon
mass value (M'-0. 6M near r =0). This allows consid-
erable enhancement of the lower components of the
Dirac orbitals compared to a free Dirac particle. This
enhancement of the lower components could result in in-

creased transition amplitudes for transition operators
that connect upper and lower components. This effect
has been the subject of considerable previous discussion
and it is natural to speculate that the observation of par-
ticular enhanced transition rates would provide experi-
mental evidence for the deep potential obtained in the
present relativistic theories. We shall see in Sec. III that
the situation is more complex and, that for the reactions
studied in this investigation, some transitions resulting
from coupling upper and lower components are actually
reduced in the present calculations.

An important difference between the present Dirac-
Hartree wave functions and those of, for example, a har-
monic oscillator potential, apart from the four-
component structure, is that the possibility exists for the
Hartree calculation to produce an unbound valence orbit-
al. This possibility is, in fact, realized in the case of the

dizen orbital of ' 0, which is actually unbound in nature.
This d&&2 orbital will therefore lie in the continuum. A
continuum orbital such as the d3/2 wave function in ' 0
can be handled by discretizing the continuum. We carry
out the Hartree calculation inside a sphere of radius 12
fm and require that the upper component radial wave
functions [the G(r)] of the Dirac spinor solutions vanish
at the boundary. This is the method followed by
Furnstahl' who has also systematically studied collective
excitations arising from various particle-hole bases incor-
porating continuum Hartree wave functions. As one in-
creases the size of the aforementioned sphere, the density
of orbitals with positive energies increases. Although the
convergence of this procedure deserves further examina-
tion, we adopt Furnstahl's method' and suggest that
refinements (i.e., using a larger sphere) be a subject for
further study. In fact, our bases A and C (see below) will

correspond to bases A and C used by Furnstahl. '

In what follows, bases A and B will consist of hole
states taken from the lp3/2 and 1p1/2 orbitals and par-
ticle states from the (bound) ld 5/3 and 2s 1 /2 valence or-
bitals as well as the lowest 1d3/2 orbital in the discre-
tized Hartree continuum. This corresponds closely to the
usual "1—fr~" truncated basis often adopted in previous
nonrelativistic calculations.

For basis A we use the calculated Hartree single-
particle binding energies and, for comparison, in basis B
we adopt binding energies obtained from neighboring nu-
clei with one more or one less neutron.

In basis C, we include the particle and hole states in
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basis A plus additional particle states from the d3/2,
d5/2, and sl/2 orbitals in the discretized continuum
that result in unperturbed particle-hole configuration en-
ergies belo~ 50 MeV. For this basis the calculated Har-
tree single-particle energies are used to obtain the unper-
turbed particle-hole configuration energies. A summary
of the orbitals included and the associated single-particle
energies for each basis is given in Table II.

C. Yukawa-Dirac particle-hole interactions

1. QHD Iint-eraction

Previous investigators ' have denoted a specialized
form of the quantum hydrodynamics (QHD) Lagrangian
that contains only a and to meson couplings as QHD-I.
An N-N interaction naturally resulting from the QHD-I
Lagrangian contains terms arising only from the ex-
change of cr and m mesons. Thus we have utilized an
isospin-independent interaction containing Lorentz scalar
and vector terms of the form

of the N-N interaction is given by

V(1,2)= — +
4m r, 2 4~ r12

y"(1)y„(2)

+
4 y (1}y5(2)r, ~~

12

g e P 122 Pl I'

71 72+ y"(1)y„(2)
4m r12

(16)

2 —~+I'12 g ~~I'12

V(1,2)= — +
4m. 4~12

y"(1)y„(2)

where 7 is the usual nucleon Pauli isospin operator.
(ii) Pseudovector coupling of pions to nucleons—

QHD-II (PV). Starting from a gy5 coupling, one can use
the generalized Dirac equation [now containing an
effective mass M'(r), see Eq. (14)] to eliminate deriva-
tives in favor of the y5 coupling renormalized by the fac-
tor M'(rt )M'(rz)/M . Thus we obtain

V(1,2)=—
4m. r12 12

y"(1)y„(2), g„M'(rt} M'(r2) e™"&&

+ y (1)y,(2)r, r2
r12

(15)

where r,z=~r, —r2~. The couplings and masses adopted
are listed in Table I.

71 72+ y"(1)y„(2)
4m r12

(17)

2. QHD-II interactions

The QHD-II interaction includes trNN and pNN cou-
plings in the meson-nucleon Lagrangian. ' Since one
can couple the ~NN vertices with either pseudoscalar
(y~) or pseudovector (gy&) coupling, which are in-
equivalent in the many-body environment, we shall con-
sider each coupling separately.

(i) Pseudoscalar coupling of pions to nucleon —QHD-
II (PS). For the case of pseudo scalar coupling the form

The couplings and masses adopted for the QHD-II in-
teractions are given in Table I. A detailed discussion of
the techniques used to solve Eqs. (4a) and (4b) using the
interactions given above is contained in Ref. 9 and is
available from the authors upon request.

D. Formulas for evaluating
electroweak nuclear reactions

In Sec. III we present results for the nuclear linear
response to electron scattering, muon capture, and beta

TABLE II. Single-particle orbitals included and energies for bases A, 8, and C.

Orbital

113/2
2s 1/2
115/2

1p 1/2
1p 3/2

'See Ref. 13.

Basis A

Single particle
energy

2.63
—1.21
—3.38

—12.49
—20.77

Orbital

1d3/2
2s 1/2
115/2

1p 1/2
1p 3/2

Holes

0.98
—3.28
—4.14

—15.67
—21.83

Basis B
Single particle

energy'

Particles

Orbital

413/2
5s 1/2
4d 5/2
3d 3/2
4s 1/2
3d 5/2
213/2
2d 5/2
3s1/2
113/2
2s 1/2
115/2

1p 1/2
1p 3/2

Basis C
Single particle

energy

28.56
26.95
25.93
15.93
14.01
13.89
6.71
5.29
4.62
2.63

—1.21
—3.38

—12.49
—20.77
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decay using the wave functions obtained from using the
procedures discussed in the first part of the present sec-
tion. For completeness, we briefly summarize the main
formulas used to calculate these reactions. Some of the
detailed forms for the appropriate transition operators
are given in the Appendix.

E. Inelastic electron scattering

For this process, the nuclear ground state is linked to
the nuclear excited states considered in the particle-hole
model by the one-body electromagnetic operator, J "(x), q =k -k = p-p'

ELECTRON SCATTERING
J"(x)=g(x )y"Qg(x)+ d, f(x) o""1((x)

2M
(18)

where the f(x) are baryon Heisenberg field operators.
The nuclear current density adopted includes contribu-
tions from the anomalous magnetic moment A, ,

A, =A, —,'(1+F3)+A,„—,'(I —r3), (19)

where Az (A,„) is the proton (neutron) magnetic moment
and M is the nucleon mass. The operator Q projects out
protons:

Q= —,'(I+r3) . (20)

The Feynman diagram for inelastic electron scattering
by one-photon exchange is depicted in Fig. 1(a), where
the four momentum transferred from the nucleus is q„.
The differential cross-section for inelastic electron
scattering in the plane-wave Born approximation is writ-
ten"

q =k -k = p-p'

MUON CAPTURE

=4ncr~[1+(2e sin (8/2)/M„, „)] 'F

where

2

F = " FL+ —— " +tan (8/2) FT

where

qo =E; —Ef, (23)

and F., (Ef) is the initial (final) nuclear target energy.
The Mott cross-section 0-M is given by

o ~ = [a cos(8/2)/2e sin (8/2)] (24)

+/&J, [[T s(q)[[J, &/'] . (21)

In Eq. (21},e is the incident energy of the electron, 8 is
the scattering angle and M„, „is the mass of the target.
Using the metric of Bjorken and Drell, ' the four-
momentum transfer squared is

(22)

q =k+k = p-p

BETA DECAY

FIG. 1. Definition of four momenta for (a) electron scattering
(b) muon capture (pionic contribution to axial current shown)
and (c) beta decay (pionic contribution to axial current shown).

where a is the fine structure constant. In Eq. (21), the re-
duced matrix elements are given by Eq. (7} (note here we
suppress isospin factors and subscripts), where the first-
quantized multipole transition operators are specified in
the Appendix.

Using the transition operators defined above we have
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few(q„'}=[I ql'/—qw]
'

where

q~ =855 MeV/c,

and the center-of-mass correction factors, 11,13

g2 (q2) —e2y/A

(26)

(27)

(28)

calculated squared form-factors for inelastic electron
scattering to selected T =1 excited states in O. In or-16

der to compare with previous nonrelativistic calculations
and experiment, we plot and discuss in the next section,

F (q)= F (q) (25)
[1+tan (8/2) ]

where F (q) is defined in Eq. (21). We also include in the
calculated form factors the single-nucleon form factors
squared,

current, J„' '(x}:

J „' '(x) =J „' '(x)+J „'5 '(x) . (30)

In Eq. (30), J „' '(x) is the charge-changing weak vector
current (see the Appendix for details):

'(x)=f(x)y„r P(x)+8" P(x) o„,g(x), (31)
zm ~

where A,:—(A,~
—

A,„)~ . The second term in Eq. (30) is
the weak axial-vector current J„'5'(x) described in the
Appendix.

Figure 1(b) exhibits the induced pionic contribution to
the total axial-vector current. Since the nucleon can be
coupled to the pion with either pseudoscalar (y5) or
pseudovector gas coupling, we employ currents based on
both methods of coupling (see Appendix). For the case of
pseudoscalar coupling, the strength [see Eq. (A22)]

where

y =(—,'bq) (29)

2M'(x)
P ~2 2

is the analog of the nonrelativistic result'

(32)

In Eq. (28), A is the atomic mass number and in Eq. (29),
b is the oscillator parameter used in a nonrelativistic shell
model. We use the value b = 1.77F for ' O.

2MFp(q„}-
pl~ qp

(33)

F. Muon capture

We will study, in Sec. III, muon capture rates resulting
from the capture of a 1s Bohr orbital muon by an ' 0 nu-
cleus. This process is depicted in Fig. 1(b), where the lep-
tonic weak current is coupled to the weak nuclear

[i8 g„y Vo(—x) M'(x)]—P(x) =0 .

The muon capture rate is given by the formula, '

(34)

where Eq. (32) is obtained by assuming pion-pole domi-
nance and using the Dirac equation for the Dirac-Hartree
spinors:

X l&Jfll&J&v}—&g&v)IIJ &I'+ g l&Jfll&J"&v}—
J~l

(35)

In Eq. (35), G is the Fermi coupling constant and v is the momentum of the outgoing neutrino. The rate above includes
the square modulus of the muon wave function. Since the muon in Fig. 1(b) is treated in the limit k, /e, ~0, this is a
nonrelativistic wave function computed for a point charge and evaluated at the origin. The finite extent of the nucleus
is included by multiplying by the standard reduction factor. ' The rate above is also multiplied by a phase-space factor,

(1+v/M„, „)
The multipole operators in Eq. (35}are defined in terms of the current in Eq. (30) as follows:

Qj~(q)—=Qz~™zM
=f dx[j J(qx)Y&M(Q„)]J (x)

XJ~(q)=LJM +LJM ——f dxl V[J&(qx) YJM(0, )] l J(x)
q

T J~(q) —= T Jd~(q)+ T JM(q)= —f dx[Vxj J(qx)YJJ](Q„)]J(x),
q

f'PP(q)= T PP(q)+ TPP (q) = f dxj J(qx)YJJ, -J(x) .

The operators in each term above are defined in the Appendix.

(36)

(37)

(38)

(39)

(40)

G. Beta decay

We will present results, in Sec. III, for the beta decay of the first excited 0 state in ' N to the 0+ (g.s.) of ' O. This
state is found experimentally to have an excitation energy of E„=0.120 MeV relative to the ' N (g.s.) Thus, including
the mass diff'erence, M(' N) —M(' O)=10.51 MeV, this state should lie at E„=10.63 MeV above the ' O(g.s.) The
general diagram for the beta-decay process is shown in Fig. 1(c). Defining k„as the electron four momentum and v as
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the three momentum of the neutrino, the three-momentum transfer q from the nucleus is

q=k+v.
We denote the electron energy by e and define P as

(41)

(42}

For 0 ~D beta-decay transitions, the rate is given by'

dQI dQv
4~[(i+s P)I&0'~~&c(q}~[0 &I'+[1—s 0+2(~ q)(q P}]1&0+(~&0(q}~~0

—q.(v+p)2 Re(0+((E 0(q)[)0 )(0+)(lQ'0(q)[)0 )'I2m71/[exp(2nri) —1] .

(43)

This expression must be integrated over the electron en-
ergy e from the electron rest mass to Wo, the maximum
electron energy. Neglecting the recoil of the nucleus, Wo
is taken as the excitation energy of the excited state rela-
tive to the 0+(g.s.) The wave function of the outgoing
electron in the beta-decay process wi11 be enhanced by the
Coulomb interaction of the electron with the daughter
nucleus ' O. If one uses Coulomb wave functions in the
matrix element of the weak interaction the analysis is
very complicated. Instead we follow an approach similar
to that in muon capture of multiplying by a factor'

F(Z, e)= ~pk(0), /pk(0)~ =2nri/(exp2nrl —1), (44)

where q—:ZZ'a/P with Z =8 for ' 0 and Z'= —1 for
P decay. The factor F (Z, e) above is the square
modulus of the ration of the Coulomb wave function
computed for a point charge Z to a plane wave evaluated
at the origin.

In order to facilitate the integrations over the angles in
Eq. (43), we follow the traditional method of making
long-wavelength reductions of the transition operators
(the limit q~0). These reductions are listed in the Ap-
pendix [see Eqs. (A47) —(A50)].

III. RESULTS AND DISCUSSION

A. Spectrum of ' 0 excited states

We have used the procedures and input discussed in
the preceding section to obtain the spectrum of selected
T =0 and T=1 states for ' O. More specifically we have
solved the set of coupled equations given by Eqs. (4a) and
(4b) using as input the Yukawa-Dirac interactions given
by Eqs. (15), (16), and (17). The single-particle orbitals
are obtained from Dirac-Hartree calculations using a La-
grangian containing NNo. and NNco interactions. For a
closed shell N =Z nucleus, contributions from the isovec-
tor p and m mesons vanish in the Hartree mean-field ap-
proximation used to obtain the Hartree orbitals. The
coupling and mass input parameters used in the calcula-
tions are listed in Table I. Single-particle and hole ener-
gies were either obtained from the results of the Hartree
calculations or from neighboring nuclei (see Table II).

Representative results of the calculations are shown in
Figs. 2 —5. Furnstahl' has previously reported the re-
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FIG. 2. Negative parity, T=O, RPA, excited-state energy
levels calculated using the QHD-I residual interaction and vari-
ous bases described in the text. The unperturbed levels obtained
from Hartree single-particle energies (neighboring nuclei) are
shown as solid (dashed) lines. The spurious 1 levels are indi-
cated by an S.

suits of RPA calculations in a relativistic model. In what
follows we briefly summarize some previous conclusions
as well as some new results shown in Figs. 2—5. The cal-
culation of Furnstahl' used Hartree single-particle ener-
gies and allowed selected continuum single-particle orbit-
als (for example, basis A and C of the present calcula-
tions}. Our results are consistent with Furnstahl's for the
same set of input and basis states. This provides an in-
dependent check of some of the computer codes used to
generate wave functions in the present calculations.
Furnstahl' has noted previously that the pure particle-
hole energies obtained are within a couple of MeV of
those obtained by using the masses of neighboring nuclei.
This can be seen from Table II or from the first spectrum
(labeled unperturbed) shown in Fig. 2 where Hartree en-
ergies are denoted by solid lines and the energies obtained
phenomenologically from using the masses of neighbor-
ing nuclei are shown as dashed lines. Overall the main
feature is a greater spread in the pure Hartree spectrum
compared to the pure phenomenological spectrum.
Turning on the particle-hole interactions results in the
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FIG. 5. Same as Fig. 4 except T = 1 negative parity levels are
shown.

FIG. 3. Same as Fig. 2 except T = 1 negative parity levels are
shown.

mixing of pure particle-hole basis states resulting in level
diagrams such as those shown in Figs. 2—5. It has been
previously noted' that in the relativistic model the con-
tributions to the particle-hole interaction coming from
each meson exchange separately can be quite large.
However, due to cancellations among the individual
meson exchange contributions the total particle-hole in-
teraction results in matrix elements similar to those ob-
tained in nonrelativistic calculations. Furnstahl' has
previously noted (using basis C) that using the QHD-II
interaction, including ~ and p meson exchange, results in
a particle-hole interaction that apparently pushes down
unnatural parity (pionlike) states too far in energy. This
is particularly noticeable for the QHD-II (PS) interaction.
The fact that pseudovector coupling tends to damp the
strong effective pion exchange interaction obtained in
QHD-II (PS) is the reason that the QHD-II (PV) interac-
tion yields unnatural parity states closer to the experi-
mental levels identified with these particle-hole states.
Thus, QHD-II (PV) is apparently preferred on the basis

0 RPA, T=O, BASIS A

25—

20—
0
2,3

I5

UJ 0 S

2
s10—

UNPERTURBED QHD-II PS QHD - II PV EXPERIMENTQHD -
I

FIG. 4. Negative parity T =0, RPA, excited-state energy lev-
els using the QHD-I or QHD-II residual interaction and basis
A.

of this phenomenology. These conclusions are based on
using basis C.

We can use the results shown in Figs. 2 —5 to study the
effects of using the masses of neighboring nuclei to obtain
the single-particle energies. This approximation has
often been adopted in previous nonrelativistic calcula-
tions. ' The adoption of phenomenological single-
particle energies allows one to include effects other than
those included in the Hartree mean-field approximation.
Such effects might include multiparticle multihole
configurations in the ' 0 ground state, Fock terms, and,
relatedly, single-pion exchange contributions to single-
particle energies. Of course from a theoretical perspec-
tive such phenomenology has serious disadvantages asso-
ciated with the resulting lack of a systematic procedure
for including higher-order corrections.

If the QHD-I particle-hole interaction is adopted, one
finds (see Figs. 1 and 3) that for A (Hartree energies and
single unbound Id3/2 orbital) the level diagram is quite
similar to that obtained for basis C (Hartree energies and
continuum basis). In fact, the inain differences occur be-
cause the continuum calculation includes additional basis
states. Figures 4 and 5 i11ustrate the results for basis A
assuming different residual interactions. The qualitative
trends are similar to those obtained for basis C by
Furnstahl. In particular for T = 1 states all three interac-
tions studied result in the predicted energies of the
lowest-lying quartet of states (T =1, J =0,1,2, 3 )

being considerably lower than the corresponding experi-
rnental energies. Moreover, as in the case of basis C, one
finds that for both T =0 and T =1 states the QHD-II in-
teraction results in most unnatural parity state
(0,2,4 ) energies being significantly lower than is ob-
served experimentally.

The use of QHD-I and basis B (phenomenological
single-particle energies and single unbound Id3&2 orbital)
allows the T =1 lowest-lying quartet to be closer to the
observed experimental levels (see Fig. 3) although the or-
dering of the closely spaced levels is sti11 not correctly
given . On the other hand, for the T =0 lowest-lying lev-
els the use of phenomenological single-particle energies
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and QHD-I results in the predicted energies of the lowest
levels being significantly higher than the predictions for
basis A and C and is in disagreement with experiment
(see Fig. 2).

B. Inelastic electron scattering form-factors for ' 0
Using the nuclear wave functions discussed above and

the relativistic expressions for electron-nucleus scattering
given by Eqs. (18)—(29) and in the Appendix, we have
studied the nuclear linear response to electron scattering.
Because of the inherent uncertainties in the energy level
predictions ( —1 —2 MeV) and, in some cases, the intrinsic
widths of the states involved, we have grouped the states
in ' 0 into complexes centered near 13, 17, and 19 MeV
as well as one comprising the giant resonance region.
There exists a previously published comparison between
the experimental results for these complexes and a stan-
dard nonrelativistic [Tamm-Danoff approximation
(TDA)] linear response theory. ' The T=0 states were
not included in the nonrelativistic theory and are not in-
cluded in the present complexes since in each case they
yield small calculated form factors and thus are predicted
to be weakly excited.

Furnstahl' has previously reported a study of the dis-
tribution of dipole strength in ' 0 in a relativistic model.
He has also studied individual form factors such as those
for the low-lying T =0 collective states in ' 0 and several
T = 1 states for which experimental data is available. For
some of the T = 1 states of interest in this paper, his main
conclusions are that (a) both the QHD-I and QHD-II in-
teractions yield reasonable results for the energy distribu-
tion of dipole strength and (b) the magnitude of predicted
form factors for states dominated by a single unperturbed

particle-hole configuration are generally larger than the
associated experimental form factors.

The states included in the various complexes for basis
A, B, and C are listed in Table III. Admixture ampli-
tudes and electron scattering form factors for individual
states are available from the authors on request. We
show representative results for the form-factor complexes
using the QHD-I particle-hole interaction in Figs. 6 and
7.

1. The 13 and 17Me V complexes

The quantity F (q), defined by Eq. (25), for the 13 and
17 MeV complexes is plotted in Figs. 6(a) —(c) for basis A,
8, and C, respectively. The points with error bars are the
experimental data taken from Refs. 15 and 16. The solid
curves are the present RPA results. The dashed curves
are the nonrelativistic TDA results of Donnelly and
Walker' obtained using harmonic oscillator wave func-
tions and using phenomenological unperturbed
configuration energies obtained from the masses of neigh-
boring nuclei. Both theory and experiment in the case of
the 13 MeV complex have been multiplied by 10 to allow
for a simultaneous display with the 17 MeV complex.

The RPA results for the 13 MeV complex are essential-
ly unchanged whether one uses the bases A, 8, or C. The
effect of including higher-lying continuum states in basis
C is unobservable when compared to the basis A result.
This is understandable since these low-lying T =1 states
contain little particle-hole configuration mixing. The
basis 8 curves shows less excitation than found from
basis A for values of q less than 300 MeV/c. This is be-
cause the 2 constituent (see Table III) is less strongly
excited, for this range of momentum transfer, in basis 8

TABLE III. The T=1 constituent states included in the 13, 17, and 19 MeV and giant resonance
complexes [see Sec. III, (e,e')].

RPA energy eigenvalue (MeV)

Basis A Basis B Basis C
Nonrelativistic

TDA'

13 MeV
1

2
3

17 MeV
1

2

19 MeV
1

2
2
3
4

Giant resonance
1

1

11.14
10.56
10.22

15.65
15~ 32

20.21
18.61
20.29
18.67
18.59

20.47
23.82
23.86
23.56

12.24
12.95
12.62

17.10
16.75

19.20
18.58
19.68
18.98
18.89

20.79
23.19
23.23
22.92

11.11
10.51
10.20

16.88
15.31

20.16
18.26
20.24
18.64
18.58

20.45
23.76
23.81
23.56

14.38
13.59
13.57

18.46
18.45

20.73
19.77
20.96
19.17
19.86

23.26
26.13
24.28
25.30

'See Ref. 13.
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FIG. 6. (a) Electron scattering form factors for ' 0 for the 13 and 17 MeV complexes. Theory and experiment have been multi-
plied by 10 for the 13 MeV complex. The solid line represents the relativistic calculation using basis p discussed in the text. The
dashed line is a nonrelativistic calculation taken from Ref. 13. The experimental data denoted Sick et al. is from Ref. 15, and the
data of Fuller and Hayward is from Ref. 16. (b) Same as (a) except basis B is used in the relativistic calculation. (c) Same as (a) except
basis C is used in the relativistic calculation.

than in basis A. The result is a curve in basis B that
more closely agrees with that from the nonrelativistic
TDA calculation (which uses the same unperturbed ener-
gies as adopted in basis B). We note that in each basis
the calculated form-factor squared, as in the nonrelativis-
tic TDA case, is still roughly three times the experirnen-
tal result. Since the 3 constituent (see Table III) is less
strongly excited (by approximately a factor of 2} for
q & 300 MeV/c, than in the nonrelativistic TDA result, '

the total form-factor squared in the present QHD-I cal-
culators drops off more rapidly in this region of q. At the
photon point (q =13 MeV/c) the RPA curve is just out-
side (above) the range of experimental error. This is also
the case for the nonrelativistic TDA prediction shown.

Using the 1 and 2 states produced by the RPA cal-
culation in basis A and B leads to calculated squared
form factors for the 17 MeV complex that fail to repro-
duce experiment. It is the 1 state at 15.65 MeV in basis
A and 17.10 MeV in basis B (see Table III) that peaks at
low q that causes the difficulty. The excitation for these
1 states is roughly three times that for the correspond-
ing 1 state found in the nonrelativistic TDA calcula-
tion. On the other hand, the 2 state which peaks at
about 200 MeV/c is about a factor of 3 smaller than the
nonrelativistic TDA result for q 200 MeV/c. This gives
better agreement with experiment in this region of q.

The situation is somewhat improved in the case where
basis C is employed in the RPA structure calculation.
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Here we find that in addition to a 1 state at 15.58 MeV
there is a 1 state at 16.88 MeV. The lower-lying state is
mainly that found earlier in the smaller basis. If we only
include the higher-lying state in the total form-factor
squared for the 17 MeV complex we obtain the result
shown in Fig. 6(c}. Since the 2 form factor from basis C
is similar to that obtained in basis A and 8, we see that
the inclusion of this new 1 state greatly improves the
agreement at low q resulting in an overall agreement with

experiment that is better than that found in the nonrela-
tivistic TDA calculation. The nonrelativistic TDA curve
requires a reduction factor of about 2 in order to attain
the same level of excitation as the experimental data. At
the same time, however, the basis C RPA curve misses
the photon point (q =17 MeV/c) by being about a factor
of 4 too low. Of course, while the inclusion of this new
1 state at 17 MeV improves the agreement with the ex-
perimental form factors in this energy region, one is now

faced with the problem of a predicted strongly excited 1

state at 15 MeV.

2. The 19MeV and giant
resonance region complexes

In Figs. 7(a) —(c) we show the total form factors
squared for the 19 MeV and giant resonance complexes
for bases A —C. The points carrying error bars are exper-
irnental data from Refs. 15—17. The solid curves are the
RPA results of the present calculation while the dashed
curve is the nonrelativistic TDA result of Donnelly and
Walker. ' The dot-dashed curve is the nonrelativistic
TDA curve plus a nonrelativistic quasielastic contribu-
tion. ' This curve is included only to provide a qualita-
tive estimate of quasielastic contributions and should be
ignored when making a comparison of relativistic and
nonrelativistic results. The experimental data and the
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theoretical curves in the 19 MeV complex have each been
multiplied by 100 to allow for a simultaneous display of
the giant resonance region complex.

Differences between the RPA curves of total form fac-
tors squared for basis A, B, and C are slight in the 19
MeV complex. The biggest of these occurs at low q,
where the form factor for the 1 state at the photon
point is the least in basis A and the greatest in basis C.
In this region of low q, all the relativistic RPA curves are
consistently enhanced relative to the nonrelativistic TDA
result. The 1 state individual form factor exhibits a
diff'ractive minimum at a q of about 240 MeV/c which be-
comes very sharply defined in basis C. This results in a
better agreement with the data points in this region com-
pared to the nonrelativistic calculation. In the region of
high q, the form factors obtained by using basis A, B, and
C are nearly identical and consistently below the nonrela-
tivistic TDA curve. This occurs because the present cal-
culations yield a smaller 4 and 2 (at 20.29 MeV) form
factor than for the nonrelativistic calculations. The rise
of the form factor seen in the nonrelativistic TDA calcu-
lation for q values in the region of 150 and 350 MeV/c
are missing in the present RPA calculations. This is due
in part to a less strongly excited lowest 2 state in this
complex. The relativistic calculation resolves approxi-
mately half of the discrepancy between the nonrelativistic
TDA result and experiment in these regions of q.

The RPA form factors squared for transitions to the
complex of states in the giant resonance region are nearly
identical for basis A, B, and C. The curve obtained from
basis C shows slightly less excitation strength for q & 100
MeV/c than found from basis A and 8. In this region of
q the agreement between the RPA curves and the experi-
mental data is poor. However, since a relativistic esti-
mate of the quasielastic contribution is not available, a
direct comparison is difficult to make. On the other
hand, comparison with the nonrelativistic TDA curve
shows a large reduction in transition strength for q ~ 150
MeV/c for the relativistic predictions compared to the
nonrelativistic results. In each basis, the RPA, 3 form
factor squared is about a factor of 3 smaller than that
from the nonrelativistic TDA calculation. At the same
time, the agreement with the experimental photon point
is excellent for each basis employed. Furnstahl has previ-
ously noted that the difference between relativistic RPA
and relativistic TDA calculations is small for T=1 di-
pole states with the largest effect being a -20% reduc-
tion for the most collective dipole state using a QHD-I
particle-hole interaction.

We have investigated the source of the slight reduction
between nonrelativistic TDA calculations and the present
relativistic RPA calculations for the 4 T =1 stretched
state. We find that there is a slight reduction ~ 10% in
going from the TDA to the RPA (independent of q and
not a relativistic effect). This is consistent with earlier
transition rate renormalization studies. ' The relativistic
and nonrelativistic TDA 4 T =1 transition rates are
quite similar between 300 and 400 MeV/c with the nonre-
lativistic rate being slightly larger ( &10%) near 300
MeV/c and the relativistic rate being slightly larger
( &20%) near 400 MeV/c. Note that oscillator orbitals

were used for the nonrelativistic rates discussed above,
while Hartree orbitals were adopted for the relativistic
calculations. We regard the differences quoted above as
small and conclude that the sensitivity (for both orbital
and relativistic transition operator diff'erences) of the 4
T = 1 stretched state transition rate is weak.

The situation for selected 3 T = 1 states can be quite
different. For example we noted that the 3 T =1 state
in the giant resonance region complex is significantly
weaker (approximately a factor of 3) in the present rela-
tivistic RPA calculations compared to a previous nonre-
lativistic TDA calculation. This state is almost complete-
ly a ld3/p ( ip3/p )

' particle-hole state in the present cal-
culations. From earlier work we expect a small reduction
in going from the TDA to the RPA. ' We have exam-
ined the various contributions to the relativistic and non-
relativistic rates (Coulomb and electric multipoles, upper
and lower component contribution) and find that the
large reduction can be traced to a corresponding reduc-
tion of contributions coming from upper components
only (for both the Coulomb and transverse electric mul-
tipoles) and thus is an apparently trivial effect arising
from the use of an unbound 1d3/p orbital in the present
relativistic calculations and a bound oscillator 1d3/p of-
bita1 in the nonrelativistic prediction taken from Ref. 13.

C. Weak interaction rates for ' 0

1. Muon capture rates in 0

There have been previous investigations concerning the
influence of relativistic nuclear dynamics on predictions
of muon capture and P-decay rates in nuclei. Previous
research has indicated that calculated muon capture rates
and beta-decay rates in the ' O(0+~0 )' N transition
are significantly enhanced due to the presence of M* in
the Dirac equation and in the weak nuclear current. ' '

When M' effects are not included, the ratio of 0+~0
partial rates for muon capture to those for beta decay are
outside the range of experiment (about a factor of 2 too
large). On the other hand, when M' effects are schemati-
cally included the rates are apparently significantly
enhanced. In this latter case, while both the predicted
muon capture rates and the beta-decay rates appear to be
at variance with experiment, the ratio of their rates is in-
side the range of experiment.

One interesting question is whether these enhance-
ments of the weak ' O(0+~0 )' N transition rates per-
sist in a more complete relativistic treatment using (a)
Dirac-Hartree single-nucleon wave functions (containing
implicit M* effects}, (b} the configuration admixtures ob-
tained from relativistic nuclear structure calculations for
the excited states reported at the beginning of this sec-
tion, and (c) the full Lorentz structure of the relativistic
weak transition operators. In addition, one would like to
compare the muon capture rates to the 0, 1, and 2
T=1 states in ' N to those obtained in nonrelativistic
calculations. The remainder of this subsection is devoted
to a discussion of the calculated muon capture rates. The
beta-decay rate predictions are discussed in Sec. III C 2.

In Table IV we show capture rates to the 0, 1, and
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TABLE IV. RPA total muon capture rates (s ') X10 . PS and PV refer to the ~NN coupling as-
sumed in the weak axial current. The same mNN coupling has been assumed in QHD-II as in the weak
axial current. Values in parentheses are TDA rates.

PS
Basis A

PV
Basis 8

PS PV PS
Basis C

PV
Nonrelativistic

TDA'

0
QHD-I
QHD-II

1

QHD-I
QHD-II

2
QHD-I
QHD-II

Total
QHD-I
QHD-II

'See Ref. 21.

68
102

451
408

548
626

1067
1136

86
98

451
406

465
499

1003
1002

68
101

450
408

528
597

1047
1106

87
98

450
405

448
477

984
980

86
(139)

534
(563)

548
(619)

1168
(1321)

112
176

534
450

465
508

llll
1134

(115)

(596)

(505)

(1215)

2 states of ' N that are below 30 MeV based on calcula-
tions adopting different particle-hole interactions, bases,
and forms for the weak axial current. The states above
30 MeV carry only a small amount of the total transition
strength as do the higher spin 3 and 4 states.

The rates shown are for nuclear structure calculations
adopting the RPA. We have also carried out similar cal-
culations using the TDA. We find that if one assumes a
QHD-I interaction and either PS or PV weak axial cou-
pling, the RPA total rate to a given type (J")of state is
smaller ( ~10%) than the TDA rates. On the other
hand, the RPA total rate to 0 states is significantly
larger ( ~40%) than the TDA rate for QHD-II PV and
PS, for each basis employed. The RPA total rate to 2
states is slightly enhanced ( ~4%) relative to the TDA
rate for QHD-II (PS) using basis A and B. RPA and
TDA rates can be considerably different for indiuidual
transitions as well (see 0+~0 discussion below). From
Table IV one observes that the 0 and 1 predictions us-

ing basis 8 are not significantly different from those ob-
tained using basis A. Even for the 2 predictions for
basis B and basis A the difference is 5%. For 0 and
2 states PV and PS predictions can be significantly
different (for the same basis and particle-hole interaction).
The total capture rate is somewhat less sensitive to the
assumption of PS or PV coupling in the weak axial
current, yielding differences on the order of 12 percent.
There is not an appreciable difference between nonrela-
tivistic TDA predictions and relativistic TDA total cap-
ture rates obtained using the present procedure. As an
example we note that a nonrelativistic TDA prediction
for the capture rate ' yields A„= 122 X 10 s ', while we
find using the relativistic approach and basis C the TDA
predictions (not shown in Table IV) are (a) QHD-I, PV:
120X10 s', (b) QHD-II, PS: 132X10 s ', and (c)
QHD-II, PV: 117X10 s '. The RPA and TDA predic-
tions should be compared with the experimental results
(97+5)X 10 s ' (Ref. 22) and (98+3)X 103 s ' (Ref. 23).

While we obtain no significant difference between non-
relativistic and relativistic TDA total rates (certainly no

large enhancement of the relativistic rates), there can be
significant differences between PS and PV predictions and
between relativistic and nonrelativistic predictions for
rates to a given state. In order to investigate the origin of
such differences it is useful to examine partial rates in
more detail. We show, in Table V, the partial muon cap-
ture rates for capture leading from the 0+ ground state of
' 0 to the lowest 0 state of ' N. The RPA results show
that the PS predictions are generally lower than PV pre-
dictions for a given particle-hole interaction with predic-
tions based on a QHD-I interaction being lower than
those obtained using the QHD-II particle-hole interac-
tion. For comparative purposes we note that the nonrela-
tivistic TDA rate ' is 1825 s ' and the experimental
rate is 1110—1560 s '. Thus the results for QHD-I
adopting PS coupling in the weak axial current are closer
to the experimental results, while the other predictions
are significantly higher than experiment and are larger
than the nonrelativistic TDA predictions. Since some
of the discrepancy between theory and experiment is
probably attributable to multiparticle, multihole con-
figurations' in the ground state (beyond those consistent
with the RPA approximation) and exchange current con-
tributions it is not possible to motivate a particular cou-
pling (PS or PV) based on a simple comparison between
present theory and experiment. We further discuss this
point in the conclusions section.

The nonrelativistic TDA predictions are most ap-
propriately compared with relativistic TDA calculations.
Thus we show in Table VI the relativistic TDA results.
Note that the lowest 0 ~0 transition PV predictions
are substantially larger than the PS results with the par-
ticular NR relativistic TDA prediction quoted lying be-
tween the PS and PV results. For the total rate the rela-
tivistic TDA PV rate is lower than the PS rate (for basis
B and QHD-I) and both are reduced compared to the
nonrelativistic TDA prediction (see Table VI).

It is of interest to determine the origin of the large
differences occurring in the lowest 0+~0 partial rate
predictions. There are three potential contributors to the
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TABLE V. RPA muon capture and beta-decay partial rates (s ') for the ' 0 (g.s.) (~) ' N (0 ) transition.

PS
Basis A

PV PS
Basis B

PV PS
Basis C

PV
Nonrelativistic

TDA'

A„
QHD-I
QHD-II
Ap
QHD-I
QHD-II
(A„/Ap) X 10
QHD-I
QHD-II

1492
2712

0.376
0.691

4.0
3.9

2260
2863

0.318
0.422

7.1

6.8

1424
2511

0.363
0.648

3.9
3.9

2172
2748

0.306
0.407

7.1

6.7

1262

0.308

4.1

1924
3557

0.259
0.555

7.4
6.4

1825

0.3

6.0

'See Ref. 21 for A„; A& calculated by the present authors.

differences: (a) relativistic Dirac single-particle orbitals,
(b) admixture coefficients associated with different
particle-hole interactions [i.e., QHD-I, QHD-II (PS,PV)]
and assumed pure configuration particle-hole energies
(i.e., the difference between basis A and basis B), and (c}
the form assumed for the weak axial nuclear current (PS
or PV coupling). The differences that can be attributed
to the effect of adoption of different configuration ener-
gies is small as can be seen by comparing corresponding
entries (i.e., same residual interaction and assumed weak
current) of basis A with those of basis B. The Dirac or-
bitals used in basis A are identical to those of basis B.
Obviously there can be very significant differences attri-
buted to which residual interaction is used. For example,
see Table V, and see the differences between QHD-I and
QHD-II for a given basis and assumed (PS or PV) cou-
pling in the weak axial current. This difference arises
solely from the different admixture coefficients for linear
combinations of particle-hole states induced by different

residual interactions. We find that for a given basis and
type of residual interaction there is significant difference
in the predicted rate between assuming PS and PV cou-
pling in the weak axial transition operator with the PV
predictions being higher than the corresponding PS pre-
dictions. We show, in Table VII, the TDA muon capture
rate for the ' 0 (g.s.)~' N (0 } transition for the lowest
0, T =1 excited state of ' N. The results indicate that
for the QHD-I interaction (for all bases and PV or PS
coupling) the relativistic TDA and RPA (see Table V)
predictions are quite similar, with the RPA results being
slightly larger. For the QHD-II interaction the relativis-
tic RPA rate is significantly higher than the correspond-
ing relativistic TDA rate.

2. Beta-decay rates in ' N (0 ~0+ )' 0 transitions

The results for the beta decay of the first excited 0
state of ' N to the 0+ (g.s.) of ' 0 are summarized in

TABLE VI. Partial muon capture rates in (s ') to the 0, 1,and 2 ( T = 1) states of ' 0 calculated
in the TDA using basis B and QHD-I.

0

E„(MeV)

13.08
24.17

12.24
17.13
19.20
20.89
23.21

12.97
16.75
18.59
19.70
23.23

PS

1401
5466

2770
9846
3443

20668
11 771

21 604
207

3978
27 860
2515

PV

2137
6562

2770
9846
3443

20668
11 771

19 326
293

2022
23 332

1614

Nonrelativistic
DTA'

1835
9629

2772
5808
3060

20 114
27 879

13 261
8

1765
26 843

8594

Experimental
range

1100-1560

1400-1850

Total
partial rate

'See Ref. 21.
bSee Ref. 24.
'See Ref. 22.
See Ref. 23.

111529 104 784 121 516 97 000+5000 '
98 000+3000
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TABLE VII. TDA muon capture and beta-decay partial rates (s ') for the ' 0 (g.s.) (~) ' N (0 )

transition.

Basis

PS PV PS PV PS PV

A„
QHD-I
QHD-II

Ap
QHD-I
QHD-II

1466
1414

0.369
0.346

2221
2314

0.313
0.329

1401
1335

0.357
0.329

2137
2243

0.302
0.321

1198
959

0.291
0.226

1831
2125

0.244
0.293

Table V. For PS or PV coupling and QHD-I we note the
absence of significant enhancements in the beta-decay
rate relative to the nonrelativistic result for all the bases
considered. There are significant enhancements if the
QHD-II residual interaction and PS coupling is adopted.
As will be discussed in the final section we place more
significance on the PV coupling results and thus the
enhancement obtained for QHD-II, PV, basis C is
noteworthy. The relativistic TDA beta-decay predictions
are shown in Table VII. Note that in the relativistic
TDA there are no significant enhancements in the beta-
decay rate compared to the nonrelativistic prediction.
The theoretical predictions should be compared with the
experimental result A&=0.43+0.10 s

Thus depending on the details of the relativistic calcu-
lation there may or may not be significant enhancements
compared to a nonrelativistic calculation. Earlier work'
that suggested enhancements would naturally occur
differs from the present calculation in that we use relativ-
istic Hartree orbitals, configuration mixed wave functions
obtained using a relativistic form for the residual interac-
tion, and a fully relativistic treatment of the relevant
transition operators [involving nontrivial M'(r) effects].

IV. DISCUSSION AND CONCLUSIONS

The purpose of this work was to apply a relativistic
theory of nuclei to a study of the isovector electroweak
nuclear response. The random-phase approximation
(RPA) to linear response theory was used to study inelas-
tic electron scattering, muon capture, and beta decay on
the mass 16 system. While it is of interest to compare the
results with experiment, perhaps a more meaningful corn-
parison is with standard nonrelativistic calculations of a
similar degree of sophistication. For example, adoption
of the RPA means that a significant truncation of shell-
model basis has occurred and thus form factors and de-
cay rates —calculated either relativistically or
nonrelativistically —may not agree with experiment for
the trivial reason that for a particular transition a
"particle-hole*' model is inadequate for obtaining the nu-
clear transition density.

Certain of the weak interaction capture and decay
rates and nuclear excited state energy levels calculated
using QHD-II were sensitive to whether PS or PV cou-
pling was used for the ~NN vertex. Generally, for nu-
clear energy levels, PS coupling tends to excessively lower
the energies of non-normal parity isovector states. For

weak interactions the form of the weak axial current
adopted preserves partial conservation of axial-vector
current (PCAC) in the nuclear environment only if PV
coupling is adopted (for PS coupling, terms involving the
derivative of the effective mass violate PCAC).

The inelastic electron scattering predictions suggest
that the overall isovector response of complexes is not
qualitatively different than those found using a nonrela-
tivistic model. Individual states may have somewhat
different form factors (see Sec. III). The stretched 4
T = 1 state, while somewhat reduced compared to nonre-
lativistic calculations, is still too strongly excited com-
pared to experimental results. This is probably associat-
ed with the truncation of the basis and not a problem
with the model of the nuclear dynamics.

The total muon capture rate on ' 0 is not very sensi-
tive to the type of coupling or residual interaction adopt-
ed. The results are similar to those obtained in a nonrela-
tivistic model and exceed the experimental results by
10-30%%uo.

Partial weak interaction rates can be extremely sensi-
tive to the assumption of PS or PV coupling and the re-
sidual interaction adopted. Of particular significance are
the axial transitions 0 ~0 studied for muon capture
and beta decay. These transitions are of special interest
because they involve the time component of the weak axi-
al current for which exchange current contributions may
be especially important. ' The sensitivity of these par-
tial rates to effects studied herein cannot be fully exploit-
ed without additional theoretical research. The areas we
regard as important for future investigation include (a)
satisfactory incorporation of pions in a relativistic model
involving chiral symmetry and, relatedly, an elucidation
of the relation between the pion and the sigma meson al-
ready present in the current relativistic models, (b) utili-
zation of a larger shell model basis including both con-
ventional multiparticle rnultihole states as well as
nucleon-antinucleon states (incorporating as an example
vacuum polarization effects), and (c) calculations of
meson exchange current, and relatedly, isobar effects in a
consistent model assuming relativistic dynamics.

This work was supported in part by a National Science
Foundation Grant PHY86-06364.

APPENDIX

For completeness we summarize below the relativistic
forms for the transition operators used in the electron
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scattering, muon capture, and beta-decay reactions stud-
ied in the main text.

weak vector current. The general form of the vector
current is

1. Vector current operators

The exphcit forms for the relativistic electroweak vec-
tor current transition operators are listed below. These
operators are associated with the conserved electromag-
netic vector current or the conserved charge-changing

J"(x)=li(x)y"Qg(x)+(j„g(x) gi""f(x)
2M

(Al)

where the f(x) are the baryon Heisenberg field operators
and

—,'(1+r3), vector current

charge-changing weak vector current,
L

Ar —,'(1+F3)+A,„—,'( I r3),—vector current

(Ar —A,„}rz, charge-changing weak vector current .

(A2)

(A3)

EJgr(q)= —f dxI V[j~(qx)err(Q„)] I J(x),

(q)= f dxj~(qx)YJM(Q )J (x) (A5)

f'q'~(q) =—fdx[V XjJ(qx)YJJ)(Q„)] J(x), (A6)
1

1'&gal(q)= fdxjz(qx)YJJ, (Q„) J(x), (A7)

where, using a standard notation

MJ (qx)—:jJ(qx) YJ (Q„),
M Jr (qx) =jL (qx)Y JL )(Q„),

(A8)

(A9)

In Eq. (Al), M is the nucleon mass and in Eq. (A3), Ar
(A,„)is the proton (neutron) magnetic moment. The mul-

tipole transition operators appearing in the text are ex-
pressed in terms of the J"(x) in Eq. (Al) by

e+&=+(e,+ie )/2'~

A,e0=e, .

(Al 1)

(A12)

Using the continuity equation and integration by parts,
one can show that matrix elements of EJM(q) can be ex-
pressed in terms of those of QJM(q):

0

(JfllLJIIJ ) = (JfIIM
q

(A13)

(A14)

The transition operators have the following matrix struc-
ture in the space of the nucleon Dirac-Hartree four com-
ponent spinors using the gamma matrices of Ref. 12:

QMJ (qx) i A. 'q XJ™(qx—)

iA'qXJ' .(qx) QMJ (qx)

qA, 'X (qx) '(Q —}(.
' )X' (qx)

Tel ( ) i(Q+A, 'q )Xr (qx) —qA, 'XJ (qx)

and where jz(qx) is a spherical Bessel function, YJ (Q„)
is a spherical harmonic, and YzL, (Q„) is a vector spheri-
cal harmonic defined via

iqA, 'Xz™(qx)
Tmag(

JM q (Q +g~qo)XM(qx)

(Q —I,'q )XJ (qx}

iqA'X™—(qx),

(A15)

YJL &(Q„)=g (Lm lkl(L1)JM) YL (Q„)ez,

with

(A10) (A16)

where k'=A, /2M. The two-component matrix operators
XJ, XJ, and XJI™are defined via

XJ (qx)—=MJ (qx) cr, (A17)

XJ™(qx)= i —VXMJJ(qx) —a =[J] '[ —J' M&&+&(qx)+(J+1)' MJJ &(qx)] cr,1

q
(A18}

XJ' (qx):— VMJ (qx) rr=[J] '—[(J+1.)'~ MJJ+, (qx)+J'~ MJJ &(qx)].cr,
q

(A19)

where cr is the usual Pauli two-component spin operator. The reduced matrix elements of the above operators are
found using the general results:
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z I' J I
(n'(I' —,')j'~~MJ(qx)~~n(l —,')j) = ( —

)
+'+'~ [I'][l][j'][j][J]' .

I J
'

0 0 0 (n'I'j'~jJ(qx}~nlj),
(4') I J 0 0 0 (A20)

I'

(n'(I' —,')j'~~MJL(qx) o ~[n(I—,
' }j)= ( —)'6' [I'][I][j'][j][L][J]

j

L
1 . 0 0 0 (n'Ij''j~l (qx)~nlj ) .

j J
(A21)

2. Axial vector current operators

The relativistic transition operators resulting from the charge-changing, weak axial-vector current are listed below.
Since this current contains an induced coupling to the m meson, we list both pseudoscalar and pseudovector couplings
for this contribution.

a. Pseudoscalar coupling

For pseudoscalar ~NN coupling the axial-vector current is written

2M'(x)q„
J„'s'(x)=11(x)y„ysw' 'alt(x) — "f(x)ysw'*'g(x), (A22)

where,

(A23)

M'(x) =—nucleon effective mass,

m —=pion mass,

w ' +—' = —1 23m+, r+ =. ,
'

(r„+i r~ ) . —

(A24)

(A25}

(A26)

The gamma matrices used are those of Ref. 12. In matrix form, one has

J~0~5 (x)=f (x)
+1

m~

2M*(x)qo
+1

w' —'f(x) (A27)

and

J5+—'(x)=f (x)
2m *(x)

zqm„—q

2M "(x)
zm —q„

w'+-'1I(x) . (A28)

We list below the matrix structure of the new operators appearing in Eqs. (37)—(40) of the main text associated with
the axial vector current. The following operators should each be multiplied by the isospin factor, w' —':
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1+ 2M'(x}q MM( )
m q

2M'(x )q M( )qX
m~

(A29)

LJM(q) =
i XJ™(qx)

[qM'(x)Mz (qx) —M' (x):-J™(qx)]
m —q„

2 [qM'(x)Mz (qx) —M' (x):-~ (qx)]
m —q„

i XJ'™(qx)

(A30)

TJM(q}

iXJ (qx)

2M' (x),M qx
m —q„

2M' (x),gr( )qx
m —q„

iXJ (qx)
(A31)

Tmag5(q )

XJ (qx)

XJ (qx)
(A32)

where

dM (x)
dx

(A33)

The quantities Mz, MJL, Xz, XJ, and XJ have been defined above in Eqs. (A8), (A9), (A17), (A18), and (A19), re-
spectively. For the off-diagonal contributions of Eqs. (A30) and (A31) involving the derivatives of M (x), one needs to
define projections of expression (A9) onto the unit vector x:

L 1 J
MJL(qx) x=( —) [L] 0 0 0 ji(qx)YJM(Q„), L =Jul

=0, L=J .

We obtain

:-J(qx) =M~&(qx) x

(A34)

(A35)

and

:-I (qx)= i —VXMzz(q—x) x=[J] '[ J'~ Mzz+~(qx—)+(J+ I)'~ Mzz &(qx)] x,
q

(A36)

(qx)—= —VMz (qx) x=[J] '[(J+I)'~ Mzz+&(qx)+J'~ MJJ, (qx)].x .
q

(A37)

b. Pseudovector coupling

For pseudovector m.NN coupling the form of the axial-vector current may be written

J„'5'(x)=1(t(x)y„ysw'*'f(x)+ " g(x)gy~w' —+'g(x) . (A38)

The quantities appearing in Eq. (A38) are defined following (A22}. In matrix form,
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J(')5'(x)= f (x)

—q()(q cr }
2 2m q
2

qp
2 2m~

2
qp

2 2m qp
—qp(q o)

2 2m

(A39)

J5 '(x) =f T(x )

(q cr)o — q
m~

qp

m„—q

qp

m
q

7T P

(q n)
2m —

q

u)' —'P(x) . (A40}

By eliminating q, as in the previous case of pseudoscalar coupling we find the following matrix structure associated with
the various operators

MJM(q) =

-M
X

m —q„
2

+1 MJ (qx)
mp

2

+1 MJ (qx)
m~

X .M( )qX
m —q„

(A41)

LJM(q) =

2
iXJ" (qx)

m~

MJ (qx)
qpq

m —q„

M (q. )
m~ qp

iX" (qx)
m~

(A42)

Tel5 (q)—

Tmag5(q }

iXJ (qx)

XJ (qx}

i XJM(qx)

0

XM(qx)

(A43)

(A44)

It is interesting to note that Eqs. (A31) and (A44) are identical, i.e., TJM (q) is the same for both pseudoscalar and
pseudovector coupling. With the following parity assignments,

+JM~~JM~ ~ JM~ JIM

~ Jill &+ JM &~ JM &
~ JM

(A45)

(A46)

one concludes that natural-parity transitions that proceed by f'Q' will have the same rate for both pseudoscalar and
pseudovector coupling.

To calculate beta-decay rates for 0 ~0 transitions we utilize the long-wavelength reductions (the limit q~0) of
the operators Mpp(q) and L(x)(q):

(a) pseudoscalar coupling,

Mpp(0)
(q~p) 2M*(x)q

2 2 pp x
qp

2M*(x)q

m~ qp
(A47)

l'x Yp l l (0 ) ' 0'

L ()() (q)5

(q 0) 3 2[xM' (x)+3M*(x)]
I

2 2m„—qp

and (b) pseudovector coupling

2[xM*(x)+3M*(x)]
&

2 2 00 x
m —

qp

lx Ypl)(Q ) CT

(A48)
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Moo(q)
(q —+p) + l Yoo(Q„)

m —
qp

2

+ 1 Yoo(A„)
m —

qp
(A49)

L oo(q)
(q —+p) 3

tx Yo~ t ( 0 ) ' tr

Yoo(Q„)
3qp

m„—qp

Yoo(Q„)
3qp

m~ gp

ix Yoo„(Q„).tr
(A50)
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